Using deep learning for heuristic detection of elliptic curves having high rank

Matija Kazalicki¹, Domagoj Vlah²

¹University of Zagreb, Faculty of Science, Department of Mathematics ²University of Zagreb, Faculty of Electrical Engineering and Computing, Department of Applied Mathematics

This research was supported by Croatian Science Foundation (HRZZ) Grant PZS-2019-02-3055 from "Research Cooperability" program funded by the European Social Fund.

• • • • • • • • • • • • •

Elliptic curve

What is a rank of an elliptic curve?

- elliptic curve *E* over \mathbb{Q} : $y^2 = x^3 + ax + b$, $a, b \in \mathbb{Q}$
- E has conductor N
- $E(\mathbb{Q})$ is group of rational points on *E*
- Mordell's Theorem: $E(\mathbb{Q})$ is a finitely generated abelian group isomorphic to $E(\mathbb{Q})_{tors} \times \mathbb{Z}^r$
 - $E(\mathbb{Q})_{tors}$ is the torsion subgroup of $E(\mathbb{Q})$ (15 possibilities)
 - *r* is the rank of $E(\mathbb{Q})$
- rank *r* of $E(\mathbb{Q})$ is called the rank of *E*
- Rank is expensive and hard to compute. High rank curves are very rare.
- It is not known what values can rank attain. (Unbounded or not?)
- It is of importance to find curves of high rank. Current record is 28 (Elkies, 2006)

L-function attached to E/\mathbb{Q}

• *E* can be written as a minimal equation:

$$y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}$$
 $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in \mathbb{Z}$

- reducing the coefficients modulo prime *p* defines an elliptic curve *E*(𝔽_{*p*}) over the finite field 𝔽_{*p*} (if *p* ∤ *N*)
- $#E(\mathbb{F}_p)$ is the number of points on $E(\mathbb{F}_p)$
- If $p \nmid N$ (good reduction) we define $a_p(E) = p + 1 \#E(\mathbb{F}_p)$
- If p|N, we set $a_p(E) = 0, -1$, or 1 if, respectively, *E* has additive, split multiplicative or non-split multiplicative reduction at *p*
- *L*-function attached to E/\mathbb{Q} :

$$L_E(s) = \prod_{p|N} \left(1 - \frac{a_p(E)}{p^s} \right)^{-1} \prod_{p \nmid N} \left(1 - \frac{a_p(E)}{p^s} + \frac{p}{p^{2s}} \right)^{-1},$$

which converges absolutely for $\Re(s) > 3/2$ and extends to an entire function by the Modularity theorem (Wiles, 1995; Breuil et al., 2001)

Matija Kazalicki, Domagoj Vlah

Mestre-Nagao-like sums

Birch and Swinnerton-Dyer (BSD) conjecture

The order of vanishing of $L_E(s)$ at s = 1 (analytic rank) is equal to the rank of $E(\mathbb{Q})$.

• BSD conjecture motivated construction of certain Mestre-Nagao-like sums, e.g.:

$$S_{0}(B) = \frac{1}{\log B} \sum_{\substack{p < B, \\ \text{good reduction}}} \frac{a_{p}(E) \log p}{p},$$

$$S_{3}(B) = \sum_{\substack{p < B, \\ \text{good reduction}}} \frac{-a_{p}(E) + 2}{p + 1 - a_{p}(E)} \log p,$$

$$S_{5}(B) = \sum_{\substack{p < B, \\ \text{good reduction}}} \log \left(\frac{p + 1 - a_{p}(E)}{p}\right) + \sum_{\substack{p < B, \\ \text{split mult. reduction}}} \log \left(\frac{3/2 \cdot \frac{p - 1}{p}\right)$$

$$\lim_{B \to \infty} S_{i}(B) \text{ is connected to rank of } E \text{ (e.g. } \lim_{B \to \infty} S_{0}(B) = -r + 1/2)$$

Rank heuristics

How to heuristically determine rank of curve E?

- $\lim_{B\to\infty} S_i(B)$ is numerically approximated by a finite sum for some large *B* and from a finite sequence of computed $a_p(E)$ -s.
- It is much faster to compute $a_p(E)$ -s than rank directly!
- Problem: How to determine sum thresholds for different ranks?
- Notice that all sums are in general of the form

$$S_i(B) = \sum_{p < B} \mathscr{F}_i(a_p(E), p, N_E),$$

where \mathscr{F}_i is some nonlinear function.

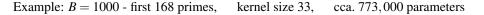
- What if we could instead of manual crafting \mathscr{F} , find optimal \mathscr{F} in some large space of possible nonlinear functions?
- Even better, for a fixed *B*, we want to find rank classifier function directly, depending on the sequence of $a_p(E)$ -s and N_E use deep learning!

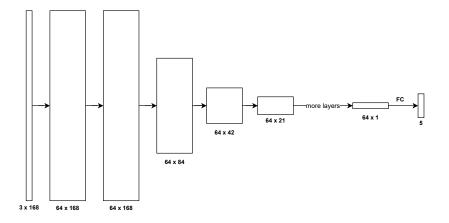
ヨトィヨト

Modeling rank classifier using deep neural network

- architecture: a sequence of convolutional neural network layers + fully connected classification layer in the end
- activation function: ReLU pointwise $f(x) := \max(x, 0)$
- Ioss function:
 - weighted cross entropy loss
 - weights reflect relative size of classes different ranks
- gradient descent optimizer: Adam (a variant of SGD)
- autograd using Pytorch library
- dataset for a number of elliptic curves we computed pairs of:
 - input: a sequence of a_p -s and conductor
 - target: exact rank computed using PARI/GP function ellrank
- input normalization
- train / validation / test set split
- quality of classification was decided using Matthews correlation coefficient (or phi coefficient)

Architecture of convolutional neural network





Loss function

- weighted cross entropy loss
- a combination of *LogSoftmax* function and negative log likelihood loss
- given by:

$$l(x,y) = \frac{1}{N} \sum_{n=1}^{N} \left(-\sum_{c=1}^{C} w_c \log \frac{\exp(x_{n,c})}{\sum_{i=1}^{C} \exp(x_{n,i})} y_{n,c} \right)$$

- *x* input (scores)
- y target (exact classes: 0 or 1)
- w weight
- C number of classes
- N minibatch size
- averaged over minibatch
- weights are computed to reflect the relative size of different classes:

$$w_c = \frac{\text{number of all dataset elements (curves)}}{\text{number of elements (curves) of class (rank) c}}$$

Datasets

- we constructed 12 different datasets by varying:
 - a) used curves:
 - LMFDB curves: cca. 3 milion curves, conductors < 300,000,000, ranks <= 4
 - custom curves: cca. 2 milion curves, conductor $< 10^{30}$, ranks <= 10
 - b) range of a_p -s considered: primes $p < 10^3, 10^4, \text{ and } 10^5$
 - c) selection of test curves:
 - uniformly selected (20% from the dataset)
 - all curves in top conductor range (which is [10⁸, 10⁹] for LMFDB and [10²⁹, 10³⁰] for custom dataset)
- for each curve *E* in each dataset we computed:
 - conductor N_E
 - sequence of $a_p(E)$ -s for a given range of primes
 - exact rank using PARI/GP function ellrank
- for each dataset we trained:
 - CNN classifier
 - for each of 7 considered Mestre-Nagao-like sums $S_0 ldots S_6$, a simple baseline FCNN classifier (4 hidden layers of 128 neurons each, input is S_i and N_E)
 - simple FCNN classifier Ω involving all 7 sums and N_E

• • • • • •

Matthews correlation coefficient

- balanced measure of classification quality
 - even for classes of very different sizes
- e.g. for binary classification, MCC is computed using:

$$MCC = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FP) \cdot (TP + FN) \cdot (TN + EP) \cdot (TN + FN)}}$$

- *TP* number of true positives
- FN number of false negatives
- TN number of true negatives
- FP number of false positives
- MCC takes into account both false positives and false negatives
- MCC generalizes to more than 2 classes
- MCC lies in the segment [-1,1]
- MCC = 1 only in the case of perfect classification

4 6 1 1 4 3 1

Comparison of different classifiers for LMFDB dataset with uniform test set

Type of classifier	Number of a_p -s used		
	$p < 10^3$	$p < 10^4$	$p < 10^5$
CNN	0.9507	0.9958	0.9992
S ₀	0.6823	0.8435	0.9068
<i>S</i> ₁	0.6848	0.8507	0.9301
<i>S</i> ₂	0.7277	0.8697	0.9359
S ₃	0.6933	0.8499	0.9142
S4	0.2678	0.3015	0.1525
S5	0.6132	0.7774	0.8463
S ₆	0.6969	0.8647	0.9381
Ω	0.8685	0.9602	0.9826

イロト イポト イヨト イヨト

Confusion matrices of CNN and Ω for $p < 10^5$ and uniform test dataset

CNN MCC = 0.9992

1 2 4 0.5656% 0.0000% 0 0.0140% 0.0000% 49.3237% 0.3974% 0.0683% 0.0000% 0.0000% Actual rank - 0.0004% 0.0074% 0.0004% 0.0000% N 0.0000% 0.0000% 0.0000% 0.8209% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0320% Predicted rank

 Ω MCC = 0.9826

イロト イポト イヨト イヨト

Comparison of different classifiers for LMFDB dataset with top conductor range test set

Type of classifier	Number of a_p -s used		
	$p < 10^3$	$p < 10^4$	$p < 10^5$
CNN	0.5669	0.9289	0.9846
S ₀	0.2880	0.5057	0.6545
<i>S</i> ₁	0.2791	0.4883	0.6658
<i>S</i> ₂	0.2790	0.4968	0.6730
S ₃	0.2897	0.5030	0.6574
S4	0.1352	0.1424	0.1850
S ₅	0.2960	0.3913	0.5261
S ₆	0.2632	0.4542	0.6416
Ω	0.4433	0.7013	0.8530

Confusion matrices of CNN and S_0 for $p < 10^4$ and top conductor range test dataset

Comparison of different classifiers for custom dataset with uniform test set

Type of classifier	Number of a_p -s used		
	$p < 10^3$	$p < 10^4$	$p < 10^5$
CNN	0.6129	0.7218	0.7958
<i>S</i> ₀	0.5738	0.6782	0.7462
<i>S</i> ₁	0.5780	0.6890	0.7592
S ₂	0.5649	0.6761	0.7521
S ₃	0.5551	0.6616	0.7361
S4	0.2893	0.2472	0.2251
S ₅	0.4987	0.5990	0.6696
S ₆	0.5230	0.6509	0.7361
Ω	0.5999	0.7069	0.7807

イロト イポト イヨト イヨト

Comparison of different classifiers for custom dataset with top conductor range test set

Type of classifier	Number of a_p -s used		
	$p < 10^3$	$p < 10^4$	$p < 10^5$
CNN	0.2147	0.3019	0.3655
S ₀	0.2533	0.3233	0.3719
<i>S</i> ₁	0.2573	0.3291	0.3834
<i>S</i> ₂	0.2340	0.3118	0.3688
S ₃	0.2556	0.3189	0.3645
S4	0.1234	0.1228	0.1024
S5	0.2081	0.2858	0.3380
S ₆	0.1803	0.2757	0.3527
Ω	0.2622	0.3246	0.3905

Future work

- M. Kazalicki, D. Vlah, *Ranks of elliptic curves and deep neural networks*, arXiv:2207.06699
- Find optimal CNN model architecture hyperparameters and optimizer hyperparameters
- Try some more advanced neural architectures:
 - recently developed NLP models: Transformer, Perceiver, ...
 - multitask learning: autoencoder + classifier head
 - recent developments in variational auto-encoders: IWAE smaller dataset bigger models
- Train on more datasets with different conductor ranges and different number of a_p -s used
- Use deep neural network based classifiers to find record breaking elliptic curves of high rank
- Congruent number curves

Application of deep learning

- Well established ML technique in: computer vision, natural language processing, speech recognition, machine translation, board game programs, ...
- Find previously unexploited or underexploited areas in science (mathematics)
- Generalize known techniques and models to these areas
- Problem meta-modeling reducing the need for expert knowledge
- I previously did or currently doing applications in:
 - Statistics (extreme value analysis): MIWAE
 - Bioinformatics (protein classification): NLP models Transformers
 - Bilevel optimization (improved numerical efficiency): deep convolutions
 - Number theory (eliptic curves over \mathbb{Q}) THIS WORK: deep convolutions
 - Numerical methods for PDE-s (PINN): ???
 - ...

Which problems in mathematics are good for DL?

- For objects that can have meaningful numerical representations (real or complex vectors, matrices or tensors)
- Finding rare objects where exact search is too expensive
- Classification problems (even discovering unknown classes)
- Finding counterexamples to conjectures in extremal combinatorics and graph theory
- Finding better heuristics (meta-heuristics)
- Inverse problems
- Numerical approximation problems natural application