Theta correspondence and unitary representations

Chen-Bo Zhu
(National University of Singapore and MPIM, Bonn)
Representation Theory XVII, Dubrovnik
(October 6, 2022)

Contents

1. Dual pairs and Howe correspondence
2. Compact dual pairs
3. Stable range theta lifting
4. Concrete models via integration
5. Theta lifting and invariants of representations
6. Application: special unipotent representations

1 Dual pairs and Howe correspondence

Basic notion: (Howe)

- W : a finite-dimensional real symplectic vector space.
- $\left(G, G^{\prime}\right)$: a reductive dual pair in $\operatorname{Sp}(W)$, i.e., a pair of subgroups such that
- G and G^{\prime} are mutual centralizers of each other;
- G and G^{\prime} act reductively on W.

Irreducible reductive dual pairs (seven families):

- Type II: correspond to a division algebra D

$$
\begin{aligned}
& \left(\mathrm{GL}_{m}(\mathbb{R}), \mathrm{GL}_{n}(\mathbb{R})\right) \subseteq \mathrm{Sp}_{2 m n}(\mathbb{R}) \\
& \left(\mathrm{GL}_{m}(\mathbb{C}), \mathrm{GL}_{n}(\mathbb{C})\right) \subseteq \mathrm{Sp}_{4 m n}(\mathbb{R}) \\
& \left(\mathrm{GL}_{m}(\mathbb{H}), \mathrm{GL}_{n}(\mathbb{H})\right) \subseteq \mathrm{Sp}_{8 m n}(\mathbb{R})
\end{aligned}
$$

- Type I: correspond to a division algebra D with involution \square

$$
\begin{gathered}
\left(\mathrm{O}_{p, q}, \mathrm{Sp}_{2 n}(\mathbb{R})\right) \subseteq \operatorname{Sp}_{2(p+q) n}(\mathbb{R}) \\
\left(\mathrm{O}_{p}(\mathbb{C}), \mathrm{Sp}_{2 n}(\mathbb{C})\right) \subseteq \operatorname{Sp}_{4 p n}(\mathbb{R}) \\
\left(\mathrm{U}_{p, q}, \mathrm{U}_{r, s}\right) \subseteq \mathrm{Sp}_{2(p+q)(r+s)}(\mathbb{R}) \\
\left(\mathrm{Sp}_{p, q}, \mathrm{O}_{2 n}^{*}\right) \subseteq \operatorname{Sp}_{4(p+q) n}(\mathbb{R})
\end{gathered}
$$

$\left(G, G^{\prime}\right)$: a reductive dual pair in $\operatorname{Sp}(W)$.

- Fix an oscillator (or Weil) representation $\widehat{\omega}$ (by fixing a nontrivial unitary character on $\mathbb{R})$. This is a unitary representation of $\widetilde{\mathrm{Sp}}(W)$ (the real metaplectic group), constructed by Segal, Shale and Weil.
- Let ω be the associated smooth representation, called a smooth oscillator representation.
- For any reductive subgroup E of $\operatorname{Sp}(W)$, denote \widetilde{E} its inverse image in $\widetilde{\mathrm{Sp}}(W)$, and by $\operatorname{Irr}(\widetilde{E}, \omega)$ the subset of $\operatorname{Irr}(\widetilde{E})$ which are realizable as quotients by $\omega(\widetilde{E})$-invariant closed subspaces of ω.
- Howe duality theorem: The set $\operatorname{Irr}\left(\widetilde{G} \cdot \widetilde{G^{\prime}}, \omega\right)$ is the graph of a bijection between $\operatorname{Irr}(\widetilde{G}, \omega)$ and $\operatorname{Irr}\left(\widetilde{G^{\prime}}, \omega\right)$. Moreover any element $\pi \otimes \pi^{\prime}$ of $\operatorname{Irr}\left(\widetilde{G} \cdot \widetilde{G^{\prime}}, \omega\right)$ occurs as a quotient of ω in a unique way.
- The Howe duality conjecture also holds true for p-adic local fields:
- works of Waldspurger, Minguez, Gan-Takeda, Gan-Sun

A variant formulation of Howe duality:

- Let $\pi \in \operatorname{Rep}(\widetilde{G})$ (finitely generated admissible quasisimple).
- The full theta lift of π :

$$
\Theta_{\widetilde{G}}^{\widetilde{G}^{\prime}}(\pi):=\left(\omega \widehat{\otimes} \pi^{\vee}\right)_{\widetilde{G}} \in \operatorname{Rep}\left(\widetilde{G^{\prime}}\right)
$$

(the subscript \widetilde{G} indicating the Hausdorff \widetilde{G}-coinvariant space).

- The theta lift $\theta_{\tilde{G}}^{\widetilde{G}^{\prime}}(\pi)$ of π :
the largest semisimple quotient of $\Theta_{\widetilde{G}}^{\widetilde{G}^{\prime}}(\pi)$.
- If π is irreducible, then $\theta_{\tilde{G}}^{\widetilde{G}^{\prime}}(\pi)$ is irreducible or zero.

Fundamental tasks:

- Given $\pi \in \operatorname{Irr}(\widetilde{G})$, determine $\theta_{\widetilde{G}}^{\widetilde{G}^{\prime}}(\pi)$; or at least determine whether $\theta_{\widetilde{G}}^{\widetilde{G}^{\prime}}(\pi) \neq 0$.
- Construct interesting (e.g. unitary) representations from this formalism.

2 Compact dual pairs

Let $\left(G, G^{\prime}\right) \subseteq$ Sp be a reductive dual pair, with G compact.

- G^{\prime} is of Hermitian symmetric type.
- There is a character χ of \widetilde{G} such that $\left.\chi^{-1} \otimes \widehat{\omega}\right|_{\widetilde{G}}$ factors through the linear group G. Representations which occur in $\left.\omega\right|_{\widetilde{G}}$ are of the form $\chi \otimes \sigma$. where $\sigma \in \operatorname{Irr}(G)$.

Kashiwara-Vergne and Howe: (1970's)

- The restriction of the unitary representation $\widehat{\omega}$ to $\widetilde{G} \cdot \widetilde{G^{\prime}}$ is a discrete and multiplicity-free sum.
- We have the decomposition

$$
\widehat{\omega} \simeq \sum_{\sigma \in \operatorname{Irr}(G)}(\chi \otimes \sigma) \boxtimes L(\sigma),
$$

where $L(\sigma)$ is an irreducible unitary lowest weight representation of $\widetilde{G^{\prime}}$ or zero.

- $L(\sigma) \neq 0$ if and only if σ occurs in the space of harmonics, which is a multiplicity-free representation of the compact group $G \times \widetilde{K^{\prime}}$.
- The map $\sigma \mapsto L(\sigma)$ is injective in its domain and is described explicitly by the pairing of σ with the lowest $\widetilde{K^{\prime}}$-type of $L(\sigma)$ in the space of harmonics.

Example: $\left(G, G^{\prime}\right)=\left(\mathrm{O}(p), \mathrm{Sp}_{2 n}(\mathbb{R})\right)$.

- If $p \leq n$, then

$$
L(\sigma) \neq 0, \quad \forall \sigma \in \operatorname{Irr}(G)
$$

- If $p>n$, then

$$
L(\sigma) \neq 0 \Longleftrightarrow \sigma \text { occurs in } \mathrm{L}^{2}(\mathrm{O}(p) / \mathrm{O}(p-n))
$$

where $\mathrm{O}(p-n)$ embeds in $\mathrm{O}(p)$ in the standard way.

- If $p>2 n$, then the $L(\sigma)$'s $(\neq 0)$ are members of the holomorphic discrete series.

More on unitary lowest weight representations

- Enright-Parthasarathy: For $G^{\prime}=\operatorname{Sp}_{2 n}(\mathbb{R})$ or $\mathrm{U}_{r, s}$, all irreducible unitary lowest weight representations of $\widetilde{G^{\prime}}$ arise in this manner (by varying all possible G^{\prime} 's which are compact).
- For $G^{\prime}=\mathrm{O}_{2 n}^{*}$, there are some minor exceptions.
- Enright-Howe-Wallach classifies irreducible unitary lowest weight representations of any covering of G^{\prime} (internally).
- Nishiyama-Ochiai-Taniguchi determines the associated cycles of unitary lowest weight representations (via the model from the Howe correspondence)

3 Stable range theta lifting

- Consider a type I irreducible dual pair

$$
\left(G, G^{\prime}\right)=\left(G(V), G\left(V^{\prime}\right)\right)
$$

where V, V^{\prime} are the standard modules over D (which resp. carry ϵ-Hermition and ϵ^{\prime}-Hermitian forms, with $\epsilon \epsilon^{\prime}=-1$).

- The dual pair $\left(G, G^{\prime}\right)$ is said to be in stable range with G the smaller member, if
- there exists a totally isotropic subspace V_{1}^{\prime} of V^{\prime} such that $\operatorname{dim}_{\mathrm{D}}(V) \leq \operatorname{dim}_{\mathrm{D}}\left(V_{1}^{\prime}\right)$.
- Notation: $2 G \leq G^{\prime}$.

Works of Howe, Li: (1980's)

- Suppose that $\left(G, G^{\prime}\right)$ is in the stable range with G the smaller member, then Howe correspondence gives rise to an injection

$$
\theta:(\widetilde{G})_{g e n}^{\wedge} \hookrightarrow\left(\widetilde{G^{\prime}}\right)_{g e n}^{\wedge}
$$

(The symbol \wedge indicates the unitary dual; the subscript gen indicates the genuine part.)

- There are two messages:
$-(\widetilde{G})_{\text {gen }}^{\wedge} \subset \operatorname{Irr}(\widetilde{G}, \omega)$, namely the whole set $(\widetilde{G})_{\text {gen }}^{\wedge}$ is in the domain of Howe correspondence;
- Stable range theta lifting preserves the unitarity.

A more concrete way to describe the stable range correspondence:

- Fix a totally isotropic subspace V_{1}^{\prime} of V^{\prime} such that $\operatorname{dim}_{\mathrm{D}}(V)=\operatorname{dim}_{\mathrm{D}}\left(V_{1}^{\prime}\right)$, and let P^{\prime} be the parabolic subgroup of G^{\prime} preserving $\left(V_{1}^{\prime}\right)^{*}$, with the unipotent radical N^{\prime}. We have

$$
P^{\prime} \supset H^{\prime}:=\mathrm{GL}\left(\left(V_{1}^{\prime}\right)^{*}\right) \cdot N^{\prime} \supset G \cdot N^{\prime} .
$$

Then $\left.\theta(\pi)\right|_{\widetilde{H^{\prime}}}$ is irreducible and

$$
\left.\theta(\pi)\right|_{\widetilde{H^{\prime}}} \simeq \operatorname{Ind}_{\widetilde{G} \cdot N^{\prime}}^{\widetilde{\mathrm{GL}}\left(\left(V_{1}^{\prime}\right)^{*}\right) \cdot N^{\prime}}\left(\pi^{\vee} \otimes \rho^{\prime}\right),
$$

where ρ^{\prime} is a certain oscillator-Heisenberg representation of $\widetilde{G} \cdot N^{\prime}$.

Notion of rank: Howe

- This is defined via the $Z N$-spectrum, where N is the unipotent radical of a certain maximal parabolic subgroup P of G.
- For $G=\widetilde{\mathrm{Sp}}_{2 n}(\mathbb{R})$, we have the decomposition of its unitary dual according to the N-rank: (P : the Siegel parabolic subgroup)

$$
\begin{aligned}
\left(\widetilde{\mathrm{Sp}}_{2 n}(\mathbb{R})\right)^{\wedge} & =\bigcup_{r \leq n}\left(\widetilde{\mathrm{Sp}}_{2 n}(\mathbb{R})\right)_{r}^{\wedge} \\
& =\left(\widetilde{\mathrm{Sp}}_{2 n}(\mathbb{R})\right)_{n}^{\wedge} \bigcup\left(\bigcup_{r<n}\left(\bigcup_{\operatorname{rank} \beta=r}\left(\widetilde{\mathrm{Sp}}_{2 n}(\mathbb{R})\right)_{\beta}^{\wedge}\right)\right)
\end{aligned}
$$

$-\left(\widetilde{\mathrm{Sp}}_{2 n}(\mathbb{R})\right)_{r}^{\wedge}: N$-rank r
$-\left(\widetilde{\mathrm{Sp}}_{2 n}(\mathbb{R})\right)_{\beta}^{\wedge}: N$-spectral type β (β : a symmetric $n \times n$ matrix)

- The larger the rank of an irreducible unitary representation, the faster its matrix coefficients tend to decay.
- This is a quantitative version of the Howe-Moore Theorem.
"Classification" of low rank representations: (Li)
- For $G^{\prime}=\widetilde{\mathrm{Sp}}_{2 n}(\mathbb{R})$, a symmetric matrix β of rank $r<n$ determines an orthogonal group $G=\mathrm{O}(p, q)$, with $p+q=r$. Representations in $\widetilde{\mathrm{Sp}}_{2 n}(\mathbb{R})_{\beta}$ consist precisely of theta lifts from irreducible unitary representations of $\mathrm{O}(p, q)$.
- Similar results hold for low rank irreducible unitary representations of other classical groups.

4 Concrete models via integration

The following is a general idea to establish unitarity preservation, and it first appeared in Li's Yale thesis.

- Given $\pi \in \operatorname{Rep}(\widetilde{G})_{g e n}$, consider the integral

$$
\begin{aligned}
\omega \times \pi^{\vee} \times \bar{\omega} \times \pi & \rightarrow \mathbb{C} \\
\left(\phi, v^{\prime}, \phi^{\prime}, v\right) & \mapsto \int_{G}\left\langle\tilde{g} \cdot \phi, \phi^{\prime}\right\rangle \cdot\left\langle\tilde{g} \cdot v^{\prime}, v\right\rangle d g
\end{aligned}
$$

- If it is absolutely convergent, it yields a continuous bilinear map

$$
\left(\omega \widehat{\otimes} \pi^{\vee}\right) \times(\bar{\omega} \widehat{\otimes} \pi) \rightarrow \mathbb{C}
$$

and (by a slight variant) a $\widetilde{G^{\prime}}$-invariant Hermitian form on $\omega \widehat{\otimes} \pi^{\vee}$, if π is unitary.

- Define

$$
\overline{\theta_{\tilde{G}}^{\widetilde{G}^{\prime}}}(\pi):=\frac{\omega \widehat{\otimes} \pi^{\vee}}{\text { the left kernel of the bilinear map }}
$$

This is a quotient of $\Theta_{\widetilde{G}}^{\widetilde{G}^{\prime}}(\pi)$, and hence in $\operatorname{Rep}\left(\widetilde{G^{\prime}}\right)_{\text {gen }}$.

- The challenge in establishing unitary preservation:
- Prove that $\bar{\theta} \widetilde{\widetilde{G}}^{\widetilde{G}^{\prime}}(\pi)$ is non-zero.
- Prove that the induced Hermitian form on $\overline{\theta_{\widetilde{G}}} \widetilde{G}^{\prime}(\pi)$ is positive definite.
- Success cases (for unitarity preservation):
- Li: for any unitary π when $2 G \leq G^{\prime}$, and for (most) π in the discrete series when $\operatorname{dim}_{\mathrm{D}}(V) \leq \operatorname{dim}_{\mathrm{D}}\left(V^{\prime}\right)$.
- He: for (most) π is in the so-called strongly semistable range.
- Need some additional constraints on π to prove nonvanishing.

Barbasch-Ma-Sun-Z: a general result on unitarity preservation

- Notion of convergent range, based on a suitable bound of matrix coefficients (the benchmark function is defined in terms of the standard module V).
- Assume a mild condition on sizes (on $\operatorname{rank}_{\mathrm{D}}(V)$ and $\operatorname{rank}_{\mathrm{D}}\left(V^{\prime}\right)$), and a mild condition on π ("overconvergent"):

$$
\pi \text { is unitary } \Longrightarrow \bar{\theta}_{\widetilde{G}}^{\widetilde{G}^{\prime}}(\pi) \text { is unitary. }
$$

Remark:

- Given that $\bar{\theta} \overline{\tilde{G}}^{\widetilde{G}^{\prime}}(\pi)$ is unitary, it is a semisimple quotient of $\Theta_{\tilde{G}}^{\widetilde{G}^{\prime}}(\pi)$. Thus if π is irreducible and $\bar{\theta} \widetilde{\widetilde{G}}_{\widetilde{G}}^{\widetilde{G}^{\prime}}(\pi) \neq\{0\}$, then Howe Duality Theorem implies that $\theta_{\widetilde{G}}^{\widetilde{G}^{\prime}}(\pi)=\bar{\theta} \frac{\widetilde{G}_{\tilde{G}}^{\prime}}{\widetilde{G}^{\prime}}(\pi)$ and is irreducible.

Harris-Li-Sun: (source of unitary structure)
Let G be a real reductive group with a maximal compact subgroup K.

- π_{1}, π_{2} : two unitary representations of G such that π_{2} is weakly contained in the regular representation.
- $u_{1}, u_{2}, \cdots, u_{r}$: vectors in π_{1} such that the integral $\int_{G}\left\langle g u_{i}, u_{j}\right\rangle \Xi_{G}(g) \mathrm{d} g$ is absolutely convergent.
- $v_{1}, v_{2}, \cdots, v_{r}: K$-finite vectors in π_{2}.

Then the integral $\int_{G}\langle g u, u\rangle \mathrm{d} g$ absolutely converges to a nonnegative real number, where $u:=\sum_{i=1}^{r} u_{i} \otimes v_{i} \in \pi_{1} \otimes \pi_{2}$.

Remark: Applied to the Howe duality setting, it implies convergence will ensure unitarity presevation after passing the point of G-temperedness.

5 Theta lifting and invariants of representations

- To have good control of the lifting process, a basic technique is to understand how fundamental invariants such as infinitesimal characters and K-types (joint harmonics) behalf under theta lifting.
- Other fundamental invariants such as (Vogan's) associated cycles and generalized Whittaker models should also be utilized.
- The key lies in the moment maps.
- $K_{\mathbb{C}}$-equivariant version:

where $\phi(T)=T^{*} T$ and $\phi^{\prime}(T)=T T^{*}$.
- The associated cycles in the theta lifting setting have an upper bound via geometric theta lift (for nilpotent $K_{\mathbb{C} \text {-orbits) }}$.

Barbasch-Ma-Sun-Z: If $\mathcal{O}=\nabla\left(\mathcal{O}^{\prime}\right)$ is regular descent, then

$$
\operatorname{AC}_{\mathcal{O}^{\prime}}\left(\Theta\left(\pi^{\vee}\right)\right) \preceq \check{\vartheta}_{\mathcal{O}_{\mathcal{O}}^{\prime}}\left(\operatorname{AC}_{\mathcal{O}}(\pi)\right) .
$$

(This generalizes earlier work of Nishiyama-Ochiai-Taniguchi, Nishiyama-Zhu and Loke-Ma.)

- The generalized Whittaker models in the theta lifting setting have an equality via geometric theta lift (for nilpotent G-orbits).

Gomez-Z: If $\mathcal{O}=\nabla\left(\mathcal{O}^{\prime}\right)$ is regular descent, then

$$
\mathrm{Wh}_{\mathcal{O}^{\prime}, \tau^{\prime}}\left(\Theta\left(\pi^{\vee}\right)\right) \simeq \mathrm{Wh}_{\mathcal{O}, \Theta\left(\tau^{\prime}\right)}{ }^{\vee}(\pi)
$$

(This is an effective tool for showing nonvanishing.)

6 Application: special unipotent representations

- Work of Barbasch-Ma-Sun-Z, stated informally: by starting from unitary characters and applying iterated theta lifting (in a controlled fashion), one can obtain all special unipotent representations of a real classical group G (attached to a nilpotent orbit $\check{\mathcal{O}}$ satisfying some parity condition).
- This also holds for the real metaplectic group, where we replace the term "special" by a notion called "metaplectic special".
- We have an associated notion of metaplectic Barbasch-Vogan duality, similar to the Barbasch-Vogan duality for reductive linear groups.

Label \star	Classical Lie Group G	Langlands dual group \check{G}
$A^{\mathbb{R}}$	$\mathrm{GL}_{n}(\mathbb{R})$	$\mathrm{GL}_{n}(\mathbb{C})$
$A^{\mathbb{H}}$	$\mathrm{GL}_{\frac{n}{2}}(\mathbb{H})(n$ even $)$	$\mathrm{GL}_{n}(\mathbb{C})$
A	$\mathrm{U}(p, q)$	$\mathrm{GL}_{p+q}(\mathbb{C})$
\widetilde{A}	$\widetilde{\mathrm{U}}(p, q)$	$\mathrm{GL}_{p+q}(\mathbb{C})$
B	$\mathrm{O}(p, q)(p+q$ odd $)$	$\mathrm{Sp}_{p+q-1}(\mathbb{C})$
D	$\mathrm{O}(p, q)(p+q$ even $)$	$\mathrm{O}_{p+q}(\mathbb{C})$
C	$\mathrm{Sp}_{2 n}(\mathbb{R})$	$\mathrm{O}_{2 n+1}(\mathbb{C})$
\widetilde{C}	$\widetilde{\mathrm{Sp}}_{2 n}(\mathbb{R})$	$\mathrm{Sp}_{2 n}(\mathbb{C})$
D^{*}	$\mathrm{O}^{*}(2 n)$	$\mathrm{O}_{2 n}(\mathbb{C})$
C^{*}	$\mathrm{Sp}\left(\frac{p}{2}, \frac{q}{2}\right)(p, q$ even $)$	$\mathrm{O}_{p+q+1}(\mathbb{C})$

- Given a \check{G}-orbit $\check{\mathcal{O}}$ in $\operatorname{Nil}(\check{\mathfrak{g}})$, one attaches an infinitesimal character $\chi_{\check{\mathcal{O}}}$ (via an $\mathfrak{s l}_{2}$-triple containing $\check{\mathcal{O}}$).
- By a theorem of Dixmier, there exists a unique maximal G-stable ideal of $\mathcal{U}(\mathfrak{g})$ that contains the kernel of $\chi_{\check{\mathcal{O}}}$. Write $I_{\check{\mathcal{O}}}$ for this ideal.
- The associated variety of $I_{\check{\mathcal{O}}}$ is the closure of a nilpotent $G_{\mathbb{C} \text {-orbit }}$ \mathcal{O} in \mathfrak{g}.
$-\mathcal{O}$ is called the Barbasch-Vogan dual of $\check{\mathcal{O}}$ and is special in the sense of Lusztig.
- Everything works for the metaplectic group (replaced with metaplectic Barbasch-Vogan duality and metaplectic special).

Definition: (Barbasch-Vogan) An irreducible Casselman-Wallach representation π of G is said to be special unipotent attached to $\check{\mathcal{O}}$ if $I_{\check{\mathcal{O}}}$ annihilates π.

Remark: The notion was motivated by Arthur's conjecture on unipotent automorphic forms.

Notation: $\operatorname{Unip}_{\check{\mathcal{O}}}(G)$, the set of equivalent classes of irreducible Casselman-Wallach representations of G that are special unipotent attached to $\check{\mathcal{O}}$.

- In [BMSZ1] and [BMSZ2], we parameterize and explicitly construct all special unipotent representations of the real classical groups $\mathrm{GL}_{n}(\mathbb{R}), \mathrm{GL}_{n}(\mathbb{C}), \mathrm{GL}_{n}(\mathbb{H}), \mathrm{U}(p, q), \mathrm{O}(p, q), \mathrm{Sp}_{2 n}(\mathbb{R}), \mathrm{O}^{*}(2 n)$, $\mathrm{Sp}(p, q), \mathrm{O}_{n}(\mathbb{C}), \mathrm{Sp}_{2 n}(\mathbb{C})$, as well as all metaplectic special unipotent representations of $\widetilde{S p}_{2 n}(\mathbb{R})$ and $\mathrm{Sp}_{2 n}(\mathbb{C})$.
- BMSZ1: Special unipotent representations of real classical groups: counting and reduction to good parity, arXiv:2205.05266.
- BMSZ2: Special unipotent representations of real classical groups: construction and unitarity, arXiv:1712.05552.

For groups of type B, C or D, the steps involved are as follows:

- * Count the set $\operatorname{Unip}_{\check{\mathcal{O}}}(G)$ via combinatorial objects
- Tools: coherent continuation representations, theory of primitive ideals, double cells and Harish-Chandra cells, branching laws of Weyl group representations, ... (Kazhdan-Lusztig, Lusztig, Joseph, Vogan, Barbasch-Vogan, Casian, ...)
- Reduce the problem of construction to the case when $\check{\mathcal{O}}$ has good parity (via irreducible parabolic induction)
- Tools: Kazhdan-Lusztig-Vogan, Renard-Trapa
- Construct representations in $\operatorname{Unip}_{\check{\mathcal{O}}}(G)$ by iterated theta lifting when $\check{\mathcal{O}}$ has good parity
- Tool: combinatorial descent (chasing combinatorial parameters)
- *Distinguish representations via associated cycles
- Tools: moment maps, geometric theta lifting, doubling method, degenerate principal series, ...
- This establishes the exhaustion.

Example: $G=\mathrm{Sp}(28, \mathbb{R}), \check{G}=\mathrm{O}(29, \mathbb{C})$.

$$
\mathrm{PP}_{\star}(\check{\mathcal{O}})=\{(1,2),(5,6)\}
$$

Painted bipartition (with symbols \bullet, s, r, c, d) and descent:

Corresponding Lie groups

$$
\begin{aligned}
& \mathrm{Sp}(28, \mathbb{R}) \rightarrow \mathrm{O}(10,10) \\
\rightarrow \quad & \mathrm{Sp}(14, \mathbb{R}) \rightarrow \mathrm{O}(5,5) \\
\rightarrow \quad & \mathrm{Sp}(4, \mathbb{R}) \rightarrow \mathrm{O}(2,0) \rightarrow \mathrm{Sp}(0, \mathbb{R})
\end{aligned}
$$

A themetic diagram: combinatorics, analysis and geometry

Barbasch-Ma-Sun-Z: (confirming the Arthur-Barbasch-Vogan conjecture for real classical groups)

- All special unipotent representations of the real classical groups are unitarizable;
- all metaplectic special unipotent representations of $\widetilde{\operatorname{Sp}}_{2 n}(\mathbb{R})$ and $\mathrm{Sp}_{2 n}(\mathbb{C})$ are also unitarizable.

Remarks:

- The unitarizability of special unipotent representations for quasisplit classical groups is independently due to Adams, Arancibia Robert and Mezo, as a consequence of their result

$$
\text { Arthur packet }=\text { ABV packet. }
$$

- The result is also true for the real Spin groups.

Other findings: (besides construction and unitarity)

- We determine the associated cycle of any special unipotent representation. (This is actually very difficult.)
- If $\check{\mathcal{O}}$ is quasi-distinguished, then the associated cycle map induces a bijection

$$
\mathrm{AC}_{\mathcal{O}}: \operatorname{Unip}_{\check{\mathcal{O}}}(G) \rightarrow \operatorname{AOD}(\mathcal{O})
$$

$-\check{\mathcal{O}}$ is called quasi-distinguished if there is no odd i if $\star \in\left\{C, \widetilde{C}, C^{*}\right\}$, and no even i if $\star \in\left\{B, D, D^{*}\right\}$ such that

$$
\mathbf{r}_{i}(\check{\mathcal{O}})=\mathbf{r}_{i+1}(\check{\mathcal{O}})>0
$$

-

$$
\operatorname{AOD}(\mathcal{O}):=\bigsqcup_{\mathscr{O} \text { is a } K_{\mathbb{C}} \text {-orbit in } \mathcal{O} \cap \mathfrak{p}^{*}} \operatorname{AOD}(\mathscr{O})
$$

where $\operatorname{AOD}(\mathscr{O})$ is the set of isomorphism classes of admissible orbit data over \mathscr{O}.

Thank you!

