

Contents

- 1. Dual pairs and Howe correspondence
- 2. Compact dual pairs
- 3. Stable range theta lifting
- 4. Concrete models via integration
- 5. Theta lifting and invariants of representations
- 6. Application: special unipotent representations

1 Dual pairs and Howe correspondence

Basic notion: (Howe)

- W: a finite-dimensional real symplectic vector space.
- (G, G'): a reductive dual pair in Sp(W), i.e., a pair of subgroups such that
 - G and G' are mutual centralizers of each other;
 - G and G' act reductively on W.

Irreducible reductive dual pairs (seven families):

• Type II: correspond to a division algebra D

 $(\operatorname{GL}_{m}(\mathbb{R}), \operatorname{GL}_{n}(\mathbb{R})) \subseteq \operatorname{Sp}_{2mn}(\mathbb{R})$ $(\operatorname{GL}_{m}(\mathbb{C}), \operatorname{GL}_{n}(\mathbb{C})) \subseteq \operatorname{Sp}_{4mn}(\mathbb{R})$ $(\operatorname{GL}_{m}(\mathbb{H}), \operatorname{GL}_{n}(\mathbb{H})) \subseteq \operatorname{Sp}_{8mn}(\mathbb{R})$

• Type I: correspond to a division algebra D with involution \natural

 $(O_{p,q}, \operatorname{Sp}_{2n}(\mathbb{R})) \subseteq \operatorname{Sp}_{2(p+q)n}(\mathbb{R})$ $(O_{p}(\mathbb{C}), \operatorname{Sp}_{2n}(\mathbb{C})) \subseteq \operatorname{Sp}_{4pn}(\mathbb{R})$ $(U_{p,q}, U_{r,s}) \subseteq \operatorname{Sp}_{2(p+q)(r+s)}(\mathbb{R})$ $(\operatorname{Sp}_{p,q}, \operatorname{O}_{2n}^{*}) \subseteq \operatorname{Sp}_{4(p+q)n}(\mathbb{R})$

(G, G'): a reductive dual pair in Sp(W).

- Fix an oscillator (or Weil) representation $\widehat{\omega}$ (by fixing a nontrivial unitary character on \mathbb{R}). This is a <u>unitary</u> representation of $\widetilde{\mathrm{Sp}}(W)$ (the real metaplectic group), constructed by Segal, Shale and Weil.
- Let ω be the associated <u>smooth</u> representation, called a smooth oscillator representation.
- For any reductive subgroup E of $\operatorname{Sp}(W)$, denote \widetilde{E} its inverse image in $\widetilde{\operatorname{Sp}}(W)$, and by $\operatorname{Irr}(\widetilde{E}, \omega)$ the subset of $\operatorname{Irr}(\widetilde{E})$ which are realizable as quotients by $\omega(\widetilde{E})$ -invariant closed subspaces of ω .

- Howe duality theorem: The set $\operatorname{Irr}(\widetilde{G} \cdot \widetilde{G'}, \omega)$ is the graph of a <u>bijection</u> between $\operatorname{Irr}(\widetilde{G}, \omega)$ and $\operatorname{Irr}(\widetilde{G'}, \omega)$. Moreover any element $\pi \otimes \pi'$ of $\operatorname{Irr}(\widetilde{G} \cdot \widetilde{G'}, \omega)$ occurs as a quotient of ω in a unique way.
- The Howe duality conjecture also holds true for *p*-adic local fields:
 works of Waldspurger, Minguez, Gan-Takeda, Gan-Sun

A variant formulation of Howe duality:

- Let $\pi \in \operatorname{Rep}(\widetilde{G})$ (finitely generated admissible quasisimple).
- The <u>full theta lift</u> of π :

$$\Theta_{\widetilde{G}}^{\widetilde{G}'}(\pi) := (\omega \widehat{\otimes} \pi^{\vee})_{\widetilde{G}} \in \operatorname{Rep}(\widetilde{G'})$$

(the subscript \widetilde{G} indicating the Hausdorff \widetilde{G} -coinvariant space).

• The theta lift
$$\theta_{\widetilde{G}}^{\widetilde{G}'}(\pi)$$
 of π :

the largest semisimple quotient of $\Theta_{\widetilde{G}}^{\widetilde{G}'}(\pi)$.

• If π is <u>irreducible</u>, then $\theta_{\widetilde{G}}^{\widetilde{G}'}(\pi)$ is <u>irreducible</u> or zero.

Fundamental tasks:

- Given $\pi \in \operatorname{Irr}(\widetilde{G})$, determine $\theta_{\widetilde{G}}^{\widetilde{G}'}(\pi)$; or at least determine whether $\theta_{\widetilde{G}}^{\widetilde{G}'}(\pi) \neq 0$.
- Construct interesting (e.g. unitary) representations from this formalism.

2 Compact dual pairs

Let $(G, G') \subseteq$ Sp be a reductive dual pair, with G compact.

- G' is of Hermitian symmetric type.
- There is a character χ of \widetilde{G} such that $\chi^{-1} \otimes \widehat{\omega}|_{\widetilde{G}}$ factors through the linear group G. Representations which occur in $\omega|_{\widetilde{G}}$ are of the form $\chi \otimes \sigma$. where $\sigma \in \operatorname{Irr}(G)$.

Kashiwara-Vergne and Howe: (1970's)

- The restriction of the unitary representation $\widehat{\omega}$ to $\widetilde{G} \cdot \widetilde{G'}$ is a <u>discrete</u> and multiplicity-free sum.
- We have the decomposition

$$\widehat{\omega} \simeq \sum_{\sigma \in \operatorname{Irr}(G)} (\chi \otimes \sigma) \boxtimes L(\sigma),$$

where $L(\sigma)$ is an irreducible <u>unitary lowest weight</u> representation of $\widetilde{G'}$ or zero.

- $L(\sigma) \neq 0$ if and only if σ occurs in the space of <u>harmonics</u>, which is a multiplicity-free representation of the compact group $G \times \widetilde{K'}$.
- The map σ → L(σ) is <u>injective</u> in its domain and is described explicitly by the pairing of σ with the lowest K'-type of L(σ) in the space of harmonics.

Example: $(G, G') = (O(p), \operatorname{Sp}_{2n}(\mathbb{R})).$

• If $p \leq n$, then

$$L(\sigma) \neq 0, \quad \forall \sigma \in \operatorname{Irr}(G).$$

• If p > n, then

$$L(\sigma) \neq 0 \iff \sigma \text{ occurs in } L^2(O(p)/O(p-n)),$$

where O(p - n) embeds in O(p) in the standard way.

• If p > 2n, then the $L(\sigma)$'s $(\neq 0)$ are members of the holomorphic discrete series.

More on unitary lowest weight representations

- Enright-Parthasarathy: For $G' = \operatorname{Sp}_{2n}(\mathbb{R})$ or $U_{r,s}$, all irreducible unitary lowest weight representations of $\widetilde{G'}$ arise in this manner (by varying all possible G's which are compact).
- For $G' = O_{2n}^*$, there are some minor exceptions.
- Enright-Howe-Wallach classifies irreducible unitary lowest weight representations of any covering of G' (internally).
- Nishiyama-Ochiai-Taniguchi determines the associated cycles of unitary lowest weight representations (via the model from the Howe correspondence)

3 Stable range theta lifting

• Consider a type I irreducible dual pair

(G, G') = (G(V), G(V')),

where V, V' are the standard modules over D (which resp. carry ϵ -Hermitian and ϵ' -Hermitian forms, with $\epsilon \epsilon' = -1$).

- The dual pair (G, G') is said to be in <u>stable range</u> with G the smaller member, if
 - there exists a totally isotropic subspace V'_1 of V' such that $\dim_{\mathcal{D}}(V) \leq \dim_{\mathcal{D}}(V'_1).$
 - Notation: $2G \leq G'$.

Works of Howe, Li: (1980's)

• Suppose that (G, G') is in the stable range with G the smaller member, then Howe correspondence gives rise to an injection

$$\theta: \quad (\widetilde{G})_{gen}^{\wedge} \hookrightarrow (\widetilde{G'})_{gen}^{\wedge}.$$

(The symbol \wedge indicates the unitary dual; the subscript *gen* indicates the genuine part.)

- There are two messages:
 - $(\widetilde{G})_{gen}^{\wedge} \subset \operatorname{Irr}(\widetilde{G}, \omega), \text{ namely the whole set } (\widetilde{G})_{gen}^{\wedge} \text{ is in the } \underline{\operatorname{domain}} \text{ of Howe correspondence;}$
 - Stable range theta lifting preserves the unitarity.

A more concrete way to describe the stable range correspondence:

• Fix a totally isotropic subspace V'_1 of V' such that $\dim_{\mathcal{D}}(V) = \dim_{\mathcal{D}}(V'_1)$, and let P' be the parabolic subgroup of G'preserving $(V'_1)^*$, with the unipotent radical N'. We have

$$P' \supset H' := \mathrm{GL}((V_1')^*) \cdot N' \supset G \cdot N'.$$

Then $\theta(\pi)|_{\widetilde{H'}}$ is <u>irreducible</u> and

$$|\theta(\pi)|_{\widetilde{H'}} \simeq \operatorname{Ind}_{\widetilde{G} \cdot N'}^{\widetilde{\operatorname{GL}}((V'_1)^*) \cdot N'}(\pi^{\vee} \otimes \rho'),$$

where ρ' is a certain oscillator-Heisenberg representation of $\widetilde{G} \cdot N'$.

Notion of rank: Howe

- This is defined via the ZN-spectrum, where N is the unipotent radical of a certain maximal parabolic subgroup P of G.
- For $G = \widetilde{\text{Sp}}_{2n}(\mathbb{R})$, we have the decomposition of its unitary dual according to the <u>N-rank</u>: (P: the Siegel parabolic subgroup)

$$\begin{split} (\widetilde{\mathrm{Sp}}_{2n}(\mathbb{R}))^{\wedge} &= \bigcup_{r \leq n} (\widetilde{\mathrm{Sp}}_{2n}(\mathbb{R}))_{r}^{\wedge} \\ &= (\widetilde{\mathrm{Sp}}_{2n}(\mathbb{R}))_{n}^{\wedge} \bigcup (\bigcup_{r < n} (\bigcup_{\mathrm{rank} \ \beta = r} (\widetilde{\mathrm{Sp}}_{2n}(\mathbb{R}))_{\beta}^{\wedge})) \end{split}$$

- $(\widetilde{\mathrm{Sp}}_{2n}(\mathbb{R}))_r^{\wedge}: N\text{-rank } r$
- $-(\widetilde{\mathrm{Sp}}_{2n}(\mathbb{R}))^{\wedge}_{\beta}$: N-spectral type β (β : a symmetric $n \times n$ matrix)
- The larger the rank of an irreducible unitary representation, the faster its <u>matrix coefficients</u> tend to decay.
 - This is a quantitative version of the Howe-Moore Theorem.

"Classification" of low rank representations: (Li)

- For $G' = \widetilde{\mathrm{Sp}}_{2n}(\mathbb{R})$, a symmetric matrix β of rank r < n determines an orthogonal group $G = \mathrm{O}(p,q)$, with p + q = r. Representations in $\widetilde{\mathrm{Sp}}_{2n}(\mathbb{R})^{\wedge}_{\beta}$ consist precisely of theta lifts from irreducible unitary representations of $\mathrm{O}(p,q)$.
- Similar results hold for low rank irreducible unitary representations of other classical groups.

4 Concrete models via integration

The following is a general idea to establish unitarity preservation, and it first appeared in Li's Yale thesis.

• Given $\pi \in \operatorname{Rep}(\widetilde{G})_{gen}$, consider the integral

$$egin{array}{rcl} &arphi imes \pi^ee imes arphi &arphi \pi^ee imes arphi &arphi &$$

• If it is absolutely convergent, it yields a continuous bilinear map

$$(\omega\widehat{\otimes}\pi^{\vee})\times(\bar{\omega}\widehat{\otimes}\pi)\to\mathbb{C},$$

and (by a slight variant) a $\widetilde{G'}$ -invariant Hermitian form on $\omega \widehat{\otimes} \pi^{\vee}$, if π is unitary.

• Define

 $\bar{\theta}_{\widetilde{G}}^{\widetilde{G}'}(\pi) := \frac{\omega \widehat{\otimes} \pi^{\vee}}{\text{the left kernel of the bilinear map}}.$

This is a quotient of $\Theta_{\widetilde{G}}^{\widetilde{G}'}(\pi)$, and hence in $\operatorname{Rep}(\widetilde{G'})_{gen}$.

- The challenge in establishing unitary preservation:
 - Prove that $\bar{\theta}_{\tilde{G}}^{\tilde{G}'}(\pi)$ is non-zero.
 - Prove that the induced Hermitian form on $\bar{\theta}_{\tilde{G}}^{\tilde{G}'}(\pi)$ is positive definite.
- Success cases (for unitarity preservation):
 - Li: for any unitary π when $2G \leq G'$, and for (most) π in the discrete series when $\dim_{D}(V) \leq \dim_{D}(V')$.
 - He: for (most) π is in the so-called strongly semistable range.
 - Need some additional constraints on π to prove nonvanishing.

Barbasch-Ma-Sun-Z: a general result on unitarity preservation

- Notion of convergent range, based on a suitable bound of matrix coefficients (the benchmark function is defined in terms of the standard module V).
- Assume a mild condition on sizes (on $\operatorname{rank}_{D}(V)$ and $\operatorname{rank}_{D}(V')$), and a mild condition on π ("overconvergent"):

$$\pi$$
 is unitary $\Longrightarrow \bar{\theta}_{\tilde{G}}^{\tilde{G}'}(\pi)$ is unitary.

Remark:

• Given that $\bar{\theta}_{\tilde{G}}^{\tilde{G}'}(\pi)$ is unitary, it is a semisimple quotient of $\Theta_{\tilde{G}}^{\tilde{G}'}(\pi)$. Thus if π is irreducible and $\bar{\theta}_{\tilde{G}}^{\tilde{G}'}(\pi) \neq \{0\}$, then Howe Duality Theorem implies that $\theta_{\tilde{G}}^{\tilde{G}'}(\pi) = \bar{\theta}_{\tilde{G}}^{\tilde{G}'}(\pi)$ and is irreducible. Harris-Li-Sun: (source of unitary structure)

Let G be a real reductive group with a maximal compact subgroup K.

- π_1, π_2 : two unitary representations of G such that π_2 is weakly contained in the regular representation.
- u_1, u_2, \cdots, u_r : vectors in π_1 such that the integral $\int_G \langle gu_i, u_j \rangle \Xi_G(g) \, \mathrm{d}g$ is absolutely convergent.
- v_1, v_2, \cdots, v_r : K-finite vectors in π_2 .

Then the integral $\int_G \langle gu, u \rangle \, dg$ absolutely converges to a <u>nonnegative</u> real number, where $u := \sum_{i=1}^r u_i \otimes v_i \in \pi_1 \otimes \pi_2$.

Remark: Applied to the Howe duality setting, it implies convergence will ensure unitarity presevation after passing the point of *G*-temperedness.

5 Theta lifting and invariants of representations

- To have good control of the lifting process, a basic technique is to understand how fundamental invariants such as infinitesimal characters and K-types (joint harmonics) behalf under theta lifting.
- Other fundamental invariants such as (Vogan's) associated cycles and generalized Whittaker models should also be utilized.
 - The key lies in the moment maps.
 - $K_{\mathbb{C}}$ -equivariant version:

where $\phi(T) = T^*T$ and $\phi'(T) = TT^*$.

• The associated cycles in the theta lifting setting have an upper bound via geometric theta lift (for nilpotent $K_{\mathbb{C}}$ -orbits).

Barbasch-Ma-Sun-Z: If $\mathcal{O} = \nabla(\mathcal{O}')$ is regular descent, then

$$\operatorname{AC}_{\mathcal{O}'}(\Theta(\pi^{\vee})) \preceq \check{\vartheta}_{\mathcal{O}}^{\mathcal{O}'}(\operatorname{AC}_{\mathcal{O}}(\pi)).$$

(This generalizes earlier work of Nishiyama-Ochiai-Taniguchi, Nishiyama-Zhu and Loke-Ma.)

• The generalized Whittaker models in the theta lifting setting have an equality via geometric theta lift (for nilpotent *G*-orbits).

Gomez-Z: If $\mathcal{O} = \nabla(\mathcal{O}')$ is regular descent, then

 $\operatorname{Wh}_{\mathcal{O}',\tau'}(\Theta(\pi^{\vee})) \simeq \operatorname{Wh}_{\mathcal{O},\Theta(\tau')^{\vee}}(\pi).$

(This is an effective tool for showing nonvanishing.)

6 Application: special unipotent representations

- Work of Barbasch-Ma-Sun-Z, stated informally: by starting from <u>unitary characters</u> and applying <u>iterated theta lifting</u> (in a controlled fashion), one can obtain all special unipotent representations of a real classical group G (attached to a nilpotent orbit *O* satisfying some parity condition).
- This also holds for the real metaplectic group, where we replace the term "special" by a notion called "metaplectic special".
 - We have an associated notion of metaplectic Barbasch-Vogan duality, similar to the <u>Barbasch-Vogan duality</u> for reductive linear groups.

Label \star	Classical Lie Group G	Langlands dual group \check{G}
$A^{\mathbb{R}}$	$\operatorname{GL}_n(\mathbb{R})$	$\mathrm{GL}_n(\mathbb{C})$
$A^{\mathbb{H}}$	$\operatorname{GL}_{\frac{n}{2}}(\mathbb{H})$ (<i>n</i> even)	$\mathrm{GL}_n(\mathbb{C})$
A	$\mathrm{U}(p,q)$	$\mathrm{GL}_{p+q}(\mathbb{C})$
\widetilde{A}	$\widetilde{\mathrm{U}}(p,q)$	$\mathrm{GL}_{p+q}(\mathbb{C})$
В	$O(p,q) \ (p+q \ \text{odd})$	$\operatorname{Sp}_{p+q-1}(\mathbb{C})$
D	$O(p,q) \ (p+q \ \text{even})$	$\mathrm{O}_{p+q}(\mathbb{C})$
C	$\operatorname{Sp}_{2n}(\mathbb{R})$	$\mathcal{O}_{2n+1}(\mathbb{C})$
\widetilde{C}	$\widetilde{\operatorname{Sp}}_{2n}(\mathbb{R})$	$\operatorname{Sp}_{2n}(\mathbb{C})$
D^*	$\mathrm{O}^*(2n)$	$\mathrm{O}_{2n}(\mathbb{C})$
C^*	$\operatorname{Sp}(rac{p}{2},rac{q}{2}) \ (p,q \ \operatorname{even})$	$\mathcal{O}_{p+q+1}(\mathbb{C})$

- Given a \check{G} -orbit $\check{\mathcal{O}}$ in Nil $(\check{\mathfrak{g}})$, one attaches an <u>infinitesimal character</u> $\chi_{\check{\mathcal{O}}}$ (via an \mathfrak{sl}_2 -triple containing $\check{\mathcal{O}}$).
- By a theorem of Dixmier, there exists a unique <u>maximal</u> G-stable ideal of $\mathcal{U}(\mathfrak{g})$ that contains the kernel of $\chi_{\check{\mathcal{O}}}$. Write $I_{\check{\mathcal{O}}}$ for this ideal.
- The associated variety of $I_{\check{\mathcal{O}}}$ is the closure of a nilpotent $G_{\mathbb{C}}$ -orbit \mathcal{O} in \mathfrak{g} .
 - $-\mathcal{O}$ is called the <u>Barbasch-Vogan dual</u> of \mathcal{O} and is <u>special</u> in the sense of Lusztig.
- Everything works for the metaplectic group (replaced with metaplectic Barbasch-Vogan duality and metaplectic special).

Definition: (Barbasch-Vogan) An irreducible Casselman-Wallach representation π of G is said to be <u>special unipotent</u> attached to $\check{\mathcal{O}}$ if $I_{\check{\mathcal{O}}}$ annihilates π .

Remark: The notion was motivated by Arthur's conjecture on unipotent automorphic forms.

Notation: Unip_{\mathcal{O}}(G), the set of equivalent classes of irreducible Casselman-Wallach representations of G that are special unipotent attached to \mathcal{O} .

- In [BMSZ1] and [BMSZ2], we <u>parameterize</u> and explicitly <u>construct</u> all special unipotent representations of the real classical groups $\operatorname{GL}_n(\mathbb{R}), \operatorname{GL}_n(\mathbb{C}), \operatorname{GL}_n(\mathbb{H}), \operatorname{U}(p,q), \operatorname{O}(p,q), \operatorname{Sp}_{2n}(\mathbb{R}), \operatorname{O}^*(2n),$ $\operatorname{Sp}(p,q), \operatorname{O}_n(\mathbb{C}), \operatorname{Sp}_{2n}(\mathbb{C}),$ as well as all metaplectic special unipotent representations of $\widetilde{\operatorname{Sp}}_{2n}(\mathbb{R})$ and $\operatorname{Sp}_{2n}(\mathbb{C})$.
 - BMSZ1: Special unipotent representations of real classical groups: counting and reduction to good parity, arXiv:2205.05266.
 - **BMSZ2**: Special unipotent representations of real classical groups: construction and unitarity, arXiv:1712.05552.

For groups of type B, C or D, the steps involved are as follows:

- *<u>Count</u> the set $\operatorname{Unip}_{\check{\mathcal{O}}}(G)$ via combinatorial objects
 - Tools: coherent continuation representations, theory of primitive ideals, double cells and Harish-Chandra cells, branching laws of Weyl group representations, ... (Kazhdan-Lusztig, Lusztig, Joseph, Vogan, Barbasch-Vogan, Casian, ...)
- <u>Reduce</u> the problem of construction to the case when $\check{\mathcal{O}}$ has good parity (via irreducible parabolic induction)
 - Tools: Kazhdan-Lusztig-Vogan, Renard-Trapa
- <u>Construct</u> representations in $\operatorname{Unip}_{\check{\mathcal{O}}}(G)$ by <u>iterated theta lifting</u> when $\check{\mathcal{O}}$ has good parity
 - Tool: combinatorial descent (chasing combinatorial parameters)
- *Distinguish representations via associated cycles
 - Tools: moment maps, geometric theta lifting, doubling method, degenerate principal series, ...
- This establishes the <u>exhaustion</u>.

Theta Correspondence and The Orbit Method 30

Theta Correspondence and The Orbit Method 31

Painted bipartition (with symbols \bullet, s, r, c, d) and descent:

Corresponding Lie groups

 $\operatorname{Sp}(28,\mathbb{R}) \rightarrow \operatorname{O}(10,10)$

- \rightarrow Sp(14, \mathbb{R}) \rightarrow O(5, 5)
- \rightarrow Sp(4, \mathbb{R}) \rightarrow O(2, 0) \rightarrow Sp(0, \mathbb{R}).

Barbasch-Ma-Sun-Z: (confirming the Arthur-Barbasch-Vogan conjecture for real classical groups)

- All special unipotent representations of the real classical groups are unitarizable;
- all metaplectic special unipotent representations of $\text{Sp}_{2n}(\mathbb{R})$ and $\text{Sp}_{2n}(\mathbb{C})$ are also unitarizable.

Remarks:

 The unitarizability of special unipotent representations for <u>quasisplit</u> classical groups is independently due to Adams, Arancibia Robert and Mezo, as a consequence of their result

Arthur packet = ABV packet.

• The result is also true for the real Spin groups.

Other findings: (besides construction and unitarity)

- We determine the associated cycle of any special unipotent representation. (This is actually very difficult.)
- If $\check{\mathcal{O}}$ is quasi-distinguished, then the associated cycle map induces a <u>bijection</u>

 $\operatorname{AC}_{\mathcal{O}}$: $\operatorname{Unip}_{\check{\mathcal{O}}}(G) \to \operatorname{AOD}(\mathcal{O}).$

- $\check{\mathcal{O}}$ is called <u>quasi-distinguished</u> if there is no odd *i* if $\star \in \{C, \widetilde{C}, C^*\}$, and no even *i* if $\star \in \{B, D, D^*\}$ such that

$$\mathbf{r}_i(\check{\mathcal{O}}) = \mathbf{r}_{i+1}(\check{\mathcal{O}}) > 0.$$

$$AOD(\mathcal{O}) := \bigsqcup_{\mathscr{O} \text{ is a } K_{\mathbb{C}}\text{-orbit in } \mathcal{O} \cap \mathfrak{p}^*} AOD(\mathscr{O}),$$

where $AOD(\mathcal{O})$ is the set of isomorphism classes of admissible orbit data over \mathcal{O} .

Thank you!