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Introduction

For a curve C over a field k , the gonality gonkC is the least degree of a
non-constant morphism f : C → P1 defined over k .
Abramovich gave a lower bound for the gonality over C for any modular
curve.

Theorem (Abramovich; 1996)
Let Γ ⊂ SL2(Z) be a congruence subgroup and XΓ the corresponding
modular curve. Let DΓ = [SL2(Z) : Γ] and let dC(XΓ) be a C-gonality of
XΓ. Then

7
800

DΓ ≤ dC(XΓ).

This bound is usually not sharp.
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The modular curve X0(N) corresponds to the congruence subgroup

Γ0(N) =

{[
a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
≡

[
∗ ∗
0 ∗

]
(mod N)

}
.

The noncuspidal points of X0(N) represent classes [(E ,CN)], where E is an
elliptic curve with a cyclic Galois-invariant subgroup CN of order N.
We study the gonalities of the modular curves X0(N) over Q and C. The
cases when the C-gonality is ≤ 4 have already been determined.

Theorem
The modular curve X0(N) is isomorphic to P1 (i.e. of genus 0) if and only if

N ∈ {1, . . . , 10, 12, 13, 16, 18, 25}.

Theorem
The modular curve X0(N) is elliptic (i.e. of genus 1) if and only if

N ∈ {11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49}.
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Theorem (Ogg; 1974)
The modular curve X0(N) is hyperelliptic if and only if

N ∈ {22, 23, 26, 28, 29, 30, 31, 33, 35, 37, 39, 40, 41, 46, 47, 48, 50, 59, 71}.

Theorem (Hasegawa, Shimura; 1999)
The modular curve X0(N) has C-gonality equal to 3 if and only if

N ∈ {34, 38, 43, 44, 45, 53, 54, 61, 64, 81}.

Theorem (Jeon, Park; 2005)
The modular curve X0(N) has C-gonality equal to 4 if and only if

N ∈ {38, 42, 44, 51, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70,
72, 73, 74, 7577, 78, 79, 80, 83, 85, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99,
100, 101, 103, 104, 107, 109, 111, 119, 121, 125, 131, 142, 143, 167, 191}
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The question of determining the trigonal and tetragonal curves over Q as
well as the pentagonal curves over Q and C naturally arises.

Theorem (O., Najman)
The modular curve X0(N) has Q-gonality equal to 3 if and only if

N ∈ {34, 43, 45, 54, 64, 81}.

The modular curve X0(N) has Q-gonality equal to 4 if and only if

N ∈ {38, 42, 44, 51, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70,
72, 73, 74, 75, 77, 78, 79, 80, 83, 85, 87, 88, 89, 91, 92, 94, 95, 96, 98,
100, 101, 103, 104, 107, 111, 119, 121, 125, 131, 142, 143, 167, 191}

The modular curve X0(N) has Q-gonality equal to 5 if and only if N = 109.
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Further, we determine the Q-gonality of X0(N) for all N < 150 except
135, 145 and some N larger than 150. For many of those curves we also
determine the C-gonality.
As a byproduct of our results, we obtain that X0(N) is pentagonal over C
for N = 97, 169, the first known such curves.
A lot of our results rely on extensive computations in Magma. The codes
that verify our computations can be found on:

https://github.com/orlic1/gonality_X0.
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Lower bounds
In this section we give the results used to obtain lower bounds for the
gonality of X0(N). We first mention the obvious inequality

gonCC ≤ gonQC .

Proposition
For a curve C over Q and a rational prime p of good reduction of C , the
following inequality holds:

gonFp
C ≤ gonQC .

For a curve X0(N), the primes of good reduction are all p not dividing N.

Proposition
Let f : X → Y be a non-constant morphism over k of degree d . Then

gonkY ≤ gonkX ≤ d · gonkY .
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Proposition (Castelnuovo-Severi inequality)
Let k be a perfect field and let X , Y , Z be curves over k . Let
non-constant morphisms f : X → Y and g : X → Z over k be given of
degrees m and n, respectively. Assume that there is no morphism X → X ′

over k of degree > 1 through which both f and g factor. Then

g(x) ≤ m · g(Y ) + n · g(Z ) + (m − 1)(n − 1).

Fields of characteristic 0 (such as Q and C) and finite fields Fq are perfect.

Proposition
Let X be a curve and p a prime of good reduction for X . Suppose
X (Fq) > d(q + 1) for some d . Then gonQ(X ) ≥ d + 1.

Proof.
Let f ∈ Fq(X ) be a function of degree ≤ d . Then for any c ∈ P1(Fq) we
have #f −1(c) ≤ d . Since f sends X (Fq) into P1(Fq), it follows that
#X (Fq) ≤ d(q + 1), contradiction.
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Theorem (Hasegawa, Shimura; 1999)
If the modular curve X0(N) has C-gonality equal to 4 then N ≤ 191.
If the modular curve X0(N) has C-gonality equal to 5 then N ≤ 197.

For N ≥ 198 the Q and C-gonality are ≥ 6 =⇒ there are only finitely
many possible pentagonal curves.
Jeon and Park have determined all curves X0(N) with C-gonality equal to
4. The question of finding all curves X0(N) with C-gonality equal to 5 is
still open.
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Divisors

Let C be a smooth curve over a field k . A divisor on C is a finite linear
combination of points on C with integer coefficients. The degree of a
divisor is a sum of its coefficients.

The divisor of a function f : C → P1 is defined as

div(f ) =
∑
P∈C

ordP(f )P

where ordP(f ) is the order of vanishing of f at P (negative if P is a pole).
A divisor D is principal if there exists a function f such that div(f ) = P .
Note that every principal divisor has degree 0. Divisors D1 and D2 are
linearly equivalent if D1 − D2 is principal.
A divisor D is effective (denoted by D ≥ 0) if all its coefficients are
nonnegative.
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Riemann-Roch spaces

Let D be a divisor on a smooth curve f . The Riemann-Roch space of D,
denoted by L(D), is the set of all functions f : C → P1 such that

div(f ) + D ≥ 0.

This set is a finite-dimensional vector space, we denote its dimension by
ℓ(D).

Theorem (Riemann-Roch)
Let X be a smooth curve of genus g with a divisor D and a canonical
divisor K . Then

ℓ(D)− ℓ(K − D) = deg(D) − g + 1.
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Mordell-Weil sieving

We use this method for solving the cases N = 97 and N = 133.
Notation:

X - the curve X0(N)

Picd(X ) - divisor classes of divisors of degree d (recall that Pic0(X ) is
the Jacobian of the curve X )
W r

d (X ) := {[D] ∈ Picd(X ) : D ≥ 0, ℓ(D) ≥ r + 1}
J0(N) - the Jacobian of X0(N)

J0(N)− := (1 − wN)J0(N) (wN being the Atkin-Lehner involution)
redp - reduction modulo p

µ : Picd(X ) → J0(N)−, µ(D) = (1 − wN)(D)

A curve X has a non-constant function of degree d over Q only if
W 1

d (X )(Q) ̸= ∅ (since f = c is in the Riemann-Roch space of every
D ≥ 0).
Suppose D ∈ W 1

d (X )(Q) and p > 2 is a prime of good reduction for X .
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We have the following commutative diagram

W 1
d (X )(Q)

µ
//

redp
��

J0(N)−(Q)

redp
��

W 1
d (X )(Fp)

µ
// J0(N)−(Fp)

,

W 1
d (X )(Fp) can be computed using Magma

in our case rank(J0(N)−(Q)) = 0 =⇒ J0(N)−(Q) ⊂ J0(N)(Q)tors

redp is injective on J0(N)(Q)tors

hence µ(D) ∈ red−1
p (µ(W 1

d (X )(Fp)))

The same procedure can be applied for a set S of multiple primes p > 2 of
good reduction, in which case we get

µ(D) ∈
⋂
p∈S

red−1
p (µ(W 1

d (X )(Fp))).

If
⋂

p∈S red−1
p (µ(W 1

d (X )(Fp))) = ∅ it follows that W 1
d (X )(Q) = ∅.
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Upper bounds

In this section we give the results used to obtain upper bounds for the
gonality of X0(N).

Proposition
Let X be a curve of genus g ≥ 2 over a field k such that X (k) ̸= ∅, then
gonk(X ) ≤ g . If k is algebraically closed, then gonk(X ) ≤ ⌊g+3

2 ⌋.

X0(N)(Q) ̸= ∅ since for each N at least 2 cusps are defined over Q. The
same is true for the quotients X0(N)/ ⟨wd⟩ and X0(N)/ ⟨wd1 ,wd2⟩.
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Proof.
We fix P ∈ X (k). The Riemann-Roch theorem tells us that

ℓ(K − (g − 2)P)− ℓ((g − 2)P) = g − g + 1 = 1.

Since the divisor (g − 2)P is effective, we have ℓ((g − 2)P) ≥ 1 and
ℓ(K − (g − 2)P) ≥ 2.
There exists a function f such that D := div(f ) +K − (g − 2)P ≥ 0. Since
ℓ(D) = ℓ(K − (g − 2)P) ≥ 2, there exists a non-constant function g such
that div(g) + D ≥ 0. This function has degree ≤ d because D has degree
d .
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Proposition
Let p be a rational prime. There exists a morphism from X0(pN) to X0(N)
defined over Q which is of degree p + 1 if p ∤ N and of degree p if p | N.

Proof.
The map πp : X0(pN) → X0(N) sends the point corresponding to
(E ,CpN), where CpN is a cyclic subgroup of E of order pN, to (E , pCpN).
Thus the degree of πp is the number of points (E ,X ) that satisfy
πp((E ,X )) = (E ,CN) for a given a fixed subgroup CN of E . This is equal
to the number of cyclic subgroups X of (Z/pNZ)2 that satisfy pX = CN ,
which is as claimed.

The morphisms X0(N) → X0(N)/wd and X0(N) → X0(N)/ ⟨wd1 ,wd2⟩
defined over Q of degrees 2 and 4, respectively, also give us the upper
bound in many cases.
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Theorem (The Tower theorem)

Let C be a curve defined over a perfect field k and f : C → P1 be a
non-constant morphism over k of degree d . Then there exists a curve C ′

defined over k and a non-constant morphism f ′ : C → C ′ defined over k of
degree d ′ dividing d such that

g(C ′) ≤
(
d

d ′ − 1
)2

.
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Corollary
(i) Let C be a curve defined over Q with gonC(X ) = 3 and g(X ) ≥ 5.

Then gonQ(X ) = 3.
(ii) Let C be a curve defined over Q with gonC(X ) = 4 and g(X ) ≥ 10.

Then gonQ(X ) = 4.

Proof.
Part (i) follows immediately by specializing C ′ to be P1 and d to be 3.
To prove part (ii) we note that C will have a map of degree d ′ over Q
dividing 4 to a curve of genus ≤ (4/d ′ − 1)2, so d ′ cannot be 1. If d ′ is 2,
then X is bielliptic (and is tetragonal over Q). If d ′ is 4, then X is
tetragonal over Q, as required.
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Summary of methods

Lower bounds Upper bounds

gonCC ≤ gonQC
gonFp

C ≤ gonQC
f : X → Y over k of degree d
=⇒ gonkY ≤ gonkX
Castelnuovo-Severi inequality
X (Fq) > d(q + 1) for some d
=⇒ gonQ(X ) ≥ d + 1.
N ≥ 198 =⇒ gonC(X0(N)) ≥ 6
Mordell-Weil sieving

gonQ(X ) ≤ g ,
gonC(X ) ≤ ⌊g+3

2 ⌋
f : X → Y over k of degree d
=⇒ gonkX ≤ d · gonkY
X0(pN) → X0(N)

X0(N) → X0(N)/wd ,
X0(N) → X0(N)/ ⟨wd1 ,wd2⟩
the Tower theorem
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Examples

N = 34, 43, 45, 64
3 = gonC ≤ gonQ ≤ g = 3 =⇒ gonC = gonQ = 3

N = 38, 44, 53, 61
4 ≤ gonFp

≤ gonQ ≤ g = 4 (p = 3 for 61 and p = 5 for 38, 44, 53)
=⇒ gonC = 3, gonQ = 4
N = 42, 52, 57, 67, 68, 73, 74, 77, 80, 87, 91, 98, 103, 107, 121, 125
4 = gonC ≤ gonQ, the quotients X0(N)/wN are hyperelliptic
=⇒ gonQ ≤ 2 · 2 = 4. Therefore, gonC = gonQ = 4.
N = 117
6 ≤ gonF5 ≤ gonQ, degree 3 map to X0(39)
=⇒ gonQ ≤ 3 · g(X0(39)) = 3 · 2 = 6. Therefore, gonQ = 6.
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N = 109
Jeon and Park have already proven that gonC = 4.
We construct a rational function of degree 5 by looking at the
Riemann-Roch spaces of Q-rational divisors of degree 5 whose support
is in the quadratic points obtained by the pullbacks of rational points
on X+

0 (109).
To be precise, we found rational divisors P , Q, R such that
deg(P) = 1, deg(Q) = deg(R) = 2 and ℓ(P + Q + R) = 2.
Furthermore, 5 ≤ gonF3 ≤ gonQ and it follows that gonQ = 5.
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N = 146
The quotient X0(146)/w146 is of genus 5 and trigonal over C.
Therefore, it is trigonal over Q by the Tower theorem and
gonQ ≤ 2 × 3 = 6.
We know that gonC ≥ 5 from the theorems in the Introduction. On
the other hand, suppose that there is a map X0(146) → P1 of degree
5. Then by applying the CS-inequality we get

g(X0(146)) ≤ 5 · 0 + 2 · 5 + (5 − 1)(2 − 1) ≤ 14

which is impossible since g(X0(146)) = 17. Therefore,
gonC = gonQ = 6.

Petar Orlić (University of Zagreb) Gonality of the modular curve X0(N) 7. 10. 2022. 23 / 27



N = 169
The curve X0(169) is of genus 8. Therefore, gonC ≤ ⌊8+3

2 ⌋ = 5. Since
gonC ≥ 5 from the theorems in the Introduction, we get gonC = 5.
Let us now determine the Q-gonality.

The quotient X0(169)/w169 is of genus 3. Therefore,
gonQ ≤ 2 · 3 = 6. On the other hand, we have 6 ≤ gonFp

≤ gonQ
which implies that gonQ = 6.
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N = 97
The curve X0(97) is of genus 7. Therefore, gonC ≤ ⌊7+3

2 ⌋ = 5. Since
gonC ≥ 5 from the theorems in the Introduction, we get gonC = 5.
Let us now determine the Q-gonality.

The quotient X0(97)/w97 is of genus 3. Therefore, we have
gonQ ≤ 2 · 3 = 6. For the lower bound we do the Mordell-Weil sieving.
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The rank of J0(97)−(Q) is 0.
For a prime p, J0(p)

−
tors(Q) ≃ Z/p−1

12 Z and is generated by D0 = [0 −∞],
where 0 and ∞ are the two cusps of X0(p).
Therefore, J0(97)−(Q) ≃ Z/8Z and is generated by D0.
We compute

red−1
3 (µ(W 1

5 (X0(97)(F3)))) = {0},

red−1
5 (µ(W 1

5 (X0(97)(F5)))) = {D0, 7D0}.

Therefore W 1
5 (X0(97))(Q) = ∅ and we get gonQ = 6.

Later we noticed that

red−1
7 (µ(W 1

5 (X0(97)(F7)))) = ∅

so it was possible to do the sieving with just one prime.
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N = 133
This case is more involved than 97 because we couldn’t compute the
torsion group exactly.
The rank of J0(133)−(Q) is 0, so J0(133)−(Q) ⊂ J0(133)(Q)tors.
We proved that J0(133)(Q)tors is isomorphic to a subgroup of
Z/6Z× Z/360Z.
We found rational divisors A,B which generate a subgroup
T := ⟨A,B⟩ ≃ Z/6Z× Z/180Z.
Thus it follows that for any x ∈ J0(133)−(Q), we have 2x ∈ T .
Hence we use the map 2µ, sending a divisor D to 2(D − w(D))
instead of µ (which we used for 97).
We compute

red−1
3 (2µ(W 1

7 (X0(133))(F3))) = ∅.

Therefore, W 1
7 (X0(133))(Q) = ∅ and we get gonQ = 8.
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