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Elliptic curve

What is a rank of an elliptic curve?

elliptic curve E over Q: y2 = x3 +ax+b, a,b ∈Q
E has conductor N

E(Q) is group of rational points on E
Mordell’s Theorem: E(Q) is a finitely generated abelian group isomorphic to
E(Q)tors×Zr

E(Q)tors is the torsion subgroup of E(Q) (15 possibilities)
r is the rank of E(Q)

rank r of E(Q) is called the rank of E

Rank is expensive and hard to compute. High rank curves are very rare.
It is not known what values can rank attain. (Unbounded or not?)
It is of importance to find curves of high rank. Current record is 28 (Elkies, 2006)
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L-function attached to E/Q

E can be written as a minimal equation:

y2 +a1xy+a3y = x3 +a2x2 +a4x+a6 a1,a2,a3,a4,a6 ∈ Z

reducing the coefficients modulo prime p defines an elliptic curve E(Fp) over the
finite field Fp (if p - N)
#E(Fp) is the number of points on E(Fp)

If p - N (good reduction) we define ap(E) = p+1−#E(Fp)

If p|N, we set ap(E) = 0,−1, or 1 if, respectively, E has additive, split
multiplicative or non-split multiplicative reduction at p
L-function attached to E/Q:

LE(s) = ∏
p|N

(
1−

ap(E)
ps

)−1

∏
p-N

(
1−

ap(E)
ps +

p
p2s

)−1

,

which converges absolutely for ℜ(s)> 3/2 and extends to an entire function by
the Modularity theorem (Wiles, 1995; Breuil et al., 2001)
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Mestre-Nagao-like sums

Birch and Swinnerton-Dyer (BSD) conjecture

The order of vanishing of LE(s) at s = 1 (analytic rank) is equal to the rank of E(Q).

BSD conjecture motivated construction of certain Mestre-Nagao-like sums, e.g.:

S0(B) =
1

logB ∑
p<B,

good reduction

ap(E) logp
p

,

S3(B) = ∑
p<B,

good reduction

−ap(E)+2
p+1−ap(E)

logp,

S5(B) = ∑
p<B,

good reduction

log
(

p+1−ap(E)
p

)
+ ∑

p<B,
split mult. reduction

log
(

3/2 · p−1
p

)

limB→∞ Si(B) is connected to rank of E (e.g. limB→∞ S0(B) =−r+1/2)
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Rank heuristics

How to heuristicaly determine rank of curve E?

limB→∞ Si(B) is numerically approximated by a finite sum for some large B and
from a finite sequence of computed ap(E)-s.
It is much faster to compute ap(E)-s than rank directly!
Problem: How to determine sum thresholds for different ranks?
Notice that all sums are in general of the form

Si(B) = ∑
p<B

Fi(ap(E),p,NE),

where Fi is some nonlinear function.

What if we could instead of manual crafting F , find optimal F in some large
space of possible nonlinear functions?
Even better, for a fixed B, we want to find rank classifier function directly,
depending on the sequence of ap(E)-s and NE - use deep learning!
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Modeling rank classifier using deep neural network

architecture: a sequence of convolutional neural network layers + fully connected
classification layer in the end
activation function: ReLU - pointwise f (x) := max(x,0)
loss function:

weighted cross entropy loss
weights reflect relative size of classes - different ranks

gradient descent optimizer: Adam (a variant of SGD)
autograd using Pytorch library
dataset - for a number of elliptic curves we computed pairs of:

input: a sequence of ap-s and conductor
target: exact rank computed using PARI/GP function ellrank

input normalization
train / validation / test set split
quality of classification was decided using Matthews correlation coefficient (or phi
coefficient)
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Architecture of convolutional neural network

Example: B = 1000 - first 168 primes, kernel size 33, cca. 773,000 parameters

more layers

3 x 168 64 x 168 64 x 168

64 x 84

64 x 42 

64 x 21 64 x 1 

FC

5
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Loss function

weighted cross entropy loss
a combination of LogSoftmax function and negative log likelihood loss
given by:

l(x,y) =
1
N

N

∑
n=1

(
−

C

∑
c=1

wc log
exp(xn,c)

∑
C
i=1 exp(xn,i)

yn,c

)

x - input (scores)
y - target (exact classes: 0 or 1)
w - weight
C - number of classes
N - minibatch size

averaged over minibatch
weights are computed to reflect the relative size of different classes:

wc =
number of all dataset elements (curves)

number of elements (curves) of class (rank) c
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Datasets

we constructed 12 different datasets by varying:
a) used curves:

LMFDB curves: cca. 3 milion curves, conductors < 300,000,000, ranks <= 4
custom curves: cca. 2 milion curves, conductor < 1030, ranks <= 10

b) range of ap-s considered: primes p < 103,104, and 105

c) selection of test curves:
uniformly selected (20% from the dataset)
all curves in top conductor range (which is [108,109] for LMFDB and [1029,1030] for
custom dataset)

for each curve E in each dataset we computed:
conductor NE
sequence of ap(E)-s for a given range of primes
exact rank - using PARI/GP function ellrank

for each dataset we trained:
CNN classifier
for each of 7 considered Mestre-Nagao-like sums S0 . . . S6, a simple baseline FCNN
classifier (4 hidden layers of 128 neurons each, input is Si and NE)
simple FCNN classifier Ω involving all 7 sums and NE
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Matthews correlation coefficient

balanced measure of classification quality
even for classes of very different sizes

e.g. for binary classification, MCC is computed using:

MCC =
TP ·TN−FP ·FN√

(TP+FP) · (TP+FN) · (TN +EP) · (TN +FN)

TP - number of true positives
FN - number of false negatives
TN - number of true negatives
FP - number of false positives

MCC takes into account both false positives and false negatives
MCC generalizes to more than 2 classes
MCC lies in the segment [−1,1]
MCC = 1 only in the case of perfect classification
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Results

Comparison of different classifiers for LMFDB dataset with uniform test set

Type of
classifier Number of ap-s used

p < 103 p < 104 p < 105

CNN 0.9507 0.9958 0.9992
S0 0.6823 0.8435 0.9068
S1 0.6848 0.8507 0.9301
S2 0.7277 0.8697 0.9359
S3 0.6933 0.8499 0.9142
S4 0.2678 0.3015 0.1525
S5 0.6132 0.7774 0.8463
S6 0.6969 0.8647 0.9381
Ω 0.8685 0.9602 0.9826
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Results

Confusion matrices of CNN and Ω for p < 105 and uniform test dataset

CNN MCC = 0.9992 Ω MCC = 0.9826
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Results

Comparison of different classifiers for LMFDB dataset with top conductor range test set

Type of
classifier Number of ap-s used

p < 103 p < 104 p < 105

CNN 0.5669 0.9289 0.9846
S0 0.2880 0.5057 0.6545
S1 0.2791 0.4883 0.6658
S2 0.2790 0.4968 0.6730
S3 0.2897 0.5030 0.6574
S4 0.1352 0.1424 0.1850
S5 0.2960 0.3913 0.5261
S6 0.2632 0.4542 0.6416
Ω 0.4433 0.7013 0.8530
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Results

Confusion matrices of CNN and S0 for p < 104 and top conductor range test dataset

CNN MCC = 0.9289 S0 MCC = 0.5057
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Results

Comparison of different classifiers for custom dataset with uniform test set

Type of
classifier Number of ap-s used

p < 103 p < 104 p < 105

CNN 0.6129 0.7218 0.7958
S0 0.5738 0.6782 0.7462
S1 0.5780 0.6890 0.7592
S2 0.5649 0.6761 0.7521
S3 0.5551 0.6616 0.7361
S4 0.2893 0.2472 0.2251
S5 0.4987 0.5990 0.6696
S6 0.5230 0.6509 0.7361
Ω 0.5999 0.7069 0.7807
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Results

Comparison of different classifiers for custom dataset with top conductor range test set

Type of
classifier Number of ap-s used

p < 103 p < 104 p < 105

CNN 0.2147 0.3019 0.3655
S0 0.2533 0.3233 0.3719
S1 0.2573 0.3291 0.3834
S2 0.2340 0.3118 0.3688
S3 0.2556 0.3189 0.3645
S4 0.1234 0.1228 0.1024
S5 0.2081 0.2858 0.3380
S6 0.1803 0.2757 0.3527
Ω 0.2622 0.3246 0.3905
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Future work

M. Kazalicki, D. Vlah, Ranks of elliptic curves and deep neural networks,
arXiv:2207.06699
Find optimal CNN model architecture hyperparameters and optimal optimizer
hyperparameters
Try some more advanced neural architectures:

recently developed NLP models: Transformer, Perceiver, . . .
multitask learning: autoencoder + classifier head
recent developments in variational auto-encoders: IWAE - smaller dataset - bigger
models

Train on more datasets with different conductor ranges and different number of
ap-s used
Use deep neural network based classifiers to find record breaking elliptic curves of
high rank
Congruent number curves
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Application of deep learning

Well established ML technique in: computer vision, natural language processing,
speech recognition, machine translation, board game programs, . . .
Find previously unexploited or underexploited areas in science (mathematics)
Generalize known techniques and models to these areas
Problem meta-modeling - reducing the need for expert knowledge
I previously did or currently doing applications in:

Statistics (extreme value analysis): MIWAE
Bioinformatics (protein classification): NLP models - Transformers
Bilevel optimization (improved numerical efficiency): deep convolutions
Number theory (eliptic curves over Q) - THIS WORK: deep convolutions
Numerical methods for PDE-s (PINN): ???
. . .
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Which problems in mathematics are good for DL?

For objects that can have meaningful numerical representations (real or complex
vectors, matrices or tensors)
Finding rare objects where exact search is too expensive
Classification problems (even discovering unknown classes)
Finding counterexamples to conjectures in extremal combinatorics and graph
theory
Finding better heuristics (meta-heuristics)
Inverse problems
Numerical approximation problems - natural application
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