Revisiting a Conjecture of Salamanca-Riba and Vogan

Kayue Daniel Wong (CUHK-Shenzhen & Institute of Mathematics, CUHK)

Dubrovnik, October 2022

Daniel Wong

Background

- Let G be a connected real reductive Lie group. A longstanding problem in representation theory of G is to classify \hat{G} , the set of all unitarizable irreducible (\mathfrak{g}, K) -modules.
- In their 1998 Annals paper, Salamanca-Riba and Vogan proposed that one can reduce the study of \widehat{G} to representations π with *unitarily small* lowest *K*-types.
- In order for their reduction argument to work, one needs to prove a (non-)unitarity conjecture involving the infinitesimal character of π.
- In this talk, we propose a slightly stronger non-unitary conjecture, which immediately implies the SV-conjecture.
- A proof of the generalized conjecture when $G = GL(n, \mathbb{C})$ will be given, where \widehat{G} is known by Vogan. This approach is applicable to other groups such as U(p, q), where \widehat{G} is not yet known.
- If this talk makes any sense at all, it is due to Professor Adams and Vogan for their great efforts to run the weekly atlas seminar and making it available online!

2/14

イロト イヨト イヨト イヨ

Vogan's definition of λ_a

- Let G be connected real reductive Lie group with maximal compact K. Let H = TA be the fundamental Cartan subgroup (T is maximal torus of K).
- Write \mathfrak{g}_0 , \mathfrak{k}_0 , $\mathfrak{h}_0 = \mathfrak{t}_0 + \mathfrak{a}_0$ be the Lie algebras, and \mathfrak{g} , \mathfrak{k} , $\mathfrak{h} = \mathfrak{t} + \mathfrak{a}$ be their complexifications.
- Fix root systems $\Delta(\mathfrak{g},\mathfrak{t}) = \Delta(\mathfrak{p},\mathfrak{t}) \cup \Delta(\mathfrak{k},\mathfrak{t})$, and a positive root system $\Delta^+(\mathfrak{k},\mathfrak{t})$.
- For all dominant weights μ ∈ t*, choose Δ⁺(𝔅, 𝔅) ⊇ Δ⁺(𝔅, 𝔅) making μ + 2ρ_𝔅 dominant. Define λ_a(μ) := P(μ + 2ρ_𝔅 − ρ_𝔅), where P is the projection onto the dominant W(𝔅, 𝔅)-chamber (see Vogan's green book for more details).

Theorem (Vogan)

Let $\Pi_a^{\lambda_a}(G) := \begin{cases} \pi \text{ adm. irred.} \\ (\mathfrak{g}, K) \text{-module} \end{cases} \begin{vmatrix} a \text{ lowest } K \text{-type } V_\mu \text{ of } \pi \\ satisfies \lambda_a(\mu) = \lambda_a \end{cases}$. Then there is a bijection $\Phi : \Pi_a^{\lambda_a - \rho(\mathfrak{u}(\lambda_a))}(G(\lambda_a)) \longrightarrow \Pi_a^{\lambda_a}(G),$

where
$$\mathfrak{p}(\lambda_a) = \mathfrak{g}(\lambda_a) + \mathfrak{u}(\lambda_a)$$
 be the theta-stable parabolic subalgebra defined by $\lambda_a \in \mathfrak{t}^*$, and Φ is given by cohomological induction and picking the appropriate composition factor.

Salamanca-Riba and Vogan's definition of λ_u

- $\bullet\,$ Unfortunately, the bijection Φ in the previous page does not preserve unitarity.
- In [SV], Salamanca-Riba and Vogan tried to remedy the problem by 'enlarging the theta-stable Levi' or equivalently, projecting more μ to 0.

• For all
$$\mu \in \mathfrak{t}^*$$
, define $\lambda_u(\mu) := P(\mu + 2\rho_{\mathfrak{e}} - \frac{2}{2}\rho_{\mathfrak{g}})$.

Theorem (SV)

 $Let \Pi_{h}^{\lambda_{u}}(G) := \left\{ \begin{array}{c} \pi \text{ adm. irred. Hermitian} \\ (\mathfrak{g}, K) \text{-module} \end{array} \middle| \begin{array}{c} a \text{ lowest } K \text{-type } V_{\mu} \text{ of } \pi \\ satisfies \lambda_{u}(\mu) = \lambda_{u} \end{array} \right\}.$ Then there is a bijection $\Pi_{h}^{\lambda_{u}}(G(\lambda_{u})) \longrightarrow \Pi_{h}^{\lambda_{u}}(G).$

Conjecture (SV)

The above bijection preserves unitarity.

- Assuming the conjecture holds, then one can reduce the study of \widehat{G} to the representations π whose lowest K-types V_{μ} satisfies $G(\lambda_{u}(\mu)) = G$.
- Such K-types are called unitarily small.

Daniel Wong

イロト イボト イヨト イヨト

The conjecture

It was proved in [SV] that the following conjecture implies the reduction argument:

Conjecture (SV, Conjecture 5.7)

Let π be an admissible, Hermitian, irreducible representation with a unitarily small lowest K-type μ and real infinitesimal character $\Lambda \in \mathfrak{h}^*$. If Λ does not lie in

 $\lambda_u(\mu)$ + (convex hull of $W(\mathfrak{g},\mathfrak{h})\cdot\rho_\mathfrak{g}$),

then the Hermitian form of π has opposite signatures on the level of unitarily small K-types.

Conjecture (Dong, Vogan)

Under the same hypothesis, suppose $\langle \Lambda, \alpha_i^{\vee} \rangle > 1$ for some simple coroot α_i^{\vee} of the root system $\Delta(\mathfrak{g}, \mathfrak{h})$, then the same conclusion of the above conjecture holds.

- In the special case when G is split and $\mu = 0$ is the trivial representation, the above statements are precisely what Vogan conjectured on Tuesday!
- We will prove this refined conjecture for $G = GL(n, \mathbb{C})$.

Unitarily small K-types for complex groups

 When G is a complex group treated as a real group, one has the complexifications g ≅ g₀ × g₀, h ≅ h₀ × h₀, and the identifications:

$$\mathfrak{k} = \{(X, -X^t) \in \mathfrak{g} : X \in \mathfrak{g}_0\} \cong \mathfrak{g}_0; \quad \mathfrak{t} = \{(H, -H) : x \in \mathfrak{h}_0\} \cong \mathfrak{h}_0.$$

• Using the above dictionary, we 'translate' information of the positive roots $\Delta^+(\mathfrak{k},\mathfrak{t})$ into our more familiar coordinates $\Delta^+(\mathfrak{g}_0,\mathfrak{h}_0)$:

$$\begin{array}{ccc} \begin{array}{ccc} \Delta^+(\mathfrak{k},\mathfrak{t}) & & \Delta^+(\mathfrak{g}_0,\mathfrak{h}_0) \\ \end{array} \\ \begin{array}{ccc} \text{Positive compact roots } \Delta^+(\mathfrak{k},\mathfrak{t}) : & & (\mu/2,-\mu/2) & \longleftrightarrow & \frac{\Delta^+(\mathfrak{g}_0,\mathfrak{h}_0)}{\mu} \\ \end{array} \\ \begin{array}{cccc} \text{Sum of positive compact roots } 2\rho_{\mathfrak{k}} : & (\rho,-\rho) & \longleftrightarrow & 2\rho \\ \end{array} \\ \begin{array}{ccccc} \text{Half sum of all positive roots } \rho_{\mathfrak{g}} : & (\rho,-\rho) & \longleftrightarrow & 2\rho \end{array} \end{array}$$

- (here $\mu \in \Delta^+(\mathfrak{g}_0,\mathfrak{h}_0)$, and $\rho := \frac{1}{2} \sum_{\alpha \in \Delta^+(\mathfrak{g}_0,\mathfrak{h}_0)} \alpha$)
- Therefore, $\lambda_a(\mu) = \mu$, and $\lambda_u(\mu) = P(\mu 2\rho)$ in \mathfrak{h}_0^* -coordinates.
- In other words, the K-type μ is unitarily small iff it lies inside the convex hull with vertices equal to the W(g₀, h₀)-orbit of 2ρ.

By the classification of irreducible representations of complex groups, all irreducible, Hermitian representations of $GL(n, \mathbb{C})$ with real infinitesimal characters are characterized by the Zhelobenko parameters $\pi = J(\lambda_L; \lambda_R)$, with

$$\begin{pmatrix} \lambda_L \\ \lambda_R \end{pmatrix} = \left(\cdots \left| \frac{\left(\frac{m_p}{2}, \dots, \frac{m_p}{2}\right) + \underline{\nu}_p}{-\left(\frac{m_p}{2}, \dots, \frac{m_p}{2}\right) + \underline{\nu}_p} \right| \frac{\left(\frac{m_{p+1}}{2}, \dots, \frac{m_{p+1}}{2}\right) + \underline{\nu}_{p+1}}{-\left(\frac{m_{p+1}}{2}, \dots, \frac{m_{p+1}}{2}\right) + \underline{\nu}_{p+1}} \right| \cdots \right),$$

where:

• $\cdots > m_p > m_{p+1} > \cdots$ are integers;

•
$$\underline{\nu}_p = (\nu_{p,1}, \nu_{p,2}, \dots, -\nu_{p,2}, -\nu_{p,1}) \in \mathbb{R}^{(\# \text{ of } \frac{m_p}{2}'s)}$$
 is symmetric.

- The lowest K-type of π is $\mu = (\cdots; m_p, \dots, m_p; m_{p+1}, \dots, m_{p+1}; \cdots)$.
- By earlier discussions, μ is unitarily small $\Leftrightarrow P(\mu 2\rho) = 0 \Leftrightarrow m_p m_{p+1} \le 2$ for all p.

SV-Conjecture for $GL(n, \mathbb{C})$

Consequently, if $\pi = J(\lambda_L; \lambda_R)$ is irreducible, Hermitian with real infinitesimal character and unitarily small lowest K-type, λ_L must look like:

or
$$\dots \left(\frac{\frac{m_p}{2} + \nu_{p,1} \cdots \frac{m_p}{2} - \nu_{p,1}}{\left(\frac{m_{p+1}}{2} + \nu_{p+1,1} \cdots \frac{m_{p+1}}{2} - \nu_{p+1,1}\right)}\right)$$

with $\frac{m_p}{2} - \frac{m_{p+1}}{2} \le 1$, and our refined conjecture says the following:

Conjecture

Let $\pi = J(\lambda_L; \lambda_R)$ be as given above, so that the lowest K-type of π is unitarily small. Reorder the coordinates of $\lambda_L \sim (\ell_1 \ge \ell_2 \ge \cdots \ge \ell_n)$ in descending order. Suppose there exists i such that $\ell_i - \ell_{i+1} > 1$, then the Hermitian form on π is indefinite on some unitarily small K-types of π .

Proof of SV-Conjecture for $GL(n, \mathbb{C})$ - Spherical Case

We begin by proving the conjecture in the spherical case $\pi_{sp} = J(\lambda; \lambda)$, i.e. there

 $\nu = \underbrace{\begin{array}{c} \nu & \nu \\ \hline 0 & \cdots & 0 \end{array}}_{\nu} = (\ell_1 \geq \cdots \geq \ell_n).$

is only one block $\lambda = \nu =$

We apply the following algorithm:

- Starting from the largest coordinate L of λ, find the longest string of descending integers S = (L, L 1, ..., L k) in λ.
- (2) Remove a copy of the elements in S from λ , and repeat Step (1) until there are no coordinates left.

Theorem

Let $\pi_{sp} = J(\lambda; \lambda)$, and S_i are the strings obtained from λ in the above algorithm. Then the induced module

$$I(\lambda) := \mathit{Ind}_{\prod_i \mathit{GL}(p_i)}^{\mathit{GL}(n)}(\bigotimes_i |\det|^{s_i})$$

(here $s_i := 2$ · (mean of the entries of S_i)) has the same trivial and adjoint K-type multiplicities and signatures as π_{sp} . Consequently, if $I(\lambda)$ has opposite signatures on these two K-types, then so does π_{sp} !

< 回 > < 三 > <

Proof of SV-Conjecture for $GL(n, \mathbb{C})$ - Spherical Case

Here is a sketch proof of the refined SV-conjecture for $\pi_{sp} = J(\lambda; \lambda)$:

- Suppose $\lambda \sim (\ell_1, \ldots, \ell_n)$ has a gap $\ell_j \ell_{j+1} > 1$ for some j, then $\ell_{n-j} \ell_{n-j+1} > 1$ by symmetry of λ .
- So the strings of λ must 'break' at both ℓ_j, ℓ_{j+1} and ℓ_{n-j}, ℓ_{n-j+1} : S_1 S'_1

- Deform $\mathcal{S}_1,\ldots,\mathcal{S}_q$, to $t \to \infty$ and $\mathcal{S}'_q,\ldots,\mathcal{S}'_1$ to $t \to -\infty$ simultaneously.
- Then we get a family of induced modules *I*(λ(*t*)) corresponding to the deformed strings for all *t* ≥ 0, with *I*(λ(0)) = *I*(λ).
- Since $\ell_j \ell_{j+1} = \ell_{n-j} \ell_{n-j+1} > 1$, the multiplicity and signature of $I(\lambda(t))$ remain the same on the level of adjoint K-type for all $t \ge 0$.
- When t is big, $I(\lambda(t))$ has 'big' infinitesimal character, so one can apply Dirac inequality to $I(\lambda(t))$ to conclude that $I(\lambda(0)) = I(\lambda)$, and hence π_{sp} have indefinite forms on the trivial and adjoint K-type.

Side note: Arguments of this kind appeared in Bang-Jensen's work in the early 90s!

Daniel Wong

Proof of SV-Conjecture for $GL(n, \mathbb{C})$ - General Case

Now go to the general case, i.e. $\pi = J(\lambda_L; \lambda_R)$ with

• By Vogan's λ_a -bijection $\Phi : \prod_a^{\lambda'_a}(L) \xrightarrow{\cong} \prod_a^{\lambda_a}(G), \ L = \prod_p GL(\# \text{ of } \frac{m_p}{2}) \text{ and}$ $\Phi(\wedge^{top}\overline{\mathfrak{u}} \otimes (\boxtimes_p \pi_p)) = \pi, \text{ where } \pi_p = \det^{m_p} \otimes J(\nu_p; \nu_p).$

- Consider π_p . If there is a '> 1 gap' in the coordinates ν_p , then π_p has opposite signatures on the lowest K-type (m_p, \ldots, m_p) and the adjoint K-type $(m_p+1, m_p, \ldots, m_p, m_p-1)$.
- These K-types are L-bottom layer, so Φ preserves their signatures.
- Therefore, π has indefinite forms on the lowest K-type and

 $(\cdots, m_{p-1}, m_p+1, m_p, \ldots, m_p, m_p-1, m_{p+1}, \cdots).$

Consequently, the coordinates of ν_p has gap ≤ 1 for all p. So all > 1 gaps in λ_L (if any) must occur between two different blocks. However, by unitarily small condition, the values of $\frac{m_p}{2}$, $\frac{m_{p+1}}{2}$ blocks differ by $\leq 1!$

Other groups?

- We expect similar techniques can be applied to other groups. For instance, all complex reductive groups have Levi subgroups consisting of Type A factors.
- The same goes for U(p,q): Any real Levi subgroup of U(p,q) is a product of GL(k, ℂ)'s with U(p',q').
- By Barbasch, Salamanca-Riba (which I learnt from Vogan's talks), the Langlands parameters for representations of U(p,q) can be represented by 'blocks' such as:

• There are several theoretical obstacles to overcome, such as bottom layer arguments may not work nicely, composition factors of induced modules and so on...

A D > <
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +

Fundamental blocks for U(p,q)

- But these difficulties can be overcome!
- Recall that in $GL(n, \mathbb{C})$, the fundamental case to study is the

(pseudo)-spherical block

- Once the above case is understood, the general case for $GL(n, \mathbb{C})$ follows from bottom layer K-type arguments.
- In U(p, q), the fundamental cases to study are the **semi-spherical blocks**, for example:

Thank you!

2