Gonality of the modular curve $X_{0}(N)$
 Dubrovnik, Croatia

Petar Orlić

Faculty of Science
Department of Mathematics
University of Zagreb
7. 10. 2022.

Funding

Sadržaj ove prezentacije isključiva je odgovornost Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu te ne predstavlja nužno stajalište Europske unije.

Projekt sufinancira Europska unija iz Europskog fonda za regionalni razvoj.

Supported by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004).

Projekt:KK.01.1.1.01.0004
Provedba vrhunskih istraživanja u sklopu Znanstvenog centra izvrsnosti (ZCI) za kvantne i kompleksne sustave te reprezentacije Liejevih algebri

Introduction

For a curve C over a field k, the gonality gon ${ }_{k} C$ is the least degree of a non-constant morphism $f: C \rightarrow \mathbb{P}^{1}$ defined over k.
Abramovich gave a lower bound for the gonality over \mathbb{C} for any modular curve.

Theorem (Abramovich; 1996)
Let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be a congruence subgroup and X_{Γ} the corresponding modular curve. Let $D_{\Gamma}=\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma\right]$ and let $d_{\mathbb{C}}\left(X_{\Gamma}\right)$ be a \mathbb{C}-gonality of χ_{Γ}. Then

$$
\frac{7}{800} D_{\Gamma} \leq d_{\mathbb{C}}\left(X_{\Gamma}\right)
$$

This bound is usually not sharp.

The modular curve $X_{0}(N)$ corresponds to the congruence subgroup

$$
\Gamma_{0}(N)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \operatorname{SL}_{2}(\mathbb{Z}):\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \equiv\left[\begin{array}{ll}
* & * \\
0 & *
\end{array}\right] \quad(\bmod N)\right\} .
$$

The noncuspidal points of $X_{0}(N)$ represent classes $\left[\left(E, C_{N}\right)\right]$, where E is an elliptic curve with a cyclic Galois-invariant subgroup C_{N} of order N. We study the gonalities of the modular curves $X_{0}(N)$ over \mathbb{Q} and \mathbb{C}. The cases when the \mathbb{C}-gonality is ≤ 4 have already been determined.

The modular curve $X_{0}(N)$ corresponds to the congruence subgroup

$$
\Gamma_{0}(N)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z}):\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \equiv\left[\begin{array}{ll}
* & * \\
0 & *
\end{array}\right] \quad(\bmod N)\right\} .
$$

The noncuspidal points of $X_{0}(N)$ represent classes $\left[\left(E, C_{N}\right)\right]$, where E is an elliptic curve with a cyclic Galois-invariant subgroup C_{N} of order N. We study the gonalities of the modular curves $X_{0}(N)$ over \mathbb{Q} and \mathbb{C}. The cases when the \mathbb{C}-gonality is ≤ 4 have already been determined.

Theorem

The modular curve $X_{0}(N)$ is isomorphic to \mathbb{P}^{1} (i.e. of genus 0) if and only if

$$
N \in\{1, \ldots, 10,12,13,16,18,25\} .
$$

Theorem
The modular curve $X_{0}(N)$ is elliptic (i.e. of genus 1) if and only if

$$
N \in\{11,14,15,17,19,20,21,24,27,32,36,49\} .
$$

Theorem (Ogg; 1974)

The modular curve $X_{0}(N)$ is hyperelliptic if and only if

```
N\in{22,23,26,28, 29, 30, 31, 33, 35, 37, 39, 40, 41, 46, 47, 48, 50, 59, 71}.
```

Theorem (Hasegawa, Shimura; 1999)
The modular curve $X_{0}(N)$ has \mathbb{C}-gonality equal to 3 if and only if

$$
N \in\{34,38,43,44,45,53,54,61,64,81\} .
$$

Theorem (Jeon, Park; 2005)
The modular curve $X_{0}(N)$ has \mathbb{C}-gonality equal to 4 if and only if

$$
\begin{aligned}
& N \in\{38,42,44,51,52,53,55,56,57,58,60,61,62,63,65,66,67,68,69,70, \\
& 72,73,74,7577,78,79,80,83,85,87,88,89,91,92,94,95,96,98,99, \\
&100,101,103,104,107,109,111,119,121,125,131,142,143,167,191\}
\end{aligned}
$$

The question of determining the trigonal and tetragonal curves over \mathbb{Q} as well as the pentagonal curves over \mathbb{Q} and \mathbb{C} naturally arises.
7. 10. 2022.

The question of determining the trigonal and tetragonal curves over \mathbb{Q} as well as the pentagonal curves over \mathbb{Q} and \mathbb{C} naturally arises.

Theorem (O., Najman)

The modular curve $X_{0}(N)$ has \mathbb{Q}-gonality equal to 3 if and only if

$$
N \in\{34,43,45,54,64,81\} .
$$

The modular curve $X_{0}(N)$ has \mathbb{Q}-gonality equal to 4 if and only if
$N \in\{38,42,44,51,52,53,55,56,57,58,60,61,62,63,65,66,67,68,69,70$, $72,73,74,75,77,78,79,80,83,85,87,88,89,91,92,94,95,96,98$, $100,101,103,104,107,111,119,121,125,131,142,143,167,191\}$

The modular curve $X_{0}(N)$ has \mathbb{Q}-gonality equal to 5 if and only if $N=109$.

Further, we determine the \mathbb{Q}-gonality of $X_{0}(N)$ for all $N<150$ except 135,145 and some N larger than 150. For many of those curves we also determine the \mathbb{C}-gonality.
As a byproduct of our results, we obtain that $X_{0}(N)$ is pentagonal over \mathbb{C} for $N=97,169$, the first known such curves.
A lot of our results rely on extensive computations in Magma. The codes that verify our computations can be found on:
https://github.com/orlic1/gonality_X0.

Lower bounds

In this section we give the results used to obtain lower bounds for the gonality of $X_{0}(N)$. We first mention the obvious inequality

$$
\operatorname{gon}_{\mathbb{C}} C \leq \operatorname{gon}_{\mathbb{Q}} C
$$

Lower bounds

In this section we give the results used to obtain lower bounds for the gonality of $X_{0}(N)$. We first mention the obvious inequality

$$
\operatorname{gon}_{\mathbb{C}} C \leq \operatorname{gon}_{\mathbb{Q}} C
$$

Proposition

For a curve C over \mathbb{Q} and a rational prime p of good reduction of C, the following inequality holds:

$$
\operatorname{gon}_{\mathbb{F}_{p}} C \leq \operatorname{gon}_{\mathbb{Q}} C
$$

For a curve $X_{0}(N)$, the primes of good reduction are all p not dividing N.

Proposition

Let $f: X \rightarrow Y$ be a non-constant morphism over k of degree d. Then

$$
\operatorname{gon}_{k} Y \leq \operatorname{gon}_{k} X \leq d \cdot \operatorname{gon}_{k} Y
$$

Proposition (Castelnuovo-Severi inequality)

Let k be a perfect field and let X, Y, Z be curves over k. Let non-constant morphisms $f: X \rightarrow Y$ and $g: X \rightarrow Z$ over k be given of degrees m and n, respectively. Assume that there is no morphism $X \rightarrow X^{\prime}$ over k of degree >1 through which both f and g factor. Then

$$
g(x) \leq m \cdot g(Y)+n \cdot g(Z)+(m-1)(n-1)
$$

Fields of characteristic 0 (such as \mathbb{Q} and \mathbb{C}) and finite fields \mathbb{F}_{q} are perfect.

Proposition (Castelnuovo-Severi inequality)

Let k be a perfect field and let X, Y, Z be curves over k. Let non-constant morphisms $f: X \rightarrow Y$ and $g: X \rightarrow Z$ over k be given of degrees m and n, respectively. Assume that there is no morphism $X \rightarrow X^{\prime}$ over k of degree >1 through which both f and g factor. Then

$$
g(x) \leq m \cdot g(Y)+n \cdot g(Z)+(m-1)(n-1)
$$

Fields of characteristic 0 (such as \mathbb{Q} and \mathbb{C}) and finite fields \mathbb{F}_{q} are perfect.

Proposition

Let X be a curve and p a prime of good reduction for X. Suppose $X\left(\mathbb{F}_{q}\right)>d(q+1)$ for some d. Then $\operatorname{gon}_{\mathbb{Q}}(X) \geq d+1$.

Proof.

Let $f \in \mathbb{F}_{q}(X)$ be a function of degree $\leq d$. Then for any $c \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$ we have $\# f^{-1}(c) \leq d$. Since f sends $X\left(\mathbb{F}_{q}\right)$ into $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$, it follows that $\# X\left(\mathbb{F}_{q}\right) \leq d(q+1)$, contradiction.

Theorem (Hasegawa, Shimura; 1999)

If the modular curve $X_{0}(N)$ has \mathbb{C}-gonality equal to 4 then $N \leq 191$. If the modular curve $X_{0}(N)$ has \mathbb{C}-gonality equal to 5 then $N \leq 197$.

For $N \geq 198$ the \mathbb{Q} and \mathbb{C}-gonality are $\geq 6 \Longrightarrow$ there are only finitely many possible pentagonal curves. Jeon and Park have determined all curves $X_{0}(N)$ with \mathbb{C}-gonality equal to 4. The question of finding all curves $X_{0}(N)$ with \mathbb{C}-gonality equal to 5 is still open.

Divisors

Let C be a smooth curve over a field k. A divisor on C is a finite linear combination of points on C with integer coefficients. The degree of a divisor is a sum of its coefficients.

Divisors

Let C be a smooth curve over a field k. A divisor on C is a finite linear combination of points on C with integer coefficients. The degree of a divisor is a sum of its coefficients.
The divisor of a function $f: C \rightarrow \mathbb{P}^{1}$ is defined as

$$
\operatorname{div}(f)=\sum_{P \in C} \operatorname{ord}_{P}(f) P
$$

where $\operatorname{ord}_{P}(f)$ is the order of vanishing of f at P (negative if P is a pole).

Divisors

Let C be a smooth curve over a field k. A divisor on C is a finite linear combination of points on C with integer coefficients. The degree of a divisor is a sum of its coefficients.
The divisor of a function $f: C \rightarrow \mathbb{P}^{1}$ is defined as

$$
\operatorname{div}(f)=\sum_{P \in C} \operatorname{ord}_{P}(f) P
$$

where $\operatorname{ord}_{P}(f)$ is the order of vanishing of f at P (negative if P is a pole). A divisor D is principal if there exists a function f such that $\operatorname{div}(f)=P$. Note that every principal divisor has degree 0 . Divisors D_{1} and D_{2} are linearly equivalent if $D_{1}-D_{2}$ is principal.

Divisors

Let C be a smooth curve over a field k. A divisor on C is a finite linear combination of points on C with integer coefficients. The degree of a divisor is a sum of its coefficients.
The divisor of a function $f: C \rightarrow \mathbb{P}^{1}$ is defined as

$$
\operatorname{div}(f)=\sum_{P \in C} \operatorname{ord}_{P}(f) P
$$

where $\operatorname{ord}_{P}(f)$ is the order of vanishing of f at P (negative if P is a pole). A divisor D is principal if there exists a function f such that $\operatorname{div}(f)=P$. Note that every principal divisor has degree 0 . Divisors D_{1} and D_{2} are linearly equivalent if $D_{1}-D_{2}$ is principal.
A divisor D is effective (denoted by $D \geq 0$) if all its coefficients are nonnegative.

Riemann-Roch spaces

Let D be a divisor on a smooth curve f. The Riemann-Roch space of D, denoted by $L(D)$, is the set of all functions $f: C \rightarrow \mathbb{P}^{1}$ such that

$$
\operatorname{div}(f)+D \geq 0
$$

This set is a finite-dimensional vector space, we denote its dimension by $\ell(D)$.

Riemann-Roch spaces

Let D be a divisor on a smooth curve f. The Riemann-Roch space of D, denoted by $L(D)$, is the set of all functions $f: C \rightarrow \mathbb{P}^{1}$ such that

$$
\operatorname{div}(f)+D \geq 0
$$

This set is a finite-dimensional vector space, we denote its dimension by $\ell(D)$.

Theorem (Riemann-Roch)
Let X be a smooth curve of genus g with a divisor D and a canonical divisor K. Then

$$
\ell(D)-\ell(K-D)=\operatorname{deg}(D)-g+1
$$

Mordell-Weil sieving

We use this method for solving the cases $N=97$ and $N=133$.
Notation:

- X - the curve $X_{0}(N)$
- $\operatorname{Pic}^{d}(X)$ - divisor classes of divisors of degree d (recall that $\operatorname{Pic}^{0}(X)$ is the Jacobian of the curve X)
- $W_{d}^{r}(X):=\left\{[D] \in \operatorname{Pic}^{d}(X): D \geq 0, \ell(D) \geq r+1\right\}$
- $J_{0}(N)$ - the Jacobian of $X_{0}(N)$
- $J_{0}(N)^{-}:=\left(1-w_{N}\right) J_{0}(N)\left(w_{N}\right.$ being the Atkin-Lehner involution)
- red_{p} - reduction modulo p
- $\mu: \operatorname{Pic}^{d}(X) \rightarrow J_{0}(N)^{-}, \mu(D)=\left(1-w_{N}\right)(D)$

Mordell-Weil sieving

We use this method for solving the cases $N=97$ and $N=133$.
Notation:

- X - the curve $X_{0}(N)$
- $\operatorname{Pic}^{d}(X)$ - divisor classes of divisors of degree d (recall that $\mathrm{Pic}^{0}(X)$ is the Jacobian of the curve X)
- $W_{d}^{r}(X):=\left\{[D] \in \operatorname{Pic}^{d}(X): D \geq 0, \ell(D) \geq r+1\right\}$
- $J_{0}(N)$ - the Jacobian of $X_{0}(N)$
- $J_{0}(N)^{-}:=\left(1-w_{N}\right) J_{0}(N)\left(w_{N}\right.$ being the Atkin-Lehner involution)
- red_{p} - reduction modulo p
- $\mu: \operatorname{Pic}^{d}(X) \rightarrow J_{0}(N)^{-}, \mu(D)=\left(1-w_{N}\right)(D)$

A curve X has a non-constant function of degree d over \mathbb{Q} only if $W_{d}^{1}(X)(\mathbb{Q}) \neq \emptyset$ (since $f=c$ is in the Riemann-Roch space of every $D \geq 0$).
Suppose $D \in W_{d}^{1}(X)(\mathbb{Q})$ and $p>2$ is a prime of good reduction for X.

We have the following commutative diagram

$$
\begin{gathered}
W_{d}^{1}(X)(\mathbb{Q}) \xrightarrow{\mu} J_{0}(N)^{-}(\mathbb{Q}), \\
\underset{\downarrow}{\mid \operatorname{red}_{p}} \xrightarrow{\operatorname{red}_{p}} \\
W_{d}^{1}(X)\left(\mathbb{F}_{p}\right) \xrightarrow{\mu} J_{0}(N)^{-}\left(\mathbb{F}_{p}\right)
\end{gathered}
$$

- $W_{d}^{1}(X)\left(\mathbb{F}_{p}\right)$ can be computed using Magma
- in our case $\operatorname{rank}\left(J_{0}(N)^{-}(\mathbb{Q})\right)=0 \Longrightarrow J_{0}(N)^{-}(\mathbb{Q}) \subset J_{0}(N)(\mathbb{Q})_{\text {tors }}$
- red $_{p}$ is injective on $J_{0}(N)(\mathbb{Q})_{\text {tors }}$
- hence $\mu(D) \in \operatorname{red}_{p}^{-1}\left(\mu\left(W_{d}^{1}(X)\left(\mathbb{F}_{p}\right)\right)\right)$

The same procedure can be applied for a set S of multiple primes $p>2$ of good reduction, in which case we get

$$
\mu(D) \in \bigcap_{p \in S} \operatorname{red}_{p}^{-1}\left(\mu\left(W_{d}^{1}(X)\left(\mathbb{F}_{p}\right)\right)\right)
$$

If $\bigcap_{p \in S} \operatorname{red}_{p}^{-1}\left(\mu\left(W_{d}^{1}(X)\left(\mathbb{F}_{p}\right)\right)\right)=\emptyset$ it follows that $W_{d}^{1}(X)(\mathbb{Q})=\emptyset$.

Upper bounds

In this section we give the results used to obtain upper bounds for the gonality of $X_{0}(N)$.

Proposition

Let X be a curve of genus $g \geq 2$ over a field k such that $X(k) \neq \emptyset$, then gon $_{k}(X) \leq g$. If k is algebraically closed, then $\operatorname{gon}_{k}(X) \leq\left\lfloor\frac{g+3}{2}\right\rfloor$.
$X_{0}(N)(\mathbb{Q}) \neq \emptyset$ since for each N at least 2 cusps are defined over \mathbb{Q}. The same is true for the quotients $X_{0}(N) /\left\langle w_{d}\right\rangle$ and $X_{0}(N) /\left\langle w_{d_{1}}, w_{d_{2}}\right\rangle$.

Proof.

We fix $P \in X(k)$. The Riemann-Roch theorem tells us that

$$
\ell(K-(g-2) P)-\ell((g-2) P)=g-g+1=1
$$

Since the divisor $(g-2) P$ is effective, we have $\ell((g-2) P) \geq 1$ and $\ell(K-(g-2) P) \geq 2$.
There exists a function f such that $D:=\operatorname{div}(f)+K-(g-2) P \geq 0$. Since $\ell(D)=\ell(K-(g-2) P) \geq 2$, there exists a non-constant function g such that $\operatorname{div}(g)+D \geq 0$. This function has degree $\leq d$ because D has degree d.

Proposition

Let p be a rational prime. There exists a morphism from $X_{0}(p N)$ to $X_{0}(N)$ defined over \mathbb{Q} which is of degree $p+1$ if $p \nmid N$ and of degree p if $p \mid N$.

Proof.

The map $\pi_{p}: X_{0}(p N) \rightarrow X_{0}(N)$ sends the point corresponding to $\left(E, C_{p N}\right)$, where $C_{p N}$ is a cyclic subgroup of E of order $p N$, to $\left(E, p C_{p N}\right)$. Thus the degree of π_{p} is the number of points (E, X) that satisfy $\pi_{p}((E, X))=\left(E, C_{N}\right)$ for a given a fixed subgroup C_{N} of E. This is equal to the number of cyclic subgroups X of $(\mathbb{Z} / p N \mathbb{Z})^{2}$ that satisfy $p X=C_{N}$, which is as claimed.

The morphisms $X_{0}(N) \rightarrow X_{0}(N) / w_{d}$ and $X_{0}(N) \rightarrow X_{0}(N) /\left\langle w_{d_{1}}, w_{d_{2}}\right\rangle$ defined over \mathbb{Q} of degrees 2 and 4 , respectively, also give us the upper bound in many cases.

Theorem (The Tower theorem)

Let C be a curve defined over a perfect field k and $f: C \rightarrow \mathbb{P}^{1}$ be a non-constant morphism over \bar{k} of degree d. Then there exists a curve C^{\prime} defined over k and a non-constant morphism $f^{\prime}: C \rightarrow C^{\prime}$ defined over k of degree d^{\prime} dividing d such that

$$
g\left(C^{\prime}\right) \leq\left(\frac{d}{d^{\prime}}-1\right)^{2} .
$$

Corollary

(i) Let C be a curve defined over \mathbb{Q} with gon $_{\mathbb{C}}(X)=3$ and $g(X) \geq 5$. Then $\operatorname{gon}_{\mathbb{Q}}(X)=3$.
(ii) Let C be a curve defined over \mathbb{Q} with gon $_{\mathbb{C}}(X)=4$ and $g(X) \geq 10$. Then $\operatorname{gon}_{\mathbb{Q}}(X)=4$.

Proof.

Part (i) follows immediately by specializing C^{\prime} to be \mathbb{P}^{1} and d to be 3 . To prove part (ii) we note that C will have a map of degree d^{\prime} over \mathbb{Q} dividing 4 to a curve of genus $\leq\left(4 / d^{\prime}-1\right)^{2}$, so d^{\prime} cannot be 1 . If d^{\prime} is 2 , then X is bielliptic (and is tetragonal over \mathbb{Q}). If d^{\prime} is 4 , then X is tetragonal over \mathbb{Q}, as required.

Summary of methods

Lower bounds

- $\operatorname{gon}_{\mathbb{C}} C \leq \operatorname{gon}_{\mathbb{Q}} C$
- $\operatorname{gon}_{\mathbb{F}_{p}} C \leq \operatorname{gon}_{\mathbb{Q}} C$
- $f: X \rightarrow Y$ over k of degree d $\Longrightarrow \operatorname{gon}_{k} Y \leq$ gon $_{k} X$
- Castelnuovo-Severi inequality
- $X\left(\mathbb{F}_{q}\right)>d(q+1)$ for some d $\Longrightarrow \operatorname{gon}_{\mathbb{Q}}(X) \geq d+1$.
- $N \geq 198 \Longrightarrow \operatorname{gon}_{\mathbb{C}}\left(X_{0}(N)\right) \geq 6$
- Mordell-Weil sieving

Upper bounds

- $\operatorname{gon}_{\mathbb{Q}}(X) \leq g$,
$\operatorname{gon}_{\mathbb{C}}(X) \leq\left\lfloor\frac{g+3}{2}\right\rfloor$
- $f: X \rightarrow Y$ over k of degree d
$\Longrightarrow \operatorname{gon}_{k} X \leq d \cdot \operatorname{gon}_{k} Y$
- $X_{0}(p N) \rightarrow X_{0}(N)$
- $X_{0}(N) \rightarrow X_{0}(N) / w_{d}$, $X_{0}(N) \rightarrow X_{0}(N) /\left\langle w_{d_{1}}, w_{d_{2}}\right\rangle$
- the Tower theorem

Examples

- $N=34,43,45,64$
$3=\operatorname{gon}_{\mathbb{C}} \leq \operatorname{gon}_{\mathbb{Q}} \leq g=3 \Longrightarrow \operatorname{gon}_{\mathbb{C}}=\operatorname{gon}_{\mathbb{Q}}=3$

Examples

- $N=34,43,45,64$

$$
3=\operatorname{gon}_{\mathbb{C}} \leq \operatorname{gon}_{\mathbb{Q}} \leq g=3 \Longrightarrow \operatorname{gon}_{\mathbb{C}}=\operatorname{gon}_{\mathbb{Q}}=3
$$

- $N=38,44,53,61$
$4 \leq \operatorname{gon}_{\mathbb{F}_{p}} \leq$ gon $_{\mathbb{Q}} \leq g=4(p=3$ for 61 and $p=5$ for $38,44,53)$
$\Longrightarrow \operatorname{gon}_{\mathbb{C}}=3, \operatorname{gon}_{\mathbb{Q}}=4$

Examples

- $N=34,43,45,64$
$3=$ gon $_{\mathbb{C}} \leq \operatorname{gon}_{\mathbb{Q}} \leq g=3 \Longrightarrow \operatorname{gon}_{\mathbb{C}}=\operatorname{gon}_{\mathbb{Q}}=3$
- $N=38,44,53,61$
$4 \leq \operatorname{gon}_{\mathbb{F}_{p}} \leq$ gon $_{\mathbb{Q}} \leq g=4(p=3$ for 61 and $p=5$ for $38,44,53)$
$\Longrightarrow \operatorname{gon}_{\mathbb{C}}=3, \operatorname{gon}_{\mathbb{Q}}=4$
- $N=42,52,57,67,68,73,74,77,80,87,91,98,103,107,121,125$
$4=\operatorname{gon}_{\mathbb{C}} \leq$ gon $_{\mathbb{Q}}$, the quotients $X_{0}(N) / w_{N}$ are hyperelliptic $\Longrightarrow \operatorname{gon}_{\mathbb{Q}} \leq 2 \cdot 2=4$. Therefore, $\operatorname{gon}_{\mathbb{C}}=\operatorname{gon}_{\mathbb{Q}}=4$.

Examples

- $N=34,43,45,64$
$3=\operatorname{gon}_{\mathbb{C}} \leq \operatorname{gon}_{\mathbb{Q}} \leq g=3 \Longrightarrow \operatorname{gon}_{\mathbb{C}}=$ gon $_{\mathbb{Q}}=3$
- $N=38,44,53,61$
$4 \leq \operatorname{gon}_{\mathbb{F}_{p}} \leq$ gon $_{\mathbb{Q}} \leq g=4(p=3$ for 61 and $p=5$ for $38,44,53)$
$\Longrightarrow \operatorname{gon}_{\mathbb{C}}=3, \operatorname{gon}_{\mathbb{Q}}=4$
- $N=42,52,57,67,68,73,74,77,80,87,91,98,103,107,121,125$
$4=\operatorname{gon}_{\mathbb{C}} \leq$ gon $_{\mathbb{Q}}$, the quotients $X_{0}(N) / w_{N}$ are hyperelliptic
$\Longrightarrow \operatorname{gon}_{\mathbb{Q}} \leq 2 \cdot 2=4$. Therefore, $\operatorname{gon}_{\mathbb{C}}=\operatorname{gon}_{\mathbb{Q}}=4$.
- $N=117$
$6 \leq$ gon $_{\mathbb{F}_{5}} \leq$ gon $_{\mathbb{Q}}$, degree 3 map to $X_{0}(39)$
$\Longrightarrow \operatorname{gon}_{\mathbb{Q}} \leq 3 \cdot g\left(X_{0}(39)\right)=3 \cdot 2=6$. Therefore, gon $_{\mathbb{Q}}=6$.
- $N=109$

Jeon and Park have already proven that gon $\mathbb{C}=4$. We construct a rational function of degree 5 by looking at the Riemann-Roch spaces of \mathbb{Q}-rational divisors of degree 5 whose support is in the quadratic points obtained by the pullbacks of rational points on $X_{0}^{+}(109)$.
To be precise, we found rational divisors P, Q, R such that $\operatorname{deg}(P)=1, \operatorname{deg}(Q)=\operatorname{deg}(R)=2$ and $\ell(P+Q+R)=2$.
Furthermore, $5 \leq \operatorname{gon}_{\mathbb{F}_{3}} \leq \operatorname{gon}_{\mathbb{Q}}$ and it follows that $\operatorname{gon}_{\mathbb{Q}}=5$.

- $N=146$

The quotient $X_{0}(146) / w_{146}$ is of genus 5 and trigonal over \mathbb{C}. Therefore, it is trigonal over \mathbb{Q} by the Tower theorem and gon $_{\mathbb{Q}} \leq 2 \times 3=6$.
We know that gon $_{\mathbb{C}} \geq 5$ from the theorems in the Introduction. On the other hand, suppose that there is a map $X_{0}(146) \rightarrow \mathbb{P}^{1}$ of degree 5 . Then by applying the CS-inequality we get

$$
g\left(X_{0}(146)\right) \leq 5 \cdot 0+2 \cdot 5+(5-1)(2-1) \leq 14
$$

which is impossible since $g\left(X_{0}(146)\right)=17$. Therefore, $\operatorname{gon}_{\mathbb{C}}=$ gon $_{\mathbb{Q}}=6$.

- $N=169$

The curve $X_{0}(169)$ is of genus 8 . Therefore, gon $_{\mathbb{C}} \leq\left\lfloor\frac{8+3}{2}\right\rfloor=5$. Since gon $_{\mathbb{C}} \geq 5$ from the theorems in the Introduction, we get gon $\mathbb{C}_{\mathbb{C}}=5$. Let us now determine the \mathbb{Q}-gonality.

- $N=169$

The curve $X_{0}(169)$ is of genus 8 . Therefore, gon $_{\mathbb{C}} \leq\left\lfloor\frac{8+3}{2}\right\rfloor=5$. Since gon $_{\mathbb{C}} \geq 5$ from the theorems in the Introduction, we get gon $\mathbb{C}=5$. Let us now determine the \mathbb{Q}-gonality.
The quotient $X_{0}(169) / w_{169}$ is of genus 3 . Therefore, $\operatorname{gon}_{\mathbb{Q}} \leq 2 \cdot 3=6$. On the other hand, we have $6 \leq \operatorname{gon}_{\mathbb{F}_{p}} \leq \operatorname{gon}_{\mathbb{Q}}$ which implies that gon $_{\mathbb{Q}}=6$.

- $N=97$

The curve $X_{0}(97)$ is of genus 7 . Therefore, gon $_{\mathbb{C}} \leq\left\lfloor\frac{7+3}{2}\right\rfloor=5$. Since gon $_{\mathbb{C}} \geq 5$ from the theorems in the Introduction, we get gon $\mathbb{C}=5$. Let us now determine the \mathbb{Q}-gonality.

- $N=97$

The curve $X_{0}(97)$ is of genus 7 . Therefore, gon $_{\mathbb{C}} \leq\left\lfloor\frac{7+3}{2}\right\rfloor=5$. Since gon $_{\mathbb{C}} \geq 5$ from the theorems in the Introduction, we get gon $\mathbb{C}_{\mathbb{C}}=5$.
Let us now determine the \mathbb{Q}-gonality. The quotient $X_{0}(97) / w_{97}$ is of genus 3 . Therefore, we have gon $_{\mathbb{Q}} \leq 2 \cdot 3=6$. For the lower bound we do the Mordell-Weil sieving.

The rank of $J_{0}(97)^{-}(\mathbb{Q})$ is 0 .
For a prime $p, J_{0}(p)_{\text {tors }}^{-}(\mathbb{Q}) \simeq \mathbb{Z} / \frac{p-1}{12} \mathbb{Z}$ and is generated by $D_{0}=[0-\infty]$, where 0 and ∞ are the two cusps of $X_{0}(p)$.
Therefore, $J_{0}(97)^{-}(\mathbb{Q}) \simeq \mathbb{Z} / 8 \mathbb{Z}$ and is generated by D_{0}.
We compute

$$
\begin{gathered}
\operatorname{red}_{3}^{-1}\left(\mu\left(W_{5}^{1}\left(X_{0}(97)\left(\mathbb{F}_{3}\right)\right)\right)\right)=\{0\} \\
\operatorname{red}_{5}^{-1}\left(\mu\left(W_{5}^{1}\left(X_{0}(97)\left(\mathbb{F}_{5}\right)\right)\right)\right)=\left\{D_{0}, 7 D_{0}\right\}
\end{gathered}
$$

Therefore $W_{5}^{1}\left(X_{0}(97)\right)(\mathbb{Q})=\emptyset$ and we get gon $_{\mathbb{Q}}=6$.

The rank of $J_{0}(97)^{-}(\mathbb{Q})$ is 0 .
For a prime $p, J_{0}(p)_{\text {tors }}^{-}(\mathbb{Q}) \simeq \mathbb{Z} / \frac{p-1}{12} \mathbb{Z}$ and is generated by $D_{0}=[0-\infty]$, where 0 and ∞ are the two cusps of $X_{0}(p)$.
Therefore, $J_{0}(97)^{-}(\mathbb{Q}) \simeq \mathbb{Z} / 8 \mathbb{Z}$ and is generated by D_{0}.
We compute

$$
\begin{gathered}
\operatorname{red}_{3}^{-1}\left(\mu\left(W_{5}^{1}\left(X_{0}(97)\left(\mathbb{F}_{3}\right)\right)\right)\right)=\{0\} \\
\operatorname{red}_{5}^{-1}\left(\mu\left(W_{5}^{1}\left(X_{0}(97)\left(\mathbb{F}_{5}\right)\right)\right)\right)=\left\{D_{0}, 7 D_{0}\right\}
\end{gathered}
$$

Therefore $W_{5}^{1}\left(X_{0}(97)\right)(\mathbb{Q})=\emptyset$ and we get gon $\mathbb{Q}=6$.
Later we noticed that

$$
\operatorname{red}_{7}^{-1}\left(\mu\left(W_{5}^{1}\left(X_{0}(97)\left(\mathbb{F}_{7}\right)\right)\right)\right)=\emptyset
$$

so it was possible to do the sieving with just one prime.

- $N=133$

This case is more involved than 97 because we couldn't compute the torsion group exactly.
The rank of $J_{0}(133)^{-}(\mathbb{Q})$ is 0 , so $J_{0}(133)^{-}(\mathbb{Q}) \subset J_{0}(133)(\mathbb{Q})_{\text {tors }}$. We proved that $J_{0}(133)(\mathbb{Q})_{\text {tors }}$ is isomorphic to a subgroup of $\mathbb{Z} / 6 \mathbb{Z} \times \mathbb{Z} / 360 \mathbb{Z}$.
We found rational divisors A, B which generate a subgroup $T:=\langle A, B\rangle \simeq \mathbb{Z} / 6 \mathbb{Z} \times \mathbb{Z} / 180 \mathbb{Z}$.
Thus it follows that for any $x \in J_{0}(133)^{-}(\mathbb{Q})$, we have $2 x \in T$. Hence we use the map 2μ, sending a divisor D to $2(D-w(D))$ instead of μ (which we used for 97).
We compute

$$
\operatorname{red}_{3}^{-1}\left(2 \mu\left(W_{7}^{1}\left(X_{0}(133)\right)\left(\mathbb{F}_{3}\right)\right)\right)=\emptyset
$$

Therefore, $W_{7}^{1}\left(X_{0}(133)\right)(\mathbb{Q})=\emptyset$ and we get gon $\mathbb{Q}_{\mathbb{Q}}=8$.

