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Diffusion process - main observation and assumption

Heat diffusion

Assume that a heat source, such as a flame or a welding torch, is applied to the
center of a circular disc of uniform thickness and material composition.

Then two observers who are measuring temperatures at different points on the
perimeter will detect a change of temperature at their points of contact at the
same rate.

Certain aspects of diffusion are simultaneously, not sequentially, observable!
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Diffusion process - main observation and assumption

Diffusion of light

Within a circular ring, imagine a beam of light B (or some type of focused
energy) emanating from a source at a perimeter point P0. Upon contact with
another perimeter point P1 on the ring, the beam B splits into M sub-beams of
equal magnitude in a prescribed set of directions toward perimeter points
P2,1, · · · P2,M .

Let each sub-beam upon contact with some P2,k split in manner as similar to
the reflection of B at P1, and so on.

Then after n such splittings, what portion of the original amount energy has
returned to P0?
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Diffusion step - intuitive definition

Diffusion step = one instance of contact, reflecting and subsequent splitting.

More precisely: the count will be mathematically captured as one iteration of a
symmetric matrix on a finite dimensional vector space.

In the above example: Each contact involves the splitting of a single beam into
M sub-beams, then after n diffusion steps, one will have Mn paths of light
traversing the ring.

Imagine a ring were 1 kilometer in diameter, and if the beam were to travel at
the speed of light, then after 0.01 seconds one would expect to have more than
M3000 sub-beams crossing various chords of the ring since in almost all
circumstances more than 3000 diffusion steps would have taken place.
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A natural question

Q: What is the most natural mathematical setup for describing/measuring such
diffusion?

A: A Regular (weighted) graph
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Regular weighted graphs. Cayley graphs.
Diffusion on a weighted graph
Diffusion step - definition

Regular weighted graph

X is undirected connected graph with:

Finite set of vertices V

Set of edges E = collection of two element subsets of V

Real valued weight function w : : V × V → R≥0 which is symmetric and
w(x , y) > 0 iff {x , y ∈ E}.

The degree of a vertex x ∈ V is

d(x) =
∑
y∈V

w(x , y).

A weighted graph X is regular of degree d if d(x) = d for all vertices x ∈ V .
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Important example: Cayley graph

G a finite abelian group

S ⊆ G a fixed symmetric subset (sometimes one assumes it generates G ).

The symmetry condition means that s ∈ S iff −s ∈ S (or s ∈ S iff s−1 ∈ S).

For any α : S → R>0 such that α(s) = α(−s), one can construct a weighted
Cayley graph X = Cay(G ,S , α) of G with respect to S and α as follows:

The vertices of X are the elements of G

Two vertices x and y are connected with an edge if and only if x − y ∈ S
(additive notation)

The weight w(x , y) of the edge (x , y) is w(x , y) = α(x − y)

ThenX = Cay(G ,S , α) is a regular weighted graph of degree d =
∑

s∈S α(s).
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Random walks

X a regular weighted graph of degree d

A adjacency matrix (non-negative, symmetric!)

A half-lazy random walk on X is a Markov chain with state space (V ,P(V ))
with arbitrary initial probability distribution p0 : V → R, and the transition
probability matrix

W :=
1

2

(
I +

1

d
A

)
.

After n steps
pn(x) = W np0(x).
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Random walks - convergence

As expected, probability distribution pn tends to the uniform distribution as
n→∞.

The rate of convergence is:

supx∈V

∣∣∣∣pn(x)− 1

|V |

∣∣∣∣ ≤ λn1,
λ1 is the largest eigenvalue of W less than 1.

Note that eigenvalues of W are nonnegative with the largest eigenvalue equal to
1 with multiplicity 1.

(Follows easily from the fact that A is symmetric with eigenvalues in [−d , d ].)
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”Diffusion computabililty”

A diffusion process in X = Cay(G ,S , α) may be regarded as an analog
computation on X

Definition

A real-valued function h on G is said to be computable by a diffusion process
in X with initial condition p0 : G → R if the following holds. Let
{pm = Wmp0}∞m=0 be the sequence of distributions in X with initial probability
distribution p0. Then for any given ε > 0 there exists a positive integer n = n(ε)
such that for all m > n(ε) and all x ∈ G , we have that

|pm(x)− h(x)| < ε.

Example: Projections of any real-valued function on G onto the eigenspaces of
the matrix W are diffusion computable
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Diffusion step

In a diffusion computer, computation begins with a stochastic vector, say φ (i.e.
with initial probability distribution p0 on V ).

The evolution of φ is determined by the symmetric operator W .

One diffusion computation step = one application of W which maps φ to Wφ.

A measurement is a classical inspection of the vertices of the graph X where the
diffusion process takes place.
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Quantum versus diffusion steps

The principal manager of the quantum-computing group at Microsoft Research
in Redmond, Washington said that

Quantum computing is essentially matrix vector multiplication - it’s linear
algebra underneath the hood.

A quantum computation entails two different types of operations:

1 The abstract version of the classical evolution equation in quantum
mechanics, i.e. a unitary vector φ in a Hilbert space (Cn, `2) evolves into a
new vector ψ = Uφ (U is some unitary operator).

2 Measurement of this new state - quantum procedure of ”collapsing ψ”:
each measurement is modeled by the decomposition of Cn into finite
orthogonal subspaces Hi . ”Collapsing” means composing ψ with the
projection ψi onto Hi , and this projection occurs with probability |ψi |2.
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Classical steps: reducing to computation of the order
Diffusion algorithm

Elementary considerations

N a positive, odd integer which we write as a product

N =
m∏
i=1

peii

with m ≥ 2 different odd prime factors with exponents ei > 0.

Assume N is not prime nor a prime power.

To find a factor of N it suffices to find x so that

x2 ≡ 1 modN and x 6≡ ±1 modN. (1)

Hint:
N | x2 − 1 but N - (x ± 1).
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Classical steps: reducing to computation of the order
Diffusion algorithm

The algorithm

Step 1.

Pick a ∈ ZN = {1, . . . ,N} uniformly at random; compute d = gcd(a,N).

If 1 < d < N, return d . Else, go to Step 2.

Step 2.

Let M = blog2 Nc+ 1 and compute the set (modular arithmetic)

S = {a±2
t

mod N : t = 0, . . . ,M}

Lemma (proved in the paper): If there are repetitions in S , then with probability
p(m) = 1− (m + 1)/2m we can find an x ∈ Z∗N satisfying (1) in at most
O(log2 N) deterministic steps.

What happens in the case when there are no repetitions in S?
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Case no repetitions in S

Step 3. Set b = a2
M

and run the diffusion computer algorithm to determine the
order rb of b modulo N.

Important: the order rb must be odd!

Step 4. Compute the smallest integer k ≥ 0 such that a2
k rb ≡ 1 modN.

Set ra = 2k rb which is the order of a modulo N.

If ra is even, compute d = gcd(ara/2 − 1,N).

This algorithm produces a factor of N with probability 1− (m + 1)/2m after
O((logN)2) deterministic steps and some number (tbd) of diffusion steps.

Cadavid, Hoyos, Jorgenson, Smajlović, Vélez Diffusion process as a computational engine



The diffusion as a (theoretical) computational engine
Random walks on regular graphs. Diffusion step.

Integer factorization

Classical steps: reducing to computation of the order
Diffusion algorithm

Construction of the adopted graph - multiplicative notation

Problem to be solved: Given the number b = a2
M ∈ Z∗N determine the order rb

of b modulo N using diffusion on a suitable graph.

We know that rb = r is odd and elements of S are distinct.

Our graph is the weighted Cayley graph XN,b = Cay(GN,b,SN,b, αN,b), where

GN,b = 〈b〉 ⊆ Z∗N is the subgroup of Z∗N generated by b (it has r elements)

SN,b = {b±2
t

: t = 0, . . . ,M}

and

αN,b(b2
t

) := |{l ∈ {0, . . . ,M} : b2
t

≡ b2
l

modN or b2
t

≡ b−2
l

modN}|,
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Classical steps: reducing to computation of the order
Diffusion algorithm

Important remark

In the construction of XN,b we do not know the value of r . All that is required
is the value of N since we begin with one point b and, recursively, let the
diffusion process develop in 2(M + 1) possible directions from any given point.

From the beginning, we do not know the entire graph. Nevertheless, since
diffusion is local in nature, this allows us to build XN,b one diffusion step at a
time.

We will see that after a number of steps which is polynomial in log2 N we will
have enough information to approximate the number of vertices of XN,b = r .

What makes the process effective is the fact that diffusion occurs simultaneously
at all constructed vertices, which provides some form of parallel computation.
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Diffusion algorithm

Construction of the adopted graph - additive notation

We replace XN,b = Cay(GN,b,SN,b, αN,b) with an equivalent graph (b is fixed,
so omitted from notation)

Xr ,S = Cay(Cr ,S , α) where Cr = {0, . . . , r − 1},

S = {±2j : j = 0, . . . ,M} with M = blog2 Nc+ 1.

and

α(2j) := |{l ∈ {0, . . . ,M} : 2j ≡ 2l mod r or 2j ≡ −2l mod r}|.

Xr ,S has r vertices, and it is regular of degree |S | = 2(M + 1)
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Diffusion algorithm

Diffusion on Xr ,S

Fix any point of Xr ,S , say 0 and start diffusion with initial probability
p0 = (1, 0 . . . , 0)t .

Recall that each step amounts to multiplying p0 by

Wr ,S =
1

2

(
1 +

1

2(M + 1)
Ar ,S

)
,

where Ar ,S is the adjacency matrix of Xr ,S

We know that after n steps∣∣∣∣pXr,S
n (0)− 1

r

∣∣∣∣ ≤ (λ
Xr,S
∗ )n, (2)

where λ
Xr,S
∗ is the largest eigenvalue of Wr ,S less than 1.

Cadavid, Hoyos, Jorgenson, Smajlović, Vélez Diffusion process as a computational engine



The diffusion as a (theoretical) computational engine
Random walks on regular graphs. Diffusion step.

Integer factorization

Classical steps: reducing to computation of the order
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Minimal number of diffusion steps to find r

Therefore, if we conduct n steps where n is such that (λ
Xr,S
∗ )n < 1

N2 , the value

p
Xr,S
n (0) which can be regarded as the ”amount of heat” at initial point after n

steps determines r uniquely through

r = b(pXr,S
n (0))−1c.

Namely, for any two distinct positive integers m1,m2 < N, the smallest distance
between 1/m1 and 1/m2 is bounded from below by

1

N
− 1

N − 1
=

1

N(N − 1)
>

1

N2
.

Thus, if we have p
Xr,S
n (e) = 1/r within an error of 1/N2, we have determined r .
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What is λ
Xr ,S
∗

Use known results from the graph theory:

The eigenvalues ηk for k = 0, . . . , r − 1 of the adjacency matrix Ar ,S are:
η0 = 2(M + 1) and

ηk =
∑
x∈S

α(x)e
2πi
r kx =

M∑
j=0

e
2πi
r k2j +

M∑
j=0

e−
2πi
r k2j for each 1 ≤ k ≤ r − 1.

Therefore, eigenvalues of Wr ,S are

λ
Xr,S

k =
1

2

(
1 +

ηk
2(M + 1)

)
for k = 0, 1, . . . , r − 1.

and λ
Xr,S
∗ is the largest of λ

Xr,S

k , k = 1, . . . , r − 1.
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Bounding λ
Xr ,S
∗

One needs a bound independent of r for the quantity

1

2(M + 1)
max

k∈{1,...r−1}
|ηk | =

1

2(M + 1)
max

k∈{1,...r−1}

∣∣∣∣∣∣
M∑
j=0

e
2πi
r k2j +

M∑
j=0

e−
2πi
r k2j

∣∣∣∣∣∣ .
This is a non-trivial task because the trigonometric sum is short.

Using a combination of results one arrives at the bound

1

2(M + 1)
max

k∈{1,...r−1}
|ηk | <

2M

2(M + 1)
= 1− 1

M + 1
,

which yields the bound

λ
Xr,S
∗ ≤ 1

2

(
1 + 1− 1

M + 1

)
= 1− 1

2(M + 1)
.
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Minimal number of diffusion steps

We can now find n so that (λ
Xr,S
∗ )n < 1

N2 by solving(
1− 1

2(M + 1)

)n

<
1

N2
.

It suffices to take the smallest integer that is > 2 logN(blog2 Nc+ 2).

Conclusion: we proved that after

n = b2 logN(blog2 Nc+ 2)c+ 1

heat steps the value r equals b(pXr,S
n (0))−1c, where p

Xr,S
n (0) is the heat at initial

point.

Note that the minimal number of quantum steps to compute the order is
O((logN)2 log logN).
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Classical steps: reducing to computation of the order
Diffusion algorithm

Overview of the algorithm

The algorithm runs Step 1 and either finds a factor or proceeds to Step 2.

At Step 2 we use repeated squaring, so it takes at most O(2M) steps. The
algorithm can terminate at Step 2 with no answer; the probability of success if
there are repetitions is at least 1− (m + 1)/2m.

So, we may have to take another a after Step 2.

If there are no repetitions in S , Step 3 is run on a diffusion computer and gives
the answer r .

Then, Step 4 is run on a classical computer and produces a factor of N with
probability at least 1− (m + 1)/2m.

Therefore, the algorithm terminates after at most O(logN)2 deterministic steps
plus at most O(logN log2 N) diffusion steps and finds a factor of N with
probability at least 1− (m + 1)/2m.
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Cadavid, Hoyos, Jorgenson, Smajlović, Vélez Diffusion process as a computational engine



The diffusion as a (theoretical) computational engine
Random walks on regular graphs. Diffusion step.

Integer factorization

Classical steps: reducing to computation of the order
Diffusion algorithm

Overview of the algorithm

The algorithm runs Step 1 and either finds a factor or proceeds to Step 2.

At Step 2 we use repeated squaring, so it takes at most O(2M) steps. The
algorithm can terminate at Step 2 with no answer; the probability of success if
there are repetitions is at least 1− (m + 1)/2m.

So, we may have to take another a after Step 2.

If there are no repetitions in S , Step 3 is run on a diffusion computer and gives
the answer r .

Then, Step 4 is run on a classical computer and produces a factor of N with
probability at least 1− (m + 1)/2m.

Therefore, the algorithm terminates after at most O(logN)2 deterministic steps
plus at most O(logN log2 N) diffusion steps and finds a factor of N with
probability at least 1− (m + 1)/2m.

Cadavid, Hoyos, Jorgenson, Smajlović, Vélez Diffusion process as a computational engine



The diffusion as a (theoretical) computational engine
Random walks on regular graphs. Diffusion step.

Integer factorization

Classical steps: reducing to computation of the order
Diffusion algorithm

Overview of the algorithm

The algorithm runs Step 1 and either finds a factor or proceeds to Step 2.

At Step 2 we use repeated squaring, so it takes at most O(2M) steps. The
algorithm can terminate at Step 2 with no answer; the probability of success if
there are repetitions is at least 1− (m + 1)/2m.

So, we may have to take another a after Step 2.

If there are no repetitions in S , Step 3 is run on a diffusion computer and gives
the answer r .

Then, Step 4 is run on a classical computer and produces a factor of N with
probability at least 1− (m + 1)/2m.
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Classical steps: reducing to computation of the order
Diffusion algorithm

Example: N = 1363

Step 1. We choose a = 991 which is relatively prime to 1363.

Step 2. M = blog2(N)c+ 1 = 11, and

S = {99120 = 991, 99121 = 721, . . . , 991211 = 944, . . .}mod 1363. There
are no repetitions in S .

Step 3. Set b = 991211 ≡ 944 mod 1363 and check for repetitions in the set
Sb = {b±2t : t = 0, . . . , 11} finding none. Thus, we run the diffusion
computer in order to determine the order rb of b = 944.

Note: Theoretical bound says that the diffusion computer requires at least
b4(M + 1) log(N)c+ 1 = 347 diffusion steps and one measurement.

Actually, after n = 25 iterations, and 11 measurements we were able to
conclude that rb = 161.

Step 5. The smallest non negative integer k such that 9912k×161 ≡ 1 mod 1363
turns out to be 1. We conclude that ra = 322.
Then we computed gcd(991161 − 1, 1363) = 47, thus, N = 47× 29.
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Example: N = 1363 cont’

After n = 25 times we measured p25(v) for the 11 values of vertices v
corresponding to S . For each such v we had that 160 < p25(v)−1 < 162, hence
rb ∈ {160, 161, 162}. By trying these values we confirmed that rb = 161.

25 steps.png

Figure: Histogram for the reciprocal of the probabilities after 25 diffusion steps
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The end

Thank you!
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