
Higher moments of families of elliptic
curves

Bartosz Naskręcki

Adam Mickiewicz University in Poznań

Representation Theory XVII

Dubrovnik, October 3rd 2022



Objects

Elliptic curve:

Et : y
2 + a1(t)xy + a3(t) = x3 + a2(t)x

2 + a4(t)x + a6(t)

with polynomial coefficients ai(t) ∈ Z[t], ∆(t) = ∆(Et).

▶ p - prime number
▶ Ep,t - reduction modulo p of the scheme Et , t ∈ Fp

▶ ap,t = (p + 1)− |Ep,t(Fp)|
We introduce a k-th moment of the family Et

M (k)
p ({Et}) =

∑
t∈Fp

∆(t) ̸=0

akp,t



Michel’s theorem

Let ap,t = 2
√
p cos(θp,t) where θp,t ∈ [0, π]. We define

symk(θ) =
sin((k + 1)θ)

sin(θ)

P. Michel (1995)

Let {Et} be a family of elliptic curve with non-constant
j-invariant. There exists a constant N such that for all primes
p ∤ N and for every positive integer k there exists a constant C
such that

|
∑
t∈Fp

∆(t) ̸=0

symk(θp,t)| ≤ C
√
p.



Sketch of proof of Michel’s theorem

The sum ∑
t∈Fp

∆(t) ̸=0

symk(θp,t)

is interpreted as trace of Frobenius of a certain ℓ-adic sheaf F
derived from the family {Et}.

This sheaf has only three cohomology groups
H i

c(U , Sym
k(F)), i = 0, 1, 2.

H0 vanishes on the punctured affine line U .

H2 vanishes due to Katz large monodromy results (essential to
use the non-triviality of j-invariant!)



Naive second moment

Corollary

M (1)
p = C (1)p + O(p1/2)

M (2)
p = p2 + O(p3/2)

M (3)
p = C (3)p2 + O(p3/2)

. . .

Adding values t such that ∆(t) = 0 might affect the leading
term.



How much is known about moments?

▶ When Et is a universal family over a modular curve X we
have M

(k)
p ∼

∑
f ap(f ) ranging over modular forms of

fixed level and bounded weight.

▶ When the j-invariant is constant each moment is a simple
character sum.

▶ Birch proved that Mk
p (y

2 = x3 + ax + b) is a polynomial
in p (this uses monodromy results of Katz).
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Higher moments

Steven J. Miller, Yan Weng, Jiefei Wu have found a few
explicit examples of second moment derivation.
We set δa,b(p) to be 1 if p is a mod b and 0 otherwise.

One-Parameter Family Rank M1,F(p) M2,F(p)
y 2 = x3 − x2 − x + t 0 0 p2 − 2p − (−3/p)p

y 2 = x3 − tx2 + (x − 1)t2 0 0 on average
p2 − δ2,3(p)(2p)− 2p(−3/p)

−p(−2/p)−
[∑

x(p)(x
3 − x2 + x/p)

]2
y 2 = x3 + tx2 + t2 1 −p p2 − 2p − (−3/p)p − 1
y 2 = x3 + tx2 + tx + t2 1 −p p2 − p − 1− δ1,4(p)(2p)



Zeta function of a moment
To each sequence M

(k)

pi
of k-th moments (over varying fields)

of a family F we can associate a rational zeta function

Z (M(F)p,T ) = exp

(
∞∑
i=1

M2,pi

i
T i

)
▶ This is provably a rational function (Deligne+Dwork)
▶ Rationality introduces a natural stratification with respect

to weight of the algebraic integers,

M (k)
p =

k∑
i=0

fi(p)

where fi(p) =
∑

j α
(p)
i ,j with |α(p)

i,j | = pi/2 and α(p)
i ,j ∈ Q.

|fi(p)| ≤ C · pi/2



Mixed motives

The moments zeta functions are mixed motivic. It is not
clear what pure motives can occur for various families.

In what follows we will explain several cases where the
decomposition can be obtained explicitely on the level of the
zeta function.



Threefolds approach

Kazalicki-N (JNT, 2022)

Let Et : y
2 = x3 + 2x2 + t2

t2+1x be 1-parametric family (which
is not universal!) It follows that for every odd prime p

M2,p(Ek) = p2 − cf (p)−
(

3 + 2
(
−1
p

))
p − 1

where f is a unique rational newform which spans S4(Γ0(8))

f = q − 4q3 − 2q5 + 24q7 − 11q9 − 44q11 + . . .



Exercise

Prove that

M (k)
p (y 2 = x2(x + t)) = 2k−1(p − 1).

Assume that ∆(t) = t.



Threefolds approach

Let X : (x2 − 1)(y 2 − 1)(z2 − 1) = k2 be a threefold in the
affine space.
▶ It parametrizes Diophantine triples (Kazalicki)

It is fibred in surfaces in two different ways:
▶ (A)Xz is a rational elliptic surface fibration
▶ (B) Xk is a K3 fibration (Picard rank = 19)

Fun fact: X is a rational threefold
The comparison of point counts with respect to fibrations (A)
and (B) and the explicit construction of a correspondence on
Xk leads to our theorem.
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Correspondence

Let Z denote a K3 surface defined over the complex numbers.
Suppose there exists an abelian surface A such that there is a
diagram of finite maps

A→ Kum(A)← Z

where Kum(A) denotes the Kummer surface attached to A, i.e.
a resolution of singularities of the quotient surface A/⟨±1⟩.



Sketch of the proof

Starting from the threefold X we construct in several steps an
isogeny η with a threefold M which is parametrized in
Kummer surfaces Kum(Ft × Ft) where
▶ Ft is a universal family with Z/2⊕ Z/4 torsion structure.
▶ Then Deligne’s theory implies our result (+ a few

technical details).



More details

Let Xk : (x2 − 1)(y 2 − 1)(z2 − 1) = k2 be an affine variety
defined over a field K of characteristic ̸= 2. For k = 0 this is a
union of six planes. For k ̸= 0 it is a singular model of a K3
surface.

When charK = 2 the variety Xk is not reduced. The reduced
scheme Xk,red : (x − 1)(y − 1)(z − 1) = k is either a union of
three lines for k = 0 or a rational cubic surface for k ̸= 0.

Let X denote the total space of the fibration πK3 : X → A1,
πK3(x , y , z , k) = k where the fibers are varieties Xk . We have
another fibration πrat : X → A1, πrat(x , y , z , k) = z , where the
fibers are denoted Yz .



Let X denote the projective closure of the variety X

X : (x2 − w 2)(y 2 − w 2)(z2 − w 2)− k2 · w 4 = 0.

We have natural extensions πK3 : X → P1,
πK3([x : y : z : k : w ]) = [k : w ] and πrat : X → P1,
πrat([x : y : z : k : w ]) = [z : w ].

Theorem
The projective threefold X is birational to P3.



Let ϕ : X → P3 denote the following rational map

ϕ([x : y : z : k : w ]) = [(x + w)y : (x + w)z : kw : (x + w)w ]
(1)

and let ψ : P3 → X denote the map

ψ([t1 : t2 : t3 : u]) = [
(
t2
1 + t2

2 − t2
3

)
u3 − t2

1 t
2
2u − u5 :

−t1u4 + t1
(
t2
1 + t2

2 + t2
3

)
u2 − t3

1 t
2
2 :

−t2u4 + t2
(
t2
1 + t2

2 + t2
3

)
u2 − t2

1 t
3
2 :

2t3 (t1 − u) (t1 + u) (u − t2) (t2 + u) :(
t2
1 + t2

2 + t2
3

)
u3 − t2

1 t
2
2u − u5]

(2)

We check by a direct computation that ψ ◦ ϕ and ϕ ◦ ψ are
identity maps, hence both are birational and the proof is
complete.



Let p be a prime and let q = pm for any m ≥ 1. It follows that

#X (Fq) = q3 + 3q2 +max{3− p, 0} (3)

and

#(X \ Xk=0)(Fq) =

{
q3 − 6q2 + 12q − 9, p > 2
q3 − 3q2 + 3q − 1, p = 2 (4)



We denote by Ỹk a minimal smooth projective model of

Yk : Y 2 = X 3+(4z4+(−2k2−8)z2+(2k2+4))X 2+k4(z2−1)2X ,

which is an elliptic surface π : Ỹk → P1 with projection π
obtained from the natural projection (X ,Y , z) 7→ z .

Theorem
Let p be an odd prime and k ∈ Fp. If k2 /∈ {−1, 0} then

#Xk(Fp) = #Ỹk(Fp)− 24p + 6.

If k2 = −1 then #Xk(Fp) = #Ỹk(Fp)− 25p + 6.



Theorem
Let p be an odd prime, and k ∈ Fp. If k2 /∈ {−1, 0} then

#Ỹk(Fp) = 1 + 19p + p2 + ϕp(k
2 + 1)(a2

k,p − p),

where Ek : y 2 = x(k2(1 + k2)3 + 2(1 + k2)2x + x2) and
ak,p = p + 1−#Ek(Fp). Moreover, if k2 = −1 then

#Ỹk(Fp) = 1 + (20− ϕp(−1))p + p2 + (λ(p)2 − p).



∑
k∈Fp ,

k2 /∈{−1,0}

ϕp(k
2 + 1)a2

k,p = −
∑
k∈Fp ,

k2 /∈{−1,0}

a2
k,p + 2

∑
k∈Fp ,

k2 /∈{−1,0},
k2+1=□

a2
k,p,

where x = □ means that x is a square in Fp. The main idea is
to interpret two sums on the right-hand side as traces of
Frobenii Frobp ∈ Gal(Q/Q) of certain Galois representations
attached to the elliptic surfaces with generic fibers

Ek : y 2 = x(k2(1 + k2)3 + 2(1 + k2)2x + x2),

Fk : y 2 = (x − (k − 1)2)(x − (k + 1)2)x .

To motivate the curve Fk , we start with the following
observation. Let p be an odd prime and for k ∈ Fp\{−1, 0, 1}
let bk,p = p + 1−#Fk(Fp).



Theorem
If p is an odd prime, then

2λ(p)2 + 2
∑
k∈Fp

k2 /∈{−1,0}
k2+1=□

a2
k,p =

∑
k∈Fp

k /∈{−1,0,1}

b2
k,p.



Galois reps

Let h1 : E → P1 and h2 : F → P1 denote two elliptic surfaces
with generic fibers Ek and Fk , respectively. We will associate
to each elliptic surface a compatible family of ℓ-adic Galois
representations of Gal(Q/Q) as follows.

Denote by h′1 : E → P1
1 and h′2 : F → P1

2 the restrictions of
elliptic surfaces h1 and h2 to the complements
P1
i = P1 \ {t ∈ P1 : h−1

i (t) is singular}.



Galois reps

For j = 1, 2, a prime ℓ, and a positive integer m, we obtain a
sheaf

F j
ℓ = R1h′j∗Qℓ

on P1
j , and also a sheaf i∗SymmFℓ on P1

j (here Qℓ is the
constant sheaf on the elliptic surface hj , R1 is derived functor
and i : P1

j → P1 the inclusion).



The action of Gal(Q/Q) on the Qℓ-space

W j
m,ℓ = H1

t (P1
j ⊗Q, i∗SymmF j

ℓ)

defines an ℓ-adic representation ρmj ,ℓ which is pure of weight
m + 1.

It follows that representations ρmj ,ℓ are unramified for p > 5.
We denote by Frobp ∈ Gal(Q/Q) a geometric Frobenius at p.



For a prime p > 5, we have that
a)

Trace(ρ2
1,ℓ(Frobp)) = p2−3p−2ϕp(−1)p−2−

∑
k∈Fp

k2 /∈{−1,0}

a2
k,p,

b)

Trace(ρ2
2,ℓ(Frobp)) = p2 − 3p − 4−

∑
k∈Fp

k /∈{−1,0,1}

b2
k,p.



Consider the newform

f (τ) =
∞∑
n=1

cf (n)q
n = q − 4q3− 2q5 + 24q7 + . . . ∈ S4(Γ0(8)).

Theorem
Let p > 5 be a prime, and ℓ ̸= p. We have that

Trace(ρ2
1,ℓ(Frobp)) = Trace(ρ2

2,ℓ(Frobp)) = cf (p).



Second equality Trace(ρ2
2,ℓ(Frobp)) = cf (p): the equality

follows from Deligne’s formula relating the trace of Frobenius
acting on Galois representation of a universal family of elliptic
curves over a modular curve and the trace of Hecke operator
Tp acting on corresponding space of cusp forms. In this
particular case, the family Fk is a twist by

√
−1 of a universal

family

y 2 + xy +

(
− 1

16
k2 +

1
16

)
y = x3 +

(
− 1

16
k2 +

1
16

)
x2

of elliptic curves with Z/2⊕ Z/4 torsion subgroup.



The corresponding modular curve is X (Γ) for
Γ = Γ1(4) ∩ Γ0(2), a congruence subgroup of index 12, with
cusps {∞, 0, 1/3, 1/2}. The following equalities[ 1√

2
0

0
√

2

]−1

Γ0(8)
[ 1√

2
0

0
√

2

]
= Γ0(4) ∩ Γ0(2) = {±I}Γ,

imply that the map S4(Γ0(8))→ S4(Γ), g(τ) 7→ g(τ/2) is an
isomorphism. Hence, the space S4(Γ) is 1-dimensional and
spanned by f (τ/2).



First equality Trace(ρ2
1,ℓ(Frobp)) = Trace(ρ2

2,ℓ(Frobp)):
Our claim is equivalent to:∑

k∈Fp

k /∈{−1,0,1}

b2
k,p − 2ϕp(−1)p + 2 =

∑
k∈Fp

k2 /∈{−1,0}

a2
k,p.

We need to prove:∑
k∈Fp

k2 /∈{−1,0}

ϕp(k
2 + 1)a2

k,p = −2− 2λ(p)2 + 2ϕp(−1)p. (∗)

(*) follows from the comparison of the point counts on X .



Recent modularity proofs (jointly with Bidisha Roy)

Since the moment sums are motivic (actually mixed motivic),
we could match them with (several) modular motives of Scholl.

In her work with Pal and Sadek, Bidisha Roy
(arXiv:2111.08393) has proved that finite field analogues of
hypergeometric periods of Calabi-Yau manifolds are connected
to higher moments of the twisted Legendre and Clausen family
of elliptic curves

Using this work we reprove modularity of the rigid Calabi-Yau
threefold

x + 1/x + y + 1/y + z + 1/z + w + 1/w = 0

without Faltings-Serre method and auxiliary trace formulas
(Frechette- Ono-Papanikolas).



In our approach we use the explicit computation of higher
moments of the higher moments of the Legendre and Clausen
family. This is based on the same trick as a key step of
Kazalicki-N JNT paper.

In a work in progress with Kazalicki and Roy we plan to
directly reprove all modularity results about rigid CY which
have hypergeometric periods (a recent result established with
different methods by Dieulefait, Gouvea and Yui).



A recent calculation allowed me to prove the modularity of the
CY threefold emerging from quantum process and which has
the (singular) equation

X : w 2 = xy(x − z)(y − z)(yz − (x − t)2)(xz − (y − t)2)

Bert van Geemen and Dino Festi found (experimentally) that

#Xp(Fp) = p3 + 4p2 − 8p + 1− bp

where bp is the p-coefficient of a unique newform for Γ1(6) for
primes up to 100.
Using second moments and Kummer surface construction I
prove that this holds for every prime p.



Bias

What links all these examples is the negative bias of the
highest order lower term in the sum

M (2)
p = p2 + A3(p)p

3/2 + A2(p)p
2/2 + A1(p)p

1/2 + A0 . . .

and µi = limx→∞
1

π(x)

∑
p≤x Ai(p)

First we have µi = 0 and then
µk < 0 (if it ever happens)



First moment and Nagao conjecture

Nagao conjecture

lim
x→∞

1
x

∑
p≤x

M (1)
p ({Et})

logp

p
= −rankE(Q(t))

E → P1 is an elliptic surface with generic fibre Et .

The right-hand side is negative of the rank of the part of
Picard group of E of algebraic classes defined over Q



First moment and Nagao conjecture

Rosen-Silverman, 1998
Nagao conjecture holds for elliptic curve with deg ai(t) ≤ i ,
i.e. E → P1 is a rational elliptic surface



Bias

▶ For the first moment we also had a negative bias (Nagao
conjecture)

▶ We don’t really see yet what happens for higher moments
(difficult heuristic)

▶ We need to quantify the statement a bit. . .



Averages

For each sequence a = {ap} indexed by prime numbers we
introduce its average

µ(a) = lim
x→∞

1
π(x)

∑
p≤x

ap
pα

where α = min{β ≥ 0 : ∃A≥0∀p|ap| ≤ Apβ}
▶ Michel’s results says that for non-constant j-invariant

families µ(f4(p)) = 1



Bias conjecture

Bias conjecture
Let Et be a one-parameter family of elliptic curves over Q(t).
The averages of the lower order terms in the second moment
expansion of M2,p(Et) exist, and the largest lower order term
that does not average to 0 is on the average negative.



Extended second moment

It is natural to extend a definition of the second moment to
include the fiber at infinity E∞, so we define

M̃2,p(Et) = M2,p(Et) + a2
∞,p.



Pencils of cubics

Theorem (Kazalicki-N,2021(arXiv:2012.11306))

Let Et : y
2 = P(x) + tQ(x), P ,Q ∈ Z[x ] typical and

max{degP , degQ} = 3,

M̃
(p)
2 (Et) = p2︸︷︷︸

=f4(p)

−p · dp︸ ︷︷ ︸
=f3(p)

−p ·#S(Fp)︸ ︷︷ ︸
=f2(p)

where dp = p + 1− C (Fp), C is a certain genus 2 smooth
curve and S is a finite scheme.

Theorem (Kazalicki-N, 2021 (arXiv:2012.11306))

The bias conjecture for the family {Et} holds under the
Sato-Tate conjecture (or rather potential modularity - proved
cases) for the curve C and the negative bias varies between -5
and -1.



Yet another threefold

The second moment sum for the family
Fk : y 2 = P(x) + kQ(x) is linked to a point count on the
following threefold. Let Maff be threefold associated to the
Kummer surface Kum(Fk ×Fk) over Q(k)

Maff : (P(x1)k + Q(x1))·(P(x2)k + Q(x2)) = y 2 ⊂ A1×A1×A1×A1

and let

M∞ : P(x1)P(x2) = y 2 ⊂ A1 × A1 × A1

be a fiber of threefold Maff at k =∞.



Yet another threefold

Denote by ιaff : Maff → A1 × A1 × P1 × A1 a map

ιaff (x1, x2, k , y) 7→ (x1, x2, (k : 1), y)

and let
ι∞ : M∞ → A1 × A1 × P1 × A1

be a map ι∞(x1, x2, y) 7→ (x1, x2, (1 : 0), y).
Define

M = ιaff (Maff ) ∪ ι∞(M∞).



Extended second moment

In the case when Fk we have

a∞,p = p −#{(x , y) ∈ F2
p : P(x) = y 2}



Threefold count

Our starting point is the observation that the number of
Fq-rational points on a threefold M is equal to

q3 + q2 + M̃2,q(Fk)

for any prime power q.



Threefold fibration no.3

The threefold M has two fibrations which we saw previously
(rational and K3).
We can compare it, but it also carries a third fibration (a conic
bundle) π : M → A2 where

π(x1, x2, (k : s), y) = (x1, x2).

Beauville theory tells us the following:

A complete non-singular model M̃ of M has an interesting
motive h3(M̃) which can be related in the case of conic

bundles to the Prym variety of the pair of curves C̃ → ∆̃.



Curves

• Curve ∆ : P(x1)Q(x2)− P(x2)Q(x1) = 0 is the locus of the
discriminant of a conic π−1(x1, x2).
• For a point (x1, x2) ∈ ∆, the slopes of the degenerate conic
π−1(x1, x2) are described by a point in the curve
C = M∞ ∩ π−1(∆). Suppose degP = 3, then

C : P(x1)P(x2) = y 2 ∆(x1, x2) = 0

Both curves ∆ and C are reducible. In fact, we have

∆ = ∆̃ ∪ {x1 = x2}.

We define also
C̃ = M∞ ∩ π−1(∆̃).



Threefold fibration no.3

The curve ∆̃ has a natural interpretation as the discriminant
curve of the conic bundle π and C̃ corresponds to the Fano
variety of lines on C̃ .

In fact, as proved by Mumford the Prym variety Prym(C/∆)
has dimension 2 (in the generic case) and has a polarization of
type (1, 2) and is linked to a genus 2 curve constructed from
C .



Curves

Let q be a prime power such that 2 ∤ q. We have

#M(Fq) = q3+q2−q#∆(Fq)+q#C (Fq)+q

 ∑
P(x)≡0

ϕq(Q(x))

2

.

In particular

M̃2,q(Fk) = q

−#∆(Fq) + #C (Fq) +

 ∑
P(x)≡0

ϕq(Q(x))

2 .



Curves

Generically curves ∆̃ and C̃ are geometrically irreducible.

There is a natural double cover C̃ → ∆̃ and the smooth
models ∆ and C have genus 1 and 3, respectively. We call
such a pair typical.

Let q be an odd prime power. Assume that (∆̃, C̃ ) is typical
and degP = 3. We have the equality

M̃2,q(F) = q · (#C (Fq)−#∆(Fq) + q −#S(Fq))

where S : ∆(x , x) = 0



Curve quotients

Suppose that C̃ is geometrically irreducible and geometrically
reduced.
Let τ1, τ2 and τ3 be three involutions of C whose restriction to
C̃ are equal to
▶ (x1, x2, y) 7→ (x1, x2,−y),
▶ (x1, x2, y) 7→ (x2, x1,−y),
▶ (x1, x2, y) 7→ (x2, x1, y)

Denote by ϕi : C → Ci : non-singular projective quotients of C
by τi
▶ Note that C1 =: ∆ is nonsingular projective closure of ∆̃.
▶ Denote by ϕ4 : C → C4 the nonsingular projective

quotient of C by the group G generated by involutions τi .



Point counts

For a prime power q and C̃ geometrically irreducible and
geometrically reduced over Fq we have

#C (Fq) + 2#C4(Fq) = #C1(Fq) + #C2(Fq) + #C3(Fq).

In fact, formula above is a finite field analogue of a theorem of
Accola applied to the automorphism group Z/2⊕ Z/2 acting
on C :

g(C ) + 2g(C4) = g(C1) + g(C2) + g(C3)

when the field characteristic of the curves C , Ci is odd or zero.



Genera of curves

Let q be an odd prime power. Let K denote a field such that
char(K ) ̸= 2. For a typical pair (∆̃, C̃ ) we have that
▶ g(C4) = 0
▶ g(C3) = 0
▶ g(C2) = 2
▶ g(C1) = 1
▶ g(C ) = 3

Hence, the curve C is bielliptic and hyperelliptic. When the
pair (∆̃, C̃ ) is typical we have

#C (Fq)−#∆(Fq) = #C2(Fq)− (q + 1).



Final step

So for a typical pair ∆,C we have

M̃
(p)
2 (Fk) = p2︸︷︷︸

=f4(p)

−p · dp︸ ︷︷ ︸
=f3(p)

−p ·#S(Fp)︸ ︷︷ ︸
=f2(p)

where dp = p + 1−#C2(Fp).

▶ Sato-Tate conjecture implies that µ(dp) = 0.
▶ The average µ(#S(Fp)) is always positive by Chebotarev

theorem.



Thank you


