Circle method and counting transversals in group multiplication tables

Rudi Mrazović
University of Zagreb

3 October 2022
joint work with
Sean Eberhard (Cambridge) and Freddie Manners (San Diego)

> Representation Theory XVII

Introduction

Transversals in Latin squares

Definition

A transversal in an $n \times n$ Latin square is a set of n cells in distinct rows and columns and having different symbols.

1	0	3	2	4
3	1	0	4	2
4	3	2	1	0
0	2	4	3	1
2	4	1	0	3

Does every Latin square have a transversal?

Latin squares with no transversals

n even, L cyclic $n \times n$ Latin square

$$
L_{i j}=(i+j) \bmod n
$$

	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

If $\{(x, \pi(x)): x=0, \ldots, n-1\}$ is a transversal, then modulo n :

$$
n / 2 \equiv \sum_{x} L_{x, \pi(x)}=\sum_{x}(x+\pi(x))=\sum_{x} x+\sum_{x} \pi(x) \equiv 0 .
$$

Ryser's conjecture

Conjecture (Ryser, 1967)

For n odd, every $n \times n$ Latin square has a transversal.

Group multiplication tables

Group multiplication table

G finite group of order n. Multiplication table of G is the $n \times n$ Latin square $L(G)$ such that $L(G)_{x, y}=x y$.
The necessary condition we've seen for the cyclic Latin square ($G=\mathbf{Z} / n \mathbf{Z}, n$ even) can be generalized.
Let G^{\prime} be the commutator subgroup of G (subgroup generated by all $[x, y]$ where $x y=y x[x, y])$.
If $\{(x, \pi(x)): x \in G\}$ is a transversal, then modulo G^{\prime} :

$$
\prod_{x \in G} x \equiv \prod_{x \in G} L(G)_{x, \pi(x)}=\prod_{x \in G} x \pi(x) \equiv \prod_{x \in G} x \prod_{x \in G} \pi(x) \equiv\left(\prod_{x \in G} x\right)^{2}
$$

Hall-Paige condition

A finite group G satisfies Hall-Paige condition if $\prod_{x \in G} x \in G^{\prime}$.

Hall-Paige conjecture

Conjecture (Hall-Paige, 1955) Theorem (Wilcox-Evans-Bray, 2009)

If G satisfies the Hall-Paige condition then the multiplication table of G has a transversal.

The proof used the classification of finite simple groups and computer algebra.

Counting transversals in group multiplication tables

Let $\operatorname{tran}(G)$ be the number of transversals in $L(G)$.
Conjecture (Vardi 1991, Wanless 2011)
For n odd

$$
\operatorname{tran}(\mathbf{Z} / n \mathbf{Z})=(1 / e+o(1))^{n} n!.
$$

Heuristics and main results

Heuristic

Again $G=\mathbf{Z} / n \mathbf{Z}$, n odd. Let $\pi: \mathbf{Z} / n \mathbf{Z} \rightarrow \mathbf{Z} / n \mathbf{Z}$ be a random permutation and $\psi(x)=x+\pi(x)$. Hence,

$$
\{(x, \pi(x)): x \in \mathbf{Z} / n \mathbf{Z}\} \text { is a tranversal } \Longleftrightarrow \psi \text { is a permutation }
$$

Zeroth approximation

$$
\psi \approx \text { random function } \Longrightarrow \operatorname{tran}(\mathbf{Z} / n \mathbf{Z}) \approx n!\cdot n!/ n^{n}
$$

First approximation

$\psi \approx$ random function

$$
\Longrightarrow \operatorname{tran}(\mathbf{Z} / n \mathbf{Z}) \approx n!\cdot n!/ n^{n} \cdot n
$$

Let $x, y \in \mathbf{Z} / n \mathbf{Z}$ with $x \neq y$. If $\psi_{1}: \mathbf{Z} / n \mathbf{Z} \rightarrow \mathbf{Z} / n \mathbf{Z}$ is a random function such that $\sum_{x \in \mathbf{Z} / n \mathbf{Z}} \psi_{1}(x)=0$, then $\mathbf{P}\left(\psi_{1}(x)=\psi_{1}(y)\right)=1 / n$. However,

$$
\mathbf{P}(\psi(x)=\psi(y))=\mathbf{P}(\pi(x)-\pi(y)=y-x)=1 /(n-1)
$$

Principle of maximum entropy

Let coll $f=\#\{x, y \in \mathbf{Z} / n \mathbf{Z}: x \neq y, f(x)=f(y)\}$.
\mathbf{E} coll $\psi_{1}=\binom{n}{2} \frac{1}{n}=\frac{n-1}{2} \quad \mathbf{E} \operatorname{coll} \psi=\binom{n}{2} \frac{1}{n-1}=\frac{n}{2}$

Second approximation

$\psi \approx$ random function

$$
\sum_{x \in \mathbf{Z} / n \mathbf{Z}} \psi(x)=0 \Longrightarrow \operatorname{tran}(\mathbf{Z} / n \mathbf{Z}) \approx n!\cdot n!/ n^{n} \cdot n \cdot \ldots
$$

$$
\mathbf{E} \operatorname{coll} \psi=n / 2
$$

Let $\psi_{2} \sim$ LHS. Is there a natural/default choice for the distribution of ψ_{2} ?

Principle of maximum entropy

Principle of maximum entropy

The distribution which best represents our knowledge is the one with the maximum entropy.

Let $p_{f}=\mathbf{P}\left(\psi_{2}=f\right)$ and $H=\left\{f: \sum_{x \in \mathbf{Z} / n \mathbf{z}} f(x)=0\right\}$.

$$
\begin{array}{ll}
\text { maximize }: & \sum p_{f} \log \left(1 / p_{f}\right) \\
\text { subject to: } & \left(p_{f}\right) \text { probability distribution } \\
& p_{f}=0 \text { if } f \notin H \\
& \sum p_{f} \text { coll } f=n / 2
\end{array}
$$

Solution is the Gibbs distribution:

$$
p_{f} \approx \frac{1_{H}(f)}{e^{1 / 2}|H|} e^{\mathrm{coll} f / n}
$$

Abelian result

Second approximation

$\psi \approx$ random function

$$
\sum_{x \in \mathbf{Z} / n \mathbf{Z}} \psi(x)=0 \Longrightarrow \operatorname{tran}(\mathbf{Z} / n \mathbf{Z}) \approx n!\cdot n!/ n^{n} \cdot n \cdot e^{-1 / 2}
$$

$$
\mathbf{E} \operatorname{coll} \psi=n / 2
$$

Theorem (Eberhard-Manners-M., 2019)

For n odd we have

$$
\operatorname{tran}(\mathbf{Z} / n \mathbf{Z})=\left(e^{-1 / 2}+o(1)\right) n!^{2} / n^{n-1}
$$

Nonabelian heuristic

G a group of order n satisfying the Hall-Paige condition. Again, $\pi: G \rightarrow G$ is a random permutation and $\psi(x)=x \pi(x)$.

Zeroth approximation

$$
\psi \approx \text { random function } \Longrightarrow \operatorname{tran}(G) \approx n!\cdot n!/ n^{n}
$$

First approximation

$\psi \approx$ random function

$$
\prod_{x \in G} \psi(x) \in G^{\prime}
$$

$$
\Longrightarrow \operatorname{tran}(G) \approx n!\cdot n!/ n^{n} \cdot n /\left|G^{\prime}\right|
$$

Second approximation

$\psi \approx$ random function
$\prod_{x \in G} \psi(x) \in G^{\prime} \Longrightarrow \operatorname{tran}(G) \approx n!\cdot n!/ n^{n} \cdot n /\left|G^{\prime}\right| \cdot e^{-1 / 2}$
$\mathbf{E c o l l} \psi=n / 2$

Nonabelian result

Theorem (Eberhard-Manners-M., 2022)

Let G be a group of order n satisfying the Hall-Paige condition. Then

$$
\operatorname{tran}(G)=\left(e^{-1 / 2}+o(1)\right) n!^{2} / n^{n-1}\left|G^{\prime}\right|
$$

Corollary

The Hall-Paige conjecture holds for all groups G of order greater than 10^{10} 。

Theorem

Let $n=2^{k}$. For k sufficiently large
$\operatorname{tran}\left(\mathbf{Z}_{2}^{k}\right)>\operatorname{tran}(G)$ for all other G of order n.

Crash course in circle method

Circle method

Let $P_{n}=\{p \leq n: p$ prime $\}$. How can we count the representations $n=p_{1}+p_{2}+p_{3}$ for $p_{1}, p_{2}, p_{3} \in P_{n}$?

If $f * g(n)=\sum_{m} f(m) g(n-m)$, then the count is

$$
c(n):=1_{P_{n}} * 1_{P_{n}} * 1_{P_{n}}(n) .
$$

Let $\widehat{f}(\theta)=\sum_{m} f(m) e^{2 \pi i \theta m}$. Basic Fourier analysis gives

$$
\begin{aligned}
c(n)=1_{P_{n}} * 1_{P_{n}} * 1_{P_{n}}(n) & =\int_{0}^{1}\left(1_{P_{n}} * 1_{P_{n}} * 1_{P_{n}}\right)(\theta) e^{-2 \pi i \theta n} d \theta \\
& =\int_{0}^{1} \widehat{1_{P_{n}}}(\theta)^{3} e^{-2 \pi i \theta n} d \theta
\end{aligned}
$$

Major and minor arcs

$$
c(n)=\int_{0}^{1} \widehat{1 P_{n}}(\theta)^{3} e^{-2 \pi i \theta n} d \theta
$$

$\left|\widehat{1_{P_{n}}}(\theta)\right|=\left|\sum_{m \in P_{n}} e^{2 \pi i \theta m}\right| \leq\left|P_{n}\right|$ for every $\theta \in[0,1]$ (triangle inequality).
However, for most $\theta,\left|\widehat{1_{P_{n}}}(\theta)\right|$ is much smaller (e.g. $\left|\widehat{1_{P_{n}}}(\theta)\right| \approx\left|P_{n}\right|^{1 / 2}$ on average).
For some $\theta,\left|\widehat{1_{P_{n}}}(\theta)\right|$ is large. Let \mathcal{M} be the set of all such θ ("major arcs"). E.g. $1 / 3 \in \mathcal{M}$:

$$
\widehat{1_{P_{n}}}(1 / 3)=\sum_{m \in P_{n}} e^{2 \pi i m / 3} \approx \frac{\left|P_{n}\right|}{2} e^{2 \pi i / 3}+\frac{\left|P_{n}\right|}{2} e^{4 \pi i / 3}=-\frac{\left|P_{n}\right|}{2}
$$

Let $\mathfrak{m}=[0,1] \backslash \mathcal{M}$ ("minor arcs"). For $\theta \in \mathfrak{m},\left|\widehat{1_{P_{n}}}(\theta)\right|$ is small.

Major and minor arcs

$$
c(n)=\underbrace{\int_{\mathcal{M}} \widehat{1_{P_{n}}}(\theta)^{3} e^{-2 \pi i \theta n} d \theta}_{\text {main term }}+\underbrace{\int_{\mathfrak{m}} \widehat{1_{P_{n}}}(\theta)^{3} e^{-2 \pi i \theta n} d \theta}_{\text {error term }=o(\text { main term })}
$$

Aim: calculate the main term (i.e. major arcs) precisely, and bound the error term (i.e. minor arcs).

Proof idea (cyclic groups)

Fourier analysis on $(\mathbf{Z} / n \mathbf{Z})^{n}$

Let $S=\{$ bijections $\{1, \ldots, n\} \rightarrow \mathbf{Z} / n \mathbf{Z}\} \subset(\mathbf{Z} / n \mathbf{Z})^{n}$. Then

$$
n!\cdot \operatorname{tran}(\mathbf{Z} / n \mathbf{Z})=\#\left\{\pi_{1}, \pi_{2}, \pi_{3} \in S^{3}: \pi_{1}+\pi_{2}+\pi_{3}=0\right\}
$$

For $f, g:(\mathbf{Z} / n \mathbf{Z})^{n} \rightarrow \mathbf{R}$ and $a_{1}, \ldots, a_{n} \in \mathbf{Z} / n \mathbf{Z}$:

$$
\begin{aligned}
f * g(x) & =\sum_{y \in(\mathbf{Z} / n \mathbf{Z})^{n}} f(y) g(x-y) \\
\widehat{f}\left(a_{1}, \ldots, a_{n}\right) & =\sum_{x \in(\mathbf{Z} / n \mathbf{Z})^{n}} f(x) e^{2 \pi i\left(a_{1} x_{1}+\cdots+a_{n} x_{n}\right) / n}
\end{aligned}
$$

Fourier analysis on $(\mathbf{Z} / n \mathbf{Z})^{n}$ gives

$$
\begin{aligned}
n!\cdot \operatorname{tran}(\mathbf{Z} / n \mathbf{Z}) & =\#\left\{\pi_{1}, \pi_{2}, \pi_{3} \in S^{3}: \pi_{1}+\pi_{2}+\pi_{3}=0\right\} \\
& =1_{S} * 1_{S} * 1_{S}(0)=n^{-n} \sum_{a_{1}, \ldots, a_{n} \in \mathbf{Z} / n \mathbf{Z}} \widehat{1_{S}}\left(a_{1}, \ldots, a_{n}\right)^{3}
\end{aligned}
$$

Major arcs (cyclic group case)

$$
n!\cdot \operatorname{tran}(\mathbf{Z} / n \mathbf{Z})=n^{-n} \sum_{a_{1}, \ldots, a_{n} \in \mathbf{Z} / n \mathbf{Z}} \widehat{1_{S}}\left(a_{1}, \ldots, a_{n}\right)^{3}
$$

$\widehat{1_{S}}(0, \ldots, 0)=n$! (maximal value)
Major arcs: $\left(a_{1}, \ldots, a_{n}\right) \in(\mathbf{Z} / n \mathbf{Z})^{n}$ with almost all $a_{i} s$ equal to some common element of $\mathbf{Z} / n \mathbf{Z}$ (low entropy). E.g.:

$$
\begin{aligned}
\widehat{1_{S}}\left(a_{1}, a_{2}, 0, \ldots, 0\right) & =\sum_{x \in S} e^{2 \pi i\left(a_{1} x_{1}+a_{2} x_{2}\right) / n} \\
& =(n-2)!\sum_{x_{1} \neq x_{2}} e^{2 \pi i\left(a_{1} x_{1}+a_{2} x_{2}\right) / n} \\
& =-(n-2)!\sum_{x_{1}} e^{2 \pi i\left(a_{1} x_{1}+a_{2} x_{1}\right) / n} \\
& = \begin{cases}-n(n-2)! & \text { if } a_{1}+a_{2}=0 \\
0 & \text { else }\end{cases}
\end{aligned}
$$

Minor arcs (cyclic group case)

Minor arcs: $\left(a_{1}, \ldots, a_{n}\right) \in(\mathbf{Z} / n \mathbf{Z})^{n}$ with lots of different coordinates (high entropy). E.g. if all $a_{i} s$ are distinct, then (invariance under permutations + Parseval):

$$
\begin{gathered}
n!\left|\widehat{1_{S}}\left(a_{1}, \ldots, a_{n}\right)\right|^{2} \leq \sum_{b_{1}, \ldots, b_{n} \in(\mathbf{Z} / n \mathbf{Z})^{n}}\left|\widehat{1_{S}}\left(b_{1}, \ldots, b_{n}\right)\right|^{2}=n^{n} n! \\
\left|\widehat{1_{S}}\left(a_{1}, \ldots, a_{n}\right)\right| \leq n^{n / 2}
\end{gathered}
$$

Proof idea (general case)

Fourier analysis on G^{n}

Instead of the usual abelian discrete Fourier analysis, we use a variant which utilizes group representations.
G group, $|G|=n$
Let $S=\{$ bijections $\{1, \ldots, n\} \rightarrow G\} \subset G^{n}$. Then

$$
n!\cdot \operatorname{tran}(G)=\#\left\{\pi_{1}, \pi_{2}, \pi_{3} \in S^{3}: \pi_{1} \pi_{2} \pi_{3}=1\right\}
$$

Irreducible representations of G^{n}

$$
\operatorname{Irr}\left(G^{n}\right)=\left\{\rho_{1} \otimes \cdots \otimes \rho_{n}: \rho_{1}, \ldots, \rho_{n} \in \operatorname{Irr}(G)\right\}
$$

For $f: G^{n} \rightarrow \mathbf{R}$ and $\rho_{1}, \ldots, \rho_{n} \in \operatorname{Irr}(G)$:

$$
\widehat{f}\left(\rho_{1} \otimes \cdots \otimes \rho_{n}\right)=\sum_{x \in G^{n}} f(x) \cdot \rho_{1}\left(x_{1}\right) \otimes \cdots \otimes \rho_{n}\left(x_{n}\right) .
$$

Fourier analysis on G^{n} gives

$$
n!\cdot \operatorname{tran}(G)=n^{-n} \sum_{\rho \in \operatorname{Irr}\left(G^{n}\right)}\left\langle\widehat{1_{S}}(\rho)^{3}, \rho(1)\right\rangle_{\mathrm{HS}} \operatorname{dim} \rho .
$$

Major and minor arcs

$$
n!\cdot \operatorname{tran}(G)=n^{-n} \sum_{\rho \in \operatorname{Irr}\left(G^{n}\right)}\left\langle\widehat{1_{S}}(\rho)^{3}, \rho(1)\right\rangle_{\mathrm{HS}} \operatorname{dim} \rho
$$

Major arcs: $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right)$ with almost all ρ_{i} s equal to some common one-dimensional representation $\rho_{0} \in \operatorname{Irr}(G)$.

Minor arcs: the rest.

