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Notation

SL2(R) is defined by

SL2(R) =

{(
a b
c d

)
; a, b, c , d ∈ R, ad − bc = 1

}
H is the upper half–plane: Im(z) > 0
SL2(R) acts on H in a well–known way

g .z =
az + b

cz + d
, g =

(
a b
c d

)
∈ SL2(R), z ∈ H

H can be regarded as a model for the hyperbolic plane with
(invariant under SL2(R))

hyperbolic volume: dxdy
y2

hyperbolic distance: ds2 = dx2+dy2

y2
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Fuchsian groups of the first kind

we are interested in discrete subgroups Γ of SL2(R)

traditionally called Fuchsian groups

the hyperbolic geometry can be used to construct nice
fundamental domains FΓ for the action of Γ on H
Main interest:
Γ is a Fuchsian group of the first kind if

∫∫
FΓ

dxdy
y2 <∞
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Goran Muić Models of X0(N) and beyond via modular forms and some applications (joint with I. Kodrnja) Representation theory XVII Dubrovnik 03-08.10.2022.



Fuchsian groups of the first kind

we are interested in discrete subgroups Γ of SL2(R)
traditionally called Fuchsian groups

the hyperbolic geometry can be used to construct nice
fundamental domains FΓ for the action of Γ on H
Main interest:

Γ is a Fuchsian group of the first kind if
∫∫
FΓ

dxdy
y2 <∞
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Fuchsian groups of the first kind

Siegel
=⇒

FΓ is a polygon in the hyperbolic plane H with finitely many
vertices: some of them might be at infinity = R ∪ {∞}

a Γ–conjugate of a vertex at infinity is called cusp for Γ

In what follows Γ always denotes a Fuchsian group of the first kind
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Fuchsian groups of the first kind

Let H∗ be the union of H and the set of all cusps for Γ
the space RΓ of Γ–orbits for H∗ has a structure of compact
Riemann surface

compact Riemann surface (analysis)=
complete (projective) non–singular irreducible algebraic curve over
C (algebraic geometry) Because:

a compact Riemann surface R can be embedded in a complex
projective space Pn for some n using suitable meromorphic
functions; particular case is less analytic:
modular forms are used to make this step explicit for RΓ

Chow’s theorem: the image is a complex irreducible smooth
projective curve =⇒ given by homogeneous polynomial
equations
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Examples Fuchsian groups of the first kind (Number
theory)

Principal congruence subgroups:

let N ≥ 1, we define

Γ(N) =

{(
a b
c d

)
∈ SL2(Z); a, d ≡ 1 (mod N), b, c ≡ 0 (mod N)

}

a congruence subgroup is a subgroup Γ of SL2(Z) such that
Γ(N) ⊆ Γ for some N ≥ 1.
the most important congruence subgroups:

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z); c ≡ 0 (mod N)

}
the set of cusps for congruence subgroups is Q ∪ {∞}

Goran Muić Models of X0(N) and beyond via modular forms and some applications (joint with I. Kodrnja) Representation theory XVII Dubrovnik 03-08.10.2022.



Examples Fuchsian groups of the first kind (Number
theory)

Principal congruence subgroups: let N ≥ 1, we define

Γ(N) =

{(
a b
c d

)
∈ SL2(Z); a, d ≡ 1 (mod N), b, c ≡ 0 (mod N)

}

a congruence subgroup is a subgroup Γ of SL2(Z) such that
Γ(N) ⊆ Γ for some N ≥ 1.
the most important congruence subgroups:

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z); c ≡ 0 (mod N)

}
the set of cusps for congruence subgroups is Q ∪ {∞}
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Examples Fuchsian groups of the first kind (Algebraic
Geometry)

Let C ⊂ Pn be a smooth and irreducible projective complex curve
of genus g ≥ 2

Uniformization theory: C = RΓ, where
−1 ∈ Γ and Γ/{±1} is isomorphic to the fundamental group of C

Γ has no cups

H is the universal covering space for C : C = Γ \H.
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Modular forms of one variable

a holomorphic function f : H→ C is called modular form for Γ of
(integral) weight m ≥ 0 if

1. f (γ.z) = j(γ, z)mf (z), for all z ∈ H, γ ∈ Γ, where

j(γ, z)
def
= cz + d , γ =

(
a b
c d

)
2. f is holomorphic in cusps for Γ
3. In addition, if f vanish at all cusps it is called a cusp form

condition 2. is a technical condition which for Γ = Γ0(N) and the
cusp ∞ means that f has a Fourier expansion so called
q–expansion

f (z) = a0 + a1q + a2q2 + · · · , q = exp (2π
√
−1z),

and condition 3. f means a0 = 0
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Modular forms of one variable

Famous example: Ramanujan ∆ function is a cusp form for
SL2(Z) = Γ0(1) of weight 12:

∆(z) = q
∞∏
n=1

(1− qn)24 = q − 24q2 + 252q3 − · · ·

Coefficients in the q–expansion of modular forms usually carry
deep arithmetic information
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Cuspidal forms of one variable

Let Sm(Γ) be the vector space of all cusp forms for Γ

Riemann–Roch theorem for the curve RΓ

=⇒ dim Sm(Γ) is finite dimensional

=⇒ the formula for the dimension of Sm(Γ) when m ≥ 2

For applications in number theory, there are various ways of
construction bases for Sm(Γ) especially when Γ = Γ0(N)
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Cuspidal forms of one variable for Γ0(N)

In fact, there are computer systems such as SAGE or MAGMA for
computing with modular forms. For example, computation of
q–expansions of certain bases of Sm(Γ0(N)).

This is very useful for computing explicit embeddings of curves
RΓ0(N) in various complex PN resulting in explicit equations.

That was studied by many people (including very recently some of
my works joint with Kodrnja). For that computations, the space of
weight two cusp forms for Γ0(N) is especially useful since it
canonically isomorphic to the space of holomorphic differentials on
the curve.
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Maps into P2

Assume that Γ has at least one cusp e.g. Γ = Γ0(N). Let g(Γ) be
the genus of RΓ.

Let m ≥ 2 an even integer, such that dim Mm(Γ) ≥ 3.

Let f , g , h be three linearly independent modular forms in Mm(Γ).

Then, we define a holomorphic (regular) map

RΓ → P2

by

Γ\H −→ P2

z 7−→ (f (z) : g(z) : h(z)).
(0-1)
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Maps into P2

Since RΓ has a canonical structure of complex projective
irreducible algebraic curve, this map can be regarded as a regular
map between projective varieties. Consequently, the image is an
irreducible projective curve which we denote by C(f , g , h).

The degree d(f , g , h) of the map (0-1) is by definition the degree
of the field extension of the fields of rational functions:

C (C(f , g , h)) ⊂ C (RΓ) .

The degree deg C(f , g , h) of the curve C(f , g , h) is the degree of
the reduced homogeneous equation defining C(f , g , h) in P2
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Goran Muić Models of X0(N) and beyond via modular forms and some applications (joint with I. Kodrnja) Representation theory XVII Dubrovnik 03-08.10.2022.



Maps into P2

Since RΓ has a canonical structure of complex projective
irreducible algebraic curve, this map can be regarded as a regular
map between projective varieties. Consequently, the image is an
irreducible projective curve which we denote by C(f , g , h).

The degree d(f , g , h) of the map (0-1) is by definition the degree
of the field extension of the fields of rational functions:

C (C(f , g , h)) ⊂ C (RΓ) .

The degree deg C(f , g , h) of the curve C(f , g , h) is the degree of
the reduced homogeneous equation defining C(f , g , h) in P2

Goran Muić Models of X0(N) and beyond via modular forms and some applications (joint with I. Kodrnja) Representation theory XVII Dubrovnik 03-08.10.2022.



Maps into P2

Since RΓ has a canonical structure of complex projective
irreducible algebraic curve, this map can be regarded as a regular
map between projective varieties. Consequently, the image is an
irreducible projective curve which we denote by C(f , g , h).

The degree d(f , g , h) of the map (0-1) is by definition the degree
of the field extension of the fields of rational functions:

C (C(f , g , h)) ⊂ C (RΓ) .

The degree deg C(f , g , h) of the curve C(f , g , h) is the degree of
the reduced homogeneous equation defining C(f , g , h) in P2
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Description of d(f , g , h) · deg C(f , g , h)

Any f ∈ Mm(Γ), f 6= 0 has a divisor which has the form

div(f ) = (the part independent of f ) + c′f ,

c′f is usual divisor on the curve RΓ

We write

c′f =
∑
a∈RΓ

νa(f )a (a finite sum), c′f (a) = νa(f )

When f ∈ Sm(Γ), we define another divisor

cf = c′f −
∑
a∈RΓ
a cusp

a
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Description of d(f , g , h) · deg C(f , g , h)

Theorem (M.)

We have the following:

d(f , g , h) · deg C(f , g , h) =
dim Mm(Γ) + g(Γ)− 1−

∑
a∈RΓ

min
(
c′f (a), c′g (a), c′h(a)

)
,

dim Sm(Γ) + g(Γ)− 1− εm −
∑

a∈RΓ
min (cf (a), cg (a), ch(a)),

if f , g , h ∈ Sm(Γ),

where ε2 = 1 and εm = 0 for m even, m ≥ 4.
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Models of RΓ

C(f , g , h) is a model of RΓ if the map (0-1) defines birational
equivalence, or equivalently d(f , g , h) = 1

In this case, the theorem implies

deg C(f , g , h) =
dim Mm(Γ) + g(Γ)− 1−

∑
a∈RΓ

min
(
c′f (a), c′g (a), c′h(a)

)
,

dim Sm(Γ) + g(Γ)− 1− εm −
∑

a∈RΓ
min (cf (a), cg (a), ch(a)),

if f , g , h ∈ Sm(Γ)
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Models of RΓ

Definition

Let W ⊂ Mm(Γ) be a non-zero linear subspace. Then, we say that
W determines the field of rational functions C(RΓ) if dim W ≥ 2,
and there exists a basis f0, . . . , fs−1 of W , such that C(RΓ) is
generated over C by the quotients fi/f0, 1 ≤ i ≤ s − 1.

This notion does not depend on the choice of the basis used. Also,
it is equivalent to the fact that the holomorphic map RΓ −→ Ps−1

given by z 7→ (f0(z) : · · · : fs−1(z)) is birational onto its image in
Ps−1.

For example, if dim Sm(Γ) ≥ max (g(Γ) + 2, 3), then we can take
W = Sm(Γ) by general theory of algebraic curves

We recall that RΓ is hyperelliptic if g(Γ) ≥ 2, and there is a degree
two map onto P1. If RΓ is not hyperelliptic, then
dim S2(Γ) = g(Γ) ≥ 3, and we can take W = S2(Γ)
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Goran Muić Models of X0(N) and beyond via modular forms and some applications (joint with I. Kodrnja) Representation theory XVII Dubrovnik 03-08.10.2022.



Models of RΓ

Definition

Let W ⊂ Mm(Γ) be a non-zero linear subspace. Then, we say that
W determines the field of rational functions C(RΓ) if dim W ≥ 2,
and there exists a basis f0, . . . , fs−1 of W , such that C(RΓ) is
generated over C by the quotients fi/f0, 1 ≤ i ≤ s − 1.

This notion does not depend on the choice of the basis used. Also,
it is equivalent to the fact that the holomorphic map RΓ −→ Ps−1

given by z 7→ (f0(z) : · · · : fs−1(z)) is birational onto its image in
Ps−1.

For example, if dim Sm(Γ) ≥ max (g(Γ) + 2, 3), then we can take
W = Sm(Γ) by general theory of algebraic curves

We recall that RΓ is hyperelliptic if g(Γ) ≥ 2, and there is a degree
two map onto P1. If RΓ is not hyperelliptic, then
dim S2(Γ) = g(Γ) ≥ 3, and we can take W = S2(Γ)

Goran Muić Models of X0(N) and beyond via modular forms and some applications (joint with I. Kodrnja) Representation theory XVII Dubrovnik 03-08.10.2022.



Models of RΓ

We recall that g(Γ0(N)) ≥ 2 unless{
N ∈ {1− 10, 12, 13, 16, 18, 25} when g(Γ0(N)) = 0, and

N ∈ {11, 14, 15, 17, 19− 21, 24, 27, 32, 36, 49} when g(Γ0(N)) = 1.

Let g(Γ0(N)) ≥ 2. Ogg has determined all X0(N) which are
hyperelliptic curves. In view of Ogg’s paper, we see that X0(N) is
not hyperelliptic for N ∈ {34, 38, 42, 43, 44, 45, 51− 58, 60− 70} or
N ≥ 72. This implies g(Γ0(N)) ≥ 3.
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Simple example: Models of RΓ

Proposition

Consider three linearly independent forms from the four
dimensional space S4(Γ0(14)) of cusp forms of weight four for
Γ0(14):

f = q2 − 2q5 − 2q6 + q7 − 6q8 + 12q10 + 4q11 + 2q13 + · · · ,
g = q3 − q5 − 2q6 − q7 − 4q8 + 6q9 + 10q10 − 6q11 + · · · ,
h = q4 − 2q5 + q7 + q8 − 4q10 + 4q11 − 2q12 + 2q13 + · · · .

Then, the map (0-1) is a birational equivalence of X0(14) and
C(f , g , h). Moreover, deg C(f , g , h) = 3.

Proof: Let a∞ be the Γ0(14)–orbit of the cusp ∞. Since the
forms have at least double zero at a∞, and f has exactly double
zero, we have
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Simple example: Models of RΓ

∑
a∈X0(14)

min (cf (a), cg (a), ch(a)) ≥ min (cf (a∞), cg (a∞), ch(a∞)) = 1.

=⇒ 1 ≤ d(f , g , h) · deg C(f , g , h) ≤
≤ dim S4(Γ0(14)) + g(Γ0(14))− 1− ε4 − 1 = 3

=⇒ g(Γ0(14)) = 1 =⇒ deg C(f , g , h) ∈ {1, 2, 3}.
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Models of RΓ

But deg C(f , g , h) = 1 means that C(f , g , h) is a line which is
clearly impossible since f , g , and h are linearly independent. The
case deg C(f , g , h) = 2 means that C(f , g , h) is an irreducible
conic. Using

2d(f , g , h) = d(f , g , h) · deg C(f , g , h) ≤ 3,

we must have
d(f , g , h) = 1

This means that X0(14) is birationally equivalent to the conic
C(f , g , h). But irreducible conic is non-singular. This means that
X0(14) isomorphic to a conic. This is a contradiction since conic
has genus 0 while X0(14) has genus 1.
Thus, deg C(f , g , h) = 3. Consequently, d(f , g , h) = 1 proving the
proposition.
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Models of RΓ

Theorem (Kodrnja-M.)

Assume that m ≥ 2 is an even integer. Let W ⊂ Mm(Γ),
dim W ≥ 3, be a subspace which determines the field of rational
functions C(RΓ) (see Definition 0-3). Let f , g ∈W be linearly
independent. Then there exists a non-empty Zariski open set
U ⊂W such that for any h ∈ U we have the following:

(i) f , g , and h are linearly independent;

(ii) RΓ is birationally equivalent to C(f , g , h) via the map (0-1).

Problem: Given f , g , determine h such that C(f , g , h) is a model
of RΓ
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Models of RΓ

Corollary

Let m ≥ 2 be an even integer. Assume that one of the following
holds:

(A) g(Γ0(N)) ≥ 1, and m ≥ 4 (if N 6= 11) or m ≥ 6 (if N = 11);

(B) X0(N) is not hyperelliptic, and m = 2.

(In either case, dim Sm(Γ0(N)) ≥ 3.) Let f , g ∈ Sm(Γ0(N)) be
linearly independent with integral q-expansions. Then, there exists
infinitely many h ∈ Sm(Γ0(N)) with integral q–expansion such that
we have the following:

(i) X0(N)
def
= RΓ0(N) is birationally equivalent to C(f , g , h) via

the map (0-1), and

(ii) the reduced equation of C(f , g , h) has integral coefficients up
to a multiplication by a non-zero constant in C.
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Some methods for explicit determination of h

Problem: Given f , g (subject to the condition of the theorem),
determine h such that C(f , g , h) is a model of RΓ

We offer two solutions:

1) the method of estimates for Primitive Elements in finite
extensions of algebriac function fields

2) the trial method for determining primitive element in finite
extensions of algebriac function fields , commonly used in the cases
of algebraic number fields
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the method of estimates for Primitive Elements

Proposition

Assume that m ≥ 2 is an even integer. Let W ⊂ Mm(Γ),
dim W = 4, be a subspace which determines the field of rational
functions C(RΓ) (see Definition 0-3). Select a basis
{f = f0, g = f1, f2, f3} of W . We assume that all fi has integral
q–expansions. Then, there exists an explicitly computable c0 ∈ Z
such that for all c ∈ Z, |c | ≥ c0, RΓ is birationally equivalent to

C(f , g , hc) via the map (0-1) with h = hc , where hc
def
= f2 + cf3.
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Example for the method of estimates for Primitive
Elements

Proposition

Consider the four dimensional space W
def
= S4(Γ0(14)) of cusp

forms of weight four for Γ0(14). It has a basis:

f = f0 = q − 2q5 − 4q6 − q7 + 8q8 − 11q9 − 12q10 + 12q11 + · · · ,
g = f1 = q2 − 2q5 − 2q6 + q7 − 6q8 + 12q10 + 4q11 + 2q13 + · · · ,

f2 = q3 − q5 − 2q6 − q7 − 4q8 + 6q9 + 10q10 − 6q11 + · · · ,
f3 = q4 − 2q5 + q7 + q8 − 4q10 + 4q11 − 2q12 + 2q13 + · · · .

Put hc
def
= f2 + cf3, c ∈ Z, as in the statement of the previous

proposition. Then, X0(14) is birationally equivalent to C(f , g , hc)
via the map (0-1) with h = hc for |c | ≥ 7.
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The trial method

Let W ⊂ Sm(Γ), m ≥ 2, be a non-zero subspace that determines
the field of rational functions C(RΓ)
Assume that dim W = s ≥ 4
Let f0, . . . , fs−1 be a basis of W . We let f = f0 and g = f1.

Let K
def
= C(f /g), and

L
def
= C(RΓ) = C(f1/f0, f2/f0, . . . , fs−1/f0) = C(f /g , f2/f , . . . , fs−1/f )

L is a finite algebraic extension of K , and we have the following:

L = K (f2/f0, . . . , fs−1/f0).

interested in finding a primitive element of L over K which has
the form of linear combination of the generators f2/f0, . . . , fs−1/f0
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Goran Muić Models of X0(N) and beyond via modular forms and some applications (joint with I. Kodrnja) Representation theory XVII Dubrovnik 03-08.10.2022.



The trial method

For a
def
= (a2, a3, . . . , as−1) ∈ Zs−2, we let

h
def
= ha

def
= a2f2/f0 + · · ·+ as−1fs−1/f0 ∈ L.

by the main theorem

d(f , g , h) · deg C(f , g , h) ≤ dim Sm(Γ) + g(Γ)− 1− εm,
Thus, if we have

deg C(f , g , h) >
dim Sm(Γ) + g(Γ)− 1− εm

2
,

then d(f , g , h) = 1 i.e., C(f , g , h) is a model of RΓ.
We organize (s − 2)–tuples in Zs−2 as follows:

SM
def
=

{
a2f2/f0 + · · ·+ as−1fs−1/f0; ai ∈ Z,

s−1∑
i=2

|ai | = M

}
,

for all M ∈ Z≥1. For M ≥ 1, we order elements of SM using the
lexicographical order.
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The trial method

The algorithm:

(1) Let M = 1. Repeat the following:

(2) For a ∈ SM , we repeat the following: compute deg C(f , g , h)
(by means of computing the equation), and check if

deg C(f , g , h) > dimSm(Γ)+g(Γ)−1−εm
2 for h = ha. If the holds,

then the algorithm stops. OUTPUT: h such that h/f is a
primitive element for the extension K ⊂ L.

(3) Increase M by one, and return to step (2).
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Example: The trial method

Let Γ = Γ0(N) such that g(Γ0(N)) ≥ 4, and X0(N) is not
hyperelliptic =⇒ we may take W = S2(Γ0(N)). In this case we
need to test

deg C(f , g , h) > g(Γ0(N))− 1.

As an example, we consider the case N = 72. Then,
g(Γ0(72)) = 5, and we may take

f = f0 = q3 − q9 − 2q15 + q27 + 4q33 − 2q39 + · · · ,
g = f1 = q5 − 2q11 − q17 + 4q23 − 3q29 + · · · ,

f2 = q7 − q13 − 3q19 + q25 + 3q31 + 4q37 + · · · ,
f3 = q − 2q13 − 4q19 − q25 + 8q31 + 6q37 + · · · ,
f4 = q2 − 4q14 + 2q26 + 8q38 + · · · ,
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Example: The trial method

Applying above algorithm, we obtain the following:

(1) For M = 1, we have three cases in their lexicographical order
a = (0, 0, 1), (0, 1, 0), and (1, 0, 0). We have
deg C(f , g , ha) = 3, 2, and 3, respectively. In any case,
deg C(f , g , ha) ≤ g(Γ0(72))− 1 = 4. So, we go to the next
step.

(2) For M = 2, in the lexicographical order, we have the
following:

1. a = (0, 0, 2), deg C(f , g , ha) = 3 ≤ g(Γ0(72))− 1 = 4;
2. a = (0, 1, 1), deg C(f , g , ha) = 3 ≤ 4;
3. a = (0, 2, 0), deg C(f , g , ha) = 2 ≤ 4;
4. a = (1, 0, 1), deg C(f , g , ha) = 7 > 4; STOP.
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Example: The trial method

hence, for h = h(1,0,1) is a birational equivalence of X0(72) and
C(f , g , h(1,0,1)). The reduced equation of C(f , g , h(1,0,1)) is given
by the irreducible polynomial

x7
0 − 4x6

0 x1 − 3x4
0 x3

1 − 8x3
0 x4

1 − x2
0 x5

1 − 4x0x6
1 − 4x7

1 − 4x5
0 x1x2+

+ 2x3
0 x3

1 x2 − 4x2
0 x4

1 x2 − x4
0 x1x2

2 + 8x3
0 x2

1 x2
2 − 4x0x4

1 x2
2 + 8x5

1 x2
2 +

+ 4x2
0 x2

1 x3
2 − 4x3

1 x4
2
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Applications

I discussed in my talk in Split in June, we use Hilbert’s
irreducibility to compute certain Galois groups of finite extensions
of algebraic function fields ( a variant of considerations of Serre)

I am also interested in obtaining explicit results in the theory of
complex algebraic curves, ”representation theory of curves” instead
of the representation theory of reductive Lie groups
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Thank you!
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