Revisiting a Conjecture of Salamanca-Riba and Vogan

Kayue Daniel Wong

(CUHK-Shenzhen \& Institute of Mathematics, CUHK)

Dubrovnik, October 2022

Background

- Let G be a connected real reductive Lie group. A longstanding problem in representation theory of G is to classify \hat{G}, the set of all unitarizable irreducible (\mathfrak{g}, K)-modules.
- In their 1998 Annals paper, Salamanca-Riba and Vogan proposed that one can reduce the study of \widehat{G} to representations π with unitarily small lowest K-types.
- In order for their reduction argument to work, one needs to prove a (non-)unitarity conjecture involving the infinitesimal character of π.
- In this talk, we propose a slightly stronger non-unitary conjecture, which immediately implies the SV-conjecture.
- A proof of the generalized conjecture when $G=G L(n, \mathbb{C})$ will be given, where \widehat{G} is known by Vogan. This approach is applicable to other groups such as $U(p, q)$, where G is not yet known.
- If this talk makes any sense at all, it is due to Professor Adams and Vogan for their great efforts to run the weekly atlas seminar and making it available online!

Vogan's definition of λ_{a}

- Let G be connected real reductive Lie group with maximal compact K. Let $H=T A$ be the fundamental Cartan subgroup (T is maximal torus of K).
- Write $\mathfrak{g}_{0}, \mathfrak{k}_{0}, \mathfrak{h}_{0}=\mathfrak{t}_{0}+\mathfrak{a}_{0}$ be the Lie algebras, and $\mathfrak{g}, \mathfrak{k}, \mathfrak{h}=\mathfrak{t}+\mathfrak{a}$ be their complexifications.
- Fix root systems $\Delta(\mathfrak{g}, \mathfrak{t})=\Delta(\mathfrak{p}, \mathfrak{t}) \cup \Delta(\mathfrak{k}, \mathfrak{t})$, and a positive root system $\Delta^{+}(\mathfrak{k}, \mathfrak{t})$.
- For all dominant weights $\mu \in \mathfrak{t}^{*}$, choose $\Delta^{+}(\mathfrak{g}, \mathfrak{t}) \supseteq \Delta^{+}(\mathfrak{k}, \mathfrak{t})$ making $\mu+2 \rho_{\mathfrak{k}}$ dominant. Define $\lambda_{a}(\mu):=P\left(\mu+2 \rho_{\mathfrak{k}}-\rho_{\mathfrak{g}}\right)$, where P is the projection onto the dominant $W(\mathfrak{g}, \mathfrak{t})$-chamber (see Vogan's green book for more details).

Theorem (Vogan)

Let $\Pi_{a}^{\lambda_{a}}(G):=\left\{\begin{array}{c|c}\pi \text { adm. irred. } \\ (\mathfrak{g}, K) \text {-module }\end{array} \left\lvert\, \begin{array}{c}\text { a lowest } K \text {-type } V_{\mu} \text { of } \pi \\ \text { satisfies } \lambda_{a}(\mu)=\lambda_{a}\end{array}\right.\right\}$. Then there is a bijection

$$
\Phi: \Pi_{a}^{\lambda_{a}-\rho\left(u\left(\lambda_{a}\right)\right)}\left(G\left(\lambda_{a}\right)\right) \longrightarrow \Pi_{a}^{\lambda_{a}}(G),
$$

where $\mathfrak{p}\left(\lambda_{a}\right)=\mathfrak{g}\left(\lambda_{a}\right)+\mathfrak{u}\left(\lambda_{a}\right)$ be the theta-stable parabolic subalgebra defined by $\lambda_{a} \in \mathfrak{t}^{*}$, and Φ is given by cohomological induction and picking the appropriate composition factor.

Salamanca-Riba and Vogan's definition of λ_{u}

- Unfortunately, the bijection Φ in the previous page does not preserve unitarity.
- In [SV], Salamanca-Riba and Vogan tried to remedy the problem by 'enlarging the theta-stable Levi' or equivalently, projecting more μ to 0 .
- For all $\mu \in \mathfrak{t}^{*}$, define $\lambda_{u}(\mu):=P\left(\mu+2 \rho_{\mathfrak{k}}-2 \rho_{\mathfrak{g}}\right)$.

Theorem (SV)

Let $\Pi_{h}^{\lambda_{u}}(G):=\left\{\begin{array}{c|c}\pi \text { adm. irred. Hermitian } \\ (\mathfrak{g}, K) \text {-module } & \begin{array}{c}\text { lowest } K \text {-type } V_{\mu} \text { of } \pi \\ \text { satisfies } \lambda_{u}(\mu)=\lambda_{u}\end{array}\end{array}\right\}$. Then there is a bijection $\Pi_{h}^{\lambda_{u}}\left(G\left(\lambda_{u}\right)\right) \longrightarrow \Pi_{h}^{\lambda_{u}}(G)$.

Conjecture (SV)

The above bijection preserves unitarity.

- Assuming the conjecture holds, then one can reduce the study of \widehat{G} to the representations π whose lowest K-types V_{μ} satisfies $G\left(\lambda_{u}(\mu)\right)=G$.
- Such K-types are called unitarily small.

The conjecture

It was proved in [SV] that the following conjecture implies the reduction argument:

Conjecture (SV, Conjecture 5.7)

Let π be an admissible, Hermitian, irreducible representation with a unitarily small lowest K-type μ and real infinitesimal character $\Lambda \in \mathfrak{h}^{*}$. If Λ does not lie in

$$
\lambda_{u}(\mu)+\left(\text { convex hull of } W(\mathfrak{g}, \mathfrak{h}) \cdot \rho_{\mathfrak{g}}\right),
$$

then the Hermitian form of π has opposite signatures on the level of unitarily small K-types.

Conjecture (Dong, Vogan)

Under the same hypothesis, suppose $\left\langle\Lambda, \alpha_{i}^{\vee}\right\rangle>1$ for some simple coroot α_{i}^{\vee} of the root system $\Delta(\mathfrak{g}, \mathfrak{h})$, then the same conclusion of the above conjecture holds.

- In the special case when G is split and $\mu=0$ is the trivial representation, the above statements are precisely what Vogan conjectured on Tuesday!
- We will prove this refined conjecture for $G=G L(n, \mathbb{C})$.

Unitarily small K-types for complex groups

- When G is a complex group treated as a real group, one has the complexifications $\mathfrak{g} \cong \mathfrak{g}_{0} \times \mathfrak{g}_{0}, \mathfrak{h} \cong \mathfrak{h}_{0} \times \mathfrak{h}_{0}$, and the identifications:

$$
\mathfrak{k}=\left\{\left(X,-X^{t}\right) \in \mathfrak{g}: X \in \mathfrak{g}_{0}\right\} \cong \mathfrak{g}_{0} ; \quad \mathfrak{t}=\left\{(H,-H): x \in \mathfrak{h}_{0}\right\} \cong \mathfrak{h}_{0} .
$$

- Using the above dictionary, we 'translate' information of the positive roots $\Delta^{+}(\mathfrak{k}, \mathfrak{t})$ into our more familiar coordinates $\Delta^{+}\left(\mathfrak{g}_{0}, \mathfrak{h}_{0}\right)$:
$\begin{array}{ccll} & \frac{\Delta^{+}(\mathfrak{k}, \mathfrak{t})}{} & & \frac{\Delta^{+}\left(\mathfrak{g}_{0}, \mathfrak{h}_{0}\right)}{\mu} \\ \text { Positive compact root } \Delta^{+}(\mathfrak{k}, \mathfrak{t}): & (\mu / 2,-\mu / 2) & \longleftrightarrow & 2 \\ \text { Sum of positive compact roots } 2 \rho_{\mathfrak{k}}: & (\rho,-\rho) & \longleftrightarrow & 2 \rho \\ \text { Half sum of all positive roots } \rho_{\mathfrak{g}}: & (\rho,-\rho) & \longleftrightarrow & 2 \rho\end{array}$
(here $\mu \in \Delta^{+}\left(\mathfrak{g}_{0}, \mathfrak{h}_{0}\right)$, and $\rho:=\frac{1}{2} \sum_{\alpha \in \Delta^{+}\left(\mathfrak{g}_{0}, \mathfrak{h}_{0}\right)} \alpha$)
- Therefore, $\lambda_{a}(\mu)=\mu$, and $\lambda_{u}(\mu)=P(\mu-2 \rho)$ in \mathfrak{h}_{0}^{*}-coordinates.
- In other words, the K-type μ is unitarily small iff it lies inside the convex hull with vertices equal to the $W\left(\mathfrak{g}_{0}, \mathfrak{h}_{0}\right)$-orbit of 2ρ.

Hermitian modules for $G L(n, \mathbb{C})$

By the classification of irreducible representations of complex groups, all irreducible, Hermitian representations of $G L(n, \mathbb{C})$ with real infinitesimal characters are characterized by the Zhelobenko parameters $\pi=J\left(\lambda_{L} ; \lambda_{R}\right)$, with

$$
\left.\left.\binom{\lambda_{L}}{\lambda_{R}}=\left(\left.\begin{array}{c}
\cdots\left|\begin{array}{c}
\left(\frac{m_{p}}{2}, \ldots, \frac{m_{p}}{2}\right)+\underline{\nu}_{p} \\
-\left(\frac{m_{p}}{2}, \ldots, \frac{m_{p}}{2}\right)+\underline{\nu}_{p}
\end{array}\right|-\left(\frac{m_{p+1}}{2}, \ldots, \frac{m_{p+1}}{2}\right)+\underline{\nu}_{p+1} \\
2
\end{array} \right\rvert\, \ldots, \frac{m_{p+1}}{2}\right)+\underline{\nu}_{p+1} \right\rvert\, \ldots\right),
$$

where:

- $\cdots>m_{p}>m_{p+1}>\cdots$ are integers;
- $\underline{\nu}_{p}=\left(\nu_{p, 1}, \nu_{p, 2}, \ldots,-\nu_{p, 2},-\nu_{p, 1}\right) \in \mathbb{R}^{\left(\# \text { of } \frac{m_{p}}{2}{ }^{\prime} s\right)}$ is symmetric.
- The lowest K-type of π is $\mu=\left(\cdots ; m_{p}, \ldots, m_{p} ; m_{p+1}, \ldots, m_{p+1} ; \cdots\right)$.
- By earlier discussions, μ is unitarily small $\Leftrightarrow P(\mu-2 \rho)=0 \Leftrightarrow$ $m_{p}-m_{p+1} \leq 2$ for all p.

SV-Conjecture for $G L(n, \mathbb{C})$

Consequently, if $\pi=J\left(\lambda_{L} ; \lambda_{R}\right)$ is irreducible, Hermitian with real infinitesimal character and unitarily small lowest K-type, λ_{L} must look like:

or $\ldots{ }^{\left(\frac{m_{p}}{2}+\nu_{p, 1} \cdots \cdots \frac{m_{p}}{2}-\nu_{p, 1}\right)}$

$$
\left(\frac{m_{p+1}^{-}}{2}+\nu_{p+1,1} \cdots \frac{m_{p+1}}{2}-\nu_{p+1,1}\right)
$$

with $\frac{m_{p}}{2}-\frac{m_{p+1}}{2} \leq 1$, and our refined conjecture says the following:

Conjecture

Let $\pi=J\left(\lambda_{L} ; \lambda_{R}\right)$ be as given above, so that the lowest K-type of π is unitarily small. Reorder the coordinates of $\lambda_{L} \sim\left(\ell_{1} \geq \ell_{2} \geq \cdots \geq \ell_{n}\right)$ in descending order. Suppose there exists i such that $\ell_{i}-\ell_{i+1}>1$, then the Hermitian form on π is indefinite on some unitarily small K-types of π.

Proof of SV-Conjecture for $G L(n, \mathbb{C})$ - Spherical Case

We begin by proving the conjecture in the spherical case $\pi_{s p}=J(\lambda ; \lambda)$, i.e. there
is only one block $\lambda=\nu=$

We apply the following algorithm:
(1) Starting from the largest coordinate L of λ, find the longest string of descending integers $\mathcal{S}=(L, L-1, \ldots, L-k)$ in λ.
(2) Remove a copy of the elements in \mathcal{S} from λ, and repeat Step (1) until there are no coordinates left.

Theorem

Let $\pi_{s p}=J(\lambda ; \lambda)$, and \mathcal{S}_{i} are the strings obtained from λ in the above algorithm. Then the induced module

$$
I(\lambda):=\operatorname{Ind} \prod_{\prod_{i} G L\left(p_{i}\right)}^{G L(n)}\left(\otimes_{i}|\operatorname{det}|^{s_{i}}\right)
$$

(here $s_{i}:=2$ (mean of the entries of \mathcal{S}_{i})) has the same trivial and adjoint K-type multiplicities and signatures as $\pi_{\text {sp }}$. Consequently, if $I(\lambda)$ has opposite signatures on these two K-types, then so does $\pi_{s p}$!

Proof of SV-Conjecture for $G L(n, \mathbb{C})$ - Spherical Case

Here is a sketch proof of the refined SV-conjecture for $\pi_{s p}=J(\lambda ; \lambda)$:

- Suppose $\lambda \sim\left(\ell_{1}, \ldots, \ell_{n}\right)$ has a gap $\ell_{j}-\ell_{j+1}>1$ for some j, then $\ell_{n-j}-\ell_{n-j+1}>1$ by symmetry of λ.
- So the strings of λ must 'break' at both ℓ_{j}, ℓ_{j+1} and ℓ_{n-j}, ℓ_{n-j+1} :

$$
\begin{aligned}
& \mathcal{S}_{1} \\
& \left(\ell_{1} \cdots\right) \cdots \\
& \left(\begin{array}{ll}
\cdots & \ell_{j}
\end{array}\right)^{\ell_{j+1}, \cdots, \ell_{n-j}}\left(\ell_{n-j+1} \cdots\right)^{\cdots}\left(\cdots \ell_{n}\right) \\
& \mathcal{S}_{q} \\
& \mathcal{S}_{q}^{\prime}
\end{aligned}
$$

- Deform $\mathcal{S}_{1}, \ldots, \mathcal{S}_{q}$, to $t \rightarrow \infty$ and $\mathcal{S}_{q}^{\prime}, \ldots, \mathcal{S}_{1}^{\prime}$ to $t \rightarrow-\infty$ simultaneously.
- Then we get a family of induced modules $I(\lambda(t))$ corresponding to the deformed strings for all $t \geq 0$, with $I(\lambda(0))=I(\lambda)$.
- Since $\ell_{j}-\ell_{j+1}=\ell_{n-j}-\ell_{n-j+1}>1$, the multiplicity and signature of $I(\lambda(t))$ remain the same on the level of adjoint K-type for all $t \geq 0$.
- When t is big, $I(\lambda(t))$ has 'big' infinitesimal character, so one can apply Dirac inequality to $I(\lambda(t))$ to conclude that $I(\lambda(0))=I(\lambda)$, and hence $\pi_{\text {sp }}$ have indefinite forms on the trivial and adjoint K-type.

Side note: Arguments of this kind appeared in Bang-Jensen's work in the early 90 s!

Proof of SV-Conjecture for $G L(n, \mathbb{C})$ - General Case

Now go to the general case, i.e. $\pi=J\left(\lambda_{L} ; \lambda_{R}\right)$ with

- By Vogan's λ_{a}-bijection $\Phi: \Pi_{a}^{\lambda_{a}^{\prime}}(L) \stackrel{\cong}{\rightrightarrows} \Pi_{a}^{\lambda_{a}}(G), L=\prod_{p} G L\left(\#\right.$ of $\left.\frac{m_{p}}{2}\right)$ and

$$
\Phi\left(\wedge^{t o p_{\overline{\mathfrak{u}}}} \otimes\left(\boxtimes_{p} \pi_{p}\right)\right)=\pi, \quad \text { where } \pi_{p}=\operatorname{det}^{m_{p}} \otimes J\left(\nu_{p} ; \nu_{p}\right) .
$$

- Consider π_{p}. If there is a ' >1 gap' in the coordinates ν_{p}, then π_{p} has opposite signatures on the lowest K-type (m_{p}, \ldots, m_{p}) and the adjoint K-type ($m_{p}+\mathbf{1}, m_{p}, \ldots, m_{p}, m_{p}-\mathbf{1}$).
- These K-types are L-bottom layer, so Φ preserves their signatures.
- Therefore, π has indefinite forms on the lowest K-type and $\left(\cdots, m_{p-1}, m_{p}+\mathbf{1}, m_{p}, \ldots, m_{p}, m_{p}-\mathbf{1}, m_{p+1}, \cdots\right)$.
Consequently, the coordinates of ν_{p} has gap ≤ 1 for all p. So all >1 gaps in λ_{L} (if any) must occur between two different blocks. However, by unitarily small condition, the values of $\frac{m_{p}}{2}, \frac{m_{p+1}}{2}$ blocks differ by ≤ 1 !

Other groups?

- We expect similar techniques can be applied to other groups. For instance, all complex reductive groups have Levi subgroups consisting of Type A factors.
- The same goes for $U(p, q)$: Any real Levi subgroup of $U(p, q)$ is a product of $G L(k, \mathbb{C})$'s with $U\left(p^{\prime}, q^{\prime}\right)$.
- By Barbasch, Salamanca-Riba (which I learnt from Vogan's talks), the Langlands parameters for representations of $U(p, q)$ can be represented by 'blocks' such as:

with $\alpha, \beta, \gamma, \cdots \in \frac{1}{2} \mathbb{N}$.
- These blocks just behaves like the
 blocks in $G L(n, \mathbb{C})$.
- There are several theoretical obstacles to overcome, such as bottom layer arguments may not work nicely, composition factors of induced modules and so on...

Fundamental blocks for $U(p, q)$

- But these difficulties can be overcome!
- Recall that in $G L(n, \mathbb{C})$, the fundamental case to study is the

(pseudo)-spherical block

$$
\stackrel{\stackrel{m_{p}}{2}}{\nu_{p}} \stackrel{\frac{\pi m_{1}}{2}}{\nu_{p}}
$$

- Once the above case is understood, the general case for $G L(n, \mathbb{C})$ follows from bottom layer K-type arguments.
- In $U(p, q)$, the fundamental cases to study are the semi-spherical blocks, for example:

Thank you!

