Representations of finite groups and wireless communication

Vít Tuček

Huawei Sweden R&D, Stockholm

Representation Theory XVII, 2022

Outline

- Q Grassmannian communication

伺 ト イヨト イヨト

Joint work with ...

 $\mathsf{Collaborators} = \mathsf{Huawei} \cup \mathsf{Cantabria}$

 $\label{eq:Huawei} \begin{array}{l} {\sf Huawei} = \{ {\sf Olivier} \; {\sf Verdier}, \; {\sf Gunnar} \; {\sf Peters} \} \\ {\sf Cantabria} = \{ {\sf Diego} \; {\sf Cuevas}, \; {\sf Javier} \; {\sf Álvarez-Vizoso}, \; {\sf Carlos} \; {\sf Beltrán}, \\ {\sf Ignacio} \; {\sf Santamaría} \} \end{array}$

Huawei = Huawei Technologies Sweden AB Cantabria = University of Cantabria

4 E 6 4 E 6

Section 1

Light introduction to wireless communication

Vít Tuček Representations of finite groups and wireless communication

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Basic wireless communication model

electromagnetic waves have amplitude and phase \rightsquigarrow signals are modeled using complex numbers

- M number of transmit antennas
- $X \in \mathbb{C}^{1 imes M}$ transmitted symbol
 - N number of receiving antennas
- $Y \in \mathbb{C}^{1 imes N}$ received symbol
- $H \in \mathbb{C}^{M \times N}$ channel matrix (captures the propagation through environment)
 - $Z \in \mathbb{C}^N$ white Gaussian noise (i.e. iid $\mathbb{C}\mathcal{N}(0,\sigma^2)$)

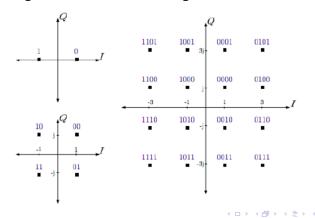
 $\rho\,$ signal to noise ratio (SNR) $\rho = \|X\|/\sigma$

$$Y = XH + Z \tag{1}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

How does one actually send data?

Pick signals X only from a finite set C (ideally of size 2^B) and given received Y give a best guess as to which X could have produced it given our current knowledge of H.



Vít Tuček Representations of finite groups and wireless communication

The channel matrix H

• Depends on frequency and time of the transmission

$$H: I_t \times I_f \to H(t, f) \in \mathbb{C}^{M \times N}$$

- Numerous models (e.g. coming from the Maxwell equations) but the baseline is the so called Rayleigh fading where we assume $H(f, t)_{i,j} \sim \mathbb{CN}(0, 1) = \mathcal{N}(0, 1_2)$.
- Can contain important correlations...

$$R_t = \mathbb{E}[HH^*] \in \mathbb{C}^{M \times M}, \quad R_r = \mathbb{E}[H^*H] \in \mathbb{C}^{N \times N},$$

周 ト イ ヨ ト イ ヨ ト

Estimation problems

At the beginning of the communication the receiver does not know the channel matrix $H \dots$

- the communication protocol dictates that each communication begins with known pilot symbols X_{p1},..., X_{ps}
- 2 use pilot symbols to estimate H, R_t, R_r

(日本) (日本) (日本)

Estimation problems

At the beginning of the communication the receiver does not know the channel matrix H...

- the communication protocol dictates that each communication begins with known pilot symbols X_{p1},..., X_{ps}
- 2 use pilot symbols to estimate H, R_t, R_r

But for high number of antennas this might be prohibitively expensive to do for each time and frequency!

Interpolation problem

Interpolate / extrapolate H, R_t in time and/or frequency domain.

Geometry in estimation

The covariance matrices have constraints (by definition)...

$$egin{aligned} R_t \in \mathit{Cov}(M) \ \mathcal{Cov}(M) &= \{A \in \mathbb{C}^{M imes M} \, | \, A^* = A \, \& \, \mathrm{spec}(A) \geq 0\} \ \mathrm{GL}_M(\mathbb{C}) / \, U(M) \subset \mathit{Cov}(M) \end{aligned}$$

What is a "correct geometry" for the problem? What about degenerate situations?

• • = • • = •

Precoding / beamforming

If the transmitter has access to the channel matrix H, we can improve the quality of the transmission:

 $X \rightsquigarrow W_H(X)$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Precoding / beamforming

If the transmitter has access to the channel matrix H, we can improve the quality of the transmission:

 $X \rightsquigarrow W_H(X)$

Zero forcing:

$$X \rightsquigarrow X(HH^*)^{-1}H$$

MMSE:

$$X \rightsquigarrow X(HH^* + 1/\rho I_M)^{-1}H$$

Truncated polynomial expansion:

$$X \rightsquigarrow X \sum_{j} w_{j} (HH^{*})^{j} H$$

• • = • • = •

SVD-based precoding

$$H = VDU^*$$
$$D = \operatorname{diag}(d_1, \dots, d_{\min\{M,N\}})$$
$$d_1 \ge d_2 \ge \cdots d_{\min\{M,N\}}$$

Coordinates of X wrt basis of left singular vectors, which correspond to small singular values, are drowned by the noise.

→ < Ξ → <</p>

SVD-based precoding

$$H = VDU^*$$
$$D = \operatorname{diag}(d_1, \dots, d_{\min\{M,N\}})$$
$$d_1 \ge d_2 \ge \cdots d_{\min\{M,N\}}$$

Coordinates of X wrt basis of left singular vectors, which correspond to small singular values, are drowned by the noise. If the transmitter knows the k largest singular vectors (v_1, \ldots, v_k) , it can use them for precoding and get better power efficiency / effective SNR.

$$X \rightsquigarrow X[v_1|\cdots|v_k]$$

Precoding geometry – k = 1

Left singular vectors are the eigenvectors of HH^* and hence they are defined up to nonzero complex multiple.

In other words:

$$\operatorname{Sing}_1 \simeq \mathbb{C}P^{M-1} \simeq U(M)/U(1) \times U(M-1)$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Precoding geometry – $k \in \{1, \ldots, M\}$

Generically,² the space of k singular vectors corresponding to k largest singular values is

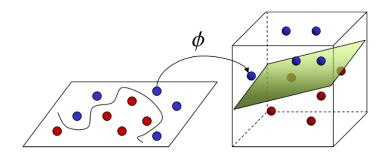
$$\operatorname{Sing}_k \simeq U(M)/U(1) \times \cdots \times U(1) \times U(M-k)$$

²In case of multiple singular values we have

$$U(M)/U(k_1) \times \cdots \times U(k_s) \times U(M - \sum_{i=1}^{s} k_i)$$

周 ト イ ヨ ト イ ヨ ト

Kernel based approach



Input Space

Feature Space

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Kernel based approach

How to linearize complicated space?

With reproducing kernel Hilbert space!

RKHS:

- X space we are interested in
- ${\mathcal H}$ Hilbert space

 $\Phi \colon X \to \mathcal{H}$ feature map

such that there exists $k \colon X \times X \to \mathbb{C}$ with the property:

$$\forall x, y \in X \quad k(x, y) = \langle \Phi(x) | \Phi(y) \rangle_{\mathcal{H}}$$

Any finite computation involving just the scalar product can be done by evaluating the kernel function.

Representation theory to the rescue?

Fix a closed subgroup $K \leq G$ and a unitary G-representation \mathcal{H} .

For any $v_0 \in \mathcal{H}^K$ the closed *G*-invariant subspace \mathcal{H}_0 generated by v_0 is RKHS which is realized on $\mathcal{C}(G/K)$.

Remark: For applications, we care only about effective algorithm for evaluating the kernel function with "good enough" numerical precision.

A (1) A (2) A (2) A

Representation theory to the rescue?

Fix a closed subgroup $K \leq G$ and a unitary G-representation \mathcal{H} .

For any $v_0 \in \mathcal{H}^K$ the closed *G*-invariant subspace \mathcal{H}_0 generated by v_0 is RKHS which is realized on $\mathcal{C}(G/K)$.

Remark: For applications, we care only about effective algorithm for evaluating the kernel function with "good enough" numerical precision.

Possible future project, not yet approved. :-/

く 伺 ト く ラ ト く ラ ト

Section 2

Grassmannian communication

Vít Tuček Representations of finite groups and wireless communication

(日)

Block fading

Assume that the channel matrix does not change for \mathcal{T} transmissions:

$$Y_1 = X_1 H + Z_1$$

$$\vdots$$

$$Y_T = X_T H + Z_T$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Block fading

Assume that the channel matrix does not change for T transmissions:

Y = XH + Z

- $X \in \mathbb{C}^{T \times M}$ transmitted symbol
- $Y \in \mathbb{C}^{T \times N}$ received symbol
- $H \in \mathbb{C}^{M \times N}$ channel matrix (captures the propagation through environment)
- $Z \in \mathbb{C}^{T \times N}$ white Gaussian noise (i.e. iid $\mathbb{C}\mathcal{N}(0, \sigma^2)$)
 - $\rho\,$ signal to noise ratio (SNR) $\rho = \|X\|_{F}/\sigma$

ヘロト ヘ河ト ヘヨト ヘヨト

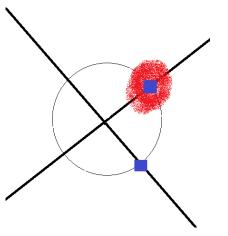
Grassmannian communication

If
$$M = N$$
 and $Z = 0$ then we have

$$Y = XH$$

and

 $\operatorname{colspan}(X) = \operatorname{colspan}(Y).$

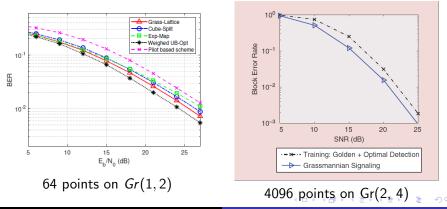


• • • • • • •

Classical vs Grassmannian signaling

Degrees of freedom:

classicaly $X \in \mathbb{C}^{T \times M} \dots MT$ Grassmannian $X \in Gr(M, T) \dots TM - M^2 = M(T - M)$



Vít Tuček

Representations of finite groups and wireless communication

Details of Grassmannian signaling

We assume that H is iid $\mathbb{CN}(0,1)$ (Rayleigh block fading). We start with the conditional probability of receiving $Y \in \mathbb{C}^N$ assuming $X \in \mathbb{C}^M$ was sent.

 $\mathbf{Y} = X\mathbf{H} + \mathbf{Z}$

$$P(Y|X) = \frac{\exp(-\operatorname{tr}(Y^*(1_T + XX^*)^{-1}Y))}{\pi^{TN}\det(1_T + XX^*)}$$

Observation:

$$\forall h \in U(M): P(Y|Xh) = P(Y|X)$$

$$\forall g \in U(T): P(gY|gX) = P(Y|X)$$

• • = • • = •

Capacity

Theorem (Marzetta-Hochwald-Zheng-Tse-Durisi-Riegler)

Assume $T \ge M + N$. Given a constraint on power of the signal (e.g. $||X||_F = 1$) the distribution on X that maximizes the Shannon information I(Y; X) is the uniform distribution on the Grassmannian.

$$I(Y;X) = \mathbb{E} \log \frac{p(Y|X)}{p(Y)}$$
$$C = \sup_{p_X} I(Y;X)$$

Capacity

Proof.

- 2 Let p_0 be a fixed probability distribution of X and define

$$p_1(X) = \frac{1}{|U(T)||U(M)|} \int_{g \in U(T)} \int_{h \in U(M)} p_0(g^{-1}Xh).$$

Since I(Y|X) is concave wrt p_X we have by the Jensen's inequality

$$I(Y|X_{p_1}) \geq I(Y|X_{p_0}).$$

Capacity

Proof.

- Solution Capacity achieving distribution X = gD where g is uniformly distributed on U(T) and independent of D which is $T \times M$ nonnegative diagonal matrix whose pdf is invariant with respect to permutations.
- For T ≥ M + N we can drop the diagonal factor, for T < M + N the capacity achieving distribution is nontrivial.

Detection

In practical situation we consider finite set of tall unitary matrices $X^*X = 1_M$.

$$\mathcal{C} = \{X_1, \ldots, X_k\}$$

Given a received signal Y, how do we guess which X_i was sent?

Definition (Maximum Likelihood Detector)

$$\mathit{ML}(Y) = rg \max_{X \in \mathcal{C}} p(Y|X)$$

< ロ > < 同 > < 回 > < 回 > .

Towards codebook criteria

$$P(Y|X) = \frac{\exp(-\operatorname{tr}(Y^*(1_T + XX^*)^{-1}Y))}{\pi^{TN} \det(1_T + XX^*)}$$

Since we assume $X^*X = 1_M$ we can simplify

$$\mathit{ML}(Y) = rgmax_{X \in \mathcal{C}} \operatorname{tr}(YY^*XX^*).$$

Moreover, we can interpret XX^* as the orthogonal projection to the subspace of \mathbb{C}^T spanned by the columns of X.

Grassmannians

$$Gr(M, T) = \{ V \leq \mathbb{C}^T \mid \dim V = M \}$$

$$\simeq U(T)/U(M) \times U(T - M)$$

$$\simeq \{ X \in M(T, M, \mathbb{C}) \mid X^*X = 1_M \}/U(M)$$

$$\simeq \{ P \in M(T, T, \mathbb{C}) \mid P^* = P \& P^2 = P \& \operatorname{rank} P = M \}$$

$$= \{ P \in \operatorname{Sym}(T) \mid P^2 = P \& \operatorname{tr} P = M \}$$

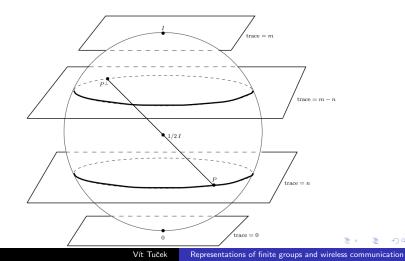
Frobenius inner product on Sym(T):

$$\langle A | B \rangle_F = \operatorname{tr}(A^*B)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Embedings of Grassmannians

J.H. Conway, R.H. Hardin, N.J.A. Sloane: *Packing Lines, Planes, etc.: Packings in Grassmannian Space*



Grassmannians

Definition (Chordal distance)

$$d_{Ch}(A,B) = \|A - B\|_F$$

On Gr(M, T) this restricts to

$$d_{Ch}(A,B) = \sqrt{2}\sqrt{M - \operatorname{tr}(AA^*BB^*)}$$

and so

$$ML(Y) = \operatorname*{arg\,min}_{X \in \mathcal{C}} d_{Ch}(YY^*, XX^*)$$

イロト イポト イヨト イヨト

э

Towards codebook criteria

Problem

What is the optimal constellation $C = \{X_1, \ldots, X_k\}$ of a given size?

Since our ML detector is picking up the closest constellation point wrt the chordal distance a good choice might be

Chordal criterion

$$\mathcal{C}_{ch} = rg\max_{\mathcal{C}} \max_{X_i
eq X_j \in \mathcal{C}} \min_{d_{ch}(X_i, X_j)}$$

but can we justify that?

-

Towards codebook criteria – pairwise error

Pairwise error of mistaking X_i for X_j is

$$P_e(X_i, X_j) = \sum_{j=1}^M \operatorname{Res}_{w=\imath a_j} \left(\frac{-1}{w + \imath/2} \prod_{m=1}^M \left(\frac{1+\alpha}{\alpha^2 (1-d_m^2)(w^2 + a_m^2)} \right) \right)$$

where $\alpha = \rho T/M$, $a_j^2 = 1/4 + (1 + \alpha)/(\alpha^2(1 - d_j^2))$ and $1 \ge d_1 \ge d_2 \cdots \ge d_m$ are the singular values³ of $X_j^* X_i$. The product omits the terms where $d_m = 1$.

³the cosines of the principal angles between the subspaces $[X_i]$ and $[X_j] \ge -\infty$

Towards codebook criteria – pairwise error

Pairwise error of mistaking X_i for X_j is

$$P_e(X_i, X_j) = \sum_{j=1}^M \operatorname{Res}_{w=\imath a_j} \left(\frac{-1}{w + \imath/2} \prod_{m=1}^M \left(\frac{1+\alpha}{\alpha^2 (1-d_m^2)(w^2 + a_m^2)} \right) \right)$$

where $\alpha = \rho T/M$, $a_j^2 = 1/4 + (1 + \alpha)/(\alpha^2(1 - d_j^2))$ and $1 \ge d_1 \ge d_2 \cdots \ge d_m$ are the singular values³ of $X_j^* X_i$. The product omits the terms where $d_m = 1$.

Theorem (Cuevas-Santamaria-T)

$$P_{e}(X_{i}, X_{j}) = \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \prod_{m=1}^{M} \left(1 + \frac{\alpha^{2}(1 - d_{m}^{2})}{4(1 + \alpha)\cos^{2}\theta} \right)^{-N} \mathrm{d}\theta$$

³the cosines of the principal angles between the subspaces $[X_i]$ and $[X_j] \ge -\infty$

Towards codebook criteria – pairwise error

For $\rho \rightarrow 0$ we have

$$P_e(X_i, X_j) = 1/2 - \frac{T\sqrt{N}d_{ch}(X_i, X_j)}{4M} + o(\rho)$$

Chordal criterion

$$\mathcal{C}_{ch} = rg\max_{\mathcal{C}} \min_{X_i
eq X_j \in \mathcal{C}} d_{ch}(X_i, X_j)$$

< ロ > < 同 > < 三 > < 三 > 、

Towards codebook criteria – pairwise error

For $\rho \to \infty$ we have

$$\lim_{\rho \to \infty} \rho^{MN} P_e(X_i, X_j) = \frac{1}{2} \left(\frac{4M}{T}\right)^N M \frac{(2NM-1)!!}{(2NM)!!} \prod_{m=1}^M (1-d_m^2)^{-N}$$

Coherence criterion

$$\mathcal{C}_{coh} = rg\max_{\mathcal{C}} \min_{X_i
eq X_j \in \mathcal{C}} \det(1_M - X_i^* X_j X_j^* X_i)^N$$

Union bound criterion

$$\mathcal{C}_{UB} = rgmin_{\mathcal{C}} \sum_{i < j} \det(\mathbb{1}_M - X_i^* X_j X_j^* X_i)^{-N}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Section 3

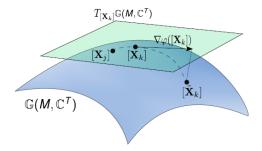
Constellations of subspaces

Vít Tuček Representations of finite groups and wireless communication

▲ □ ▶ ▲ □ ▶ ▲

Constellation design - numerical optimization

- Start with random constellation of the given number K of points.
- At each iteration, for each point X_k find the L "closest points" and move X_k away from its neighbors.



Works nice but we want $|\mathcal{C}| = 2^B \dots$

GrassLattice

We can efficiently construct & detect on rectangular grids.

Problem

Can we map such a grid invertibly into the Grassmannian so that it is near optimal wrt our cost functions?

• • = • • =

GrassLattice (M = 1)

() Take the unit hypercube in $\mathbb{R}^{2(T-1)}$ and map¹ it through

$$(a_1, \ldots, a_n, b_1, \ldots, b_{T-1}) \mapsto (z_i = F^{-1}(a_i) + \imath F^{-1}(b_i))_{i=1}^{T-1} \in \mathbb{C}^{T-1}$$

 ^{1}F is the distribution function of $\mathcal{N}(0,1/2)$

GrassLattice (M = 1)

() Take the unit hypercube in $\mathbb{R}^{2(T-1)}$ and map¹ it through

$$(a_1, \ldots, a_n, b_1, \ldots, b_{T-1}) \mapsto (z_i = F^{-1}(a_i) + \imath F^{-1}(b_i))_{i=1}^{T-1} \in \mathbb{C}^{T-1}$$

Solution 3 Solutio

$$z \mapsto w = zf(||z||)$$

where $f(r) = \frac{1}{r} \left(1 - \exp(-t^2) \sum_{k=0}^{T-2} \frac{r^2 k}{k!}\right)^{1/2(T-1)}$

 ${}^{1}F$ is the distribution function of $\mathcal{N}(0,1/2)$

GrassLattice (M = 1)

() Take the unit hypercube in $\mathbb{R}^{2(T-1)}$ and map¹ it through

$$(a_1, \ldots, a_n, b_1, \ldots, b_{T-1}) \mapsto (z_i = F^{-1}(a_i) + \imath F^{-1}(b_i))_{i=1}^{T-1} \in \mathbb{C}^{T-1}$$

Solution 3 Solutio

$$z\mapsto w=zf(\|z\|)$$

where $f(r) = \frac{1}{r} \left(1 - \exp(-t^2) \sum_{k=0}^{T-2} \frac{r^2 k}{k!} \right)^{1/2(T-1)}$ (it makes w is uniformly distributed in the unit disc $B(0,1) \in \mathbb{C}^n$)

 1F is the distribution function of $\mathcal{N}(0,1/2)$

GrassLattice (M = 1)

() Take the unit hypercube in $\mathbb{R}^{2(T-1)}$ and map¹ it through

$$(a_1, \ldots, a_n, b_1, \ldots, b_{T-1}) \mapsto (z_i = F^{-1}(a_i) + \imath F^{-1}(b_i))_{i=1}^{T-1} \in \mathbb{C}^{T-1}$$

Solution 3 Solutio

$$z \mapsto w = zf(||z||)$$
where $f(r) = \frac{1}{r} \left(1 - \exp(-t^2) \sum_{k=0}^{T-2} \frac{r^2k}{k!}\right)^{1/2(T-1)}$
(it makes we is uniformly distributed in the unit disc $P(0, 1)$

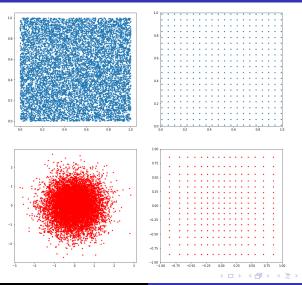
(it makes w is uniformly distributed in the unit disc $B(0,1)\in\mathbb{C}^n$)

3 Map w to the Grassmannian by

$$w\mapsto (\sqrt{1-|w|^2},w)$$

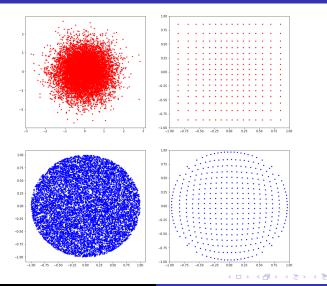
 ${}^{1}F$ is the distribution function of $\mathcal{N}(0, 1/2)$

GrassLattice (M = 1) in pictures



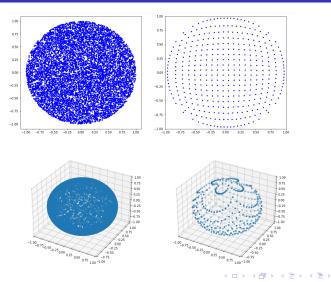
Vít Tuček

GrassLattice (M = 1) in pictures



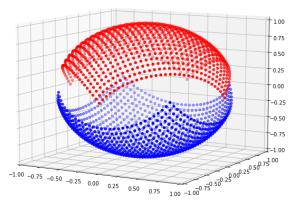
Vít Tuček

GrassLattice (M = 1) in pictures



GrassLattice (M = 1) – the other chart?

We can alternatively use $w \mapsto (w, \sqrt{1 - |w|^2})$ and get twice as many points if we shrink the lattice and rotate one chart



What rotations should one choose for T > 2? $\Box \rightarrow \langle B \rangle \land \exists \rightarrow \langle B \rangle$

Vít Tuček

GrassLattice for M > 1?

The last map $w \mapsto (\sqrt{1 - |w|^2}, w)$ is actually not just measure preserving but even symplectomorphism.

For general M, the map

$$W \mapsto \begin{pmatrix} \sqrt{1_M - W^*W} \\ W \end{pmatrix}$$

is also symplectomorphism map into Gr(M, T) from the set of matrices where the square root is well defined:

$$\{W \in \mathbb{C}^{(\mathcal{T}-M) imes M} \, | \, \|W\|_{op} < 1\}$$
 (Cartan domain of type I)

・ 同 ト ・ ヨ ト ・ ヨ ト

GrassLattice for M > 1?

Problem

Let D be a Cartan symmetric domain of type I.

Can we explicitly map a unit hypercube into D in a measure-preserving way?

Given $B \in \mathbb{N}$, can we efficiently construct 2^B points in D so that the resulting subspace constellation is close to optimal?

| 4 同 ト 4 ヨ ト 4 ヨ ト

Finite group constellations

Given a finite subgroup $G \le U(T)$ and a basepoint $[B] \in Gr(M, T)$ we can consider its orbit as a constellation

 $\mathcal{C}_{G,B} = \{[gB] \, | \, g \in G\}$

- basepoint matters
- generically |C_{G,B}| = |G| but smaller orbits can be also useful

• • = • • = •

Example [Pitaval, Tirkkonen]

The following basepoint is optimal for two dimensional representation of the dihedral group D_8 giving rise to a constellation of 8 points on $\mathbb{C}P^1$.

$$\begin{pmatrix} \cos\frac{1}{4}\arccos(\frac{3}{7}-\frac{6\sqrt{2}}{7})\\ \left(\frac{1}{2^{1/4}}+\imath\sqrt{1-\frac{1}{\sqrt{2}}}\right)\sin\frac{1}{4}\arccos(\frac{3}{7}-\frac{6\sqrt{2}}{7}) \end{pmatrix}$$

Finite group constellations - finding good basepoint

- Instead of optimizing over $\prod_{k=1}^{K} Gr(M, T)$ we optimize just over Gr(M, T).
- Our cost functions are U(T)-invariant which reduces the evaluation complexity from K^2 to K:

 $\{d_{ch}([g_iB], [g_jB]) | (g_i, g_j) \in G\} = \{d_{ch}([gB], [B]) | g \in G\}$

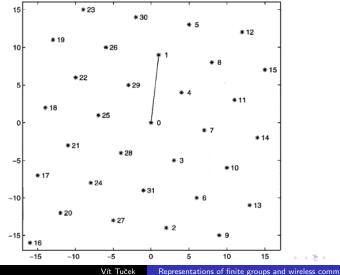
• Further simplifications:

Criteria for group-based constellations

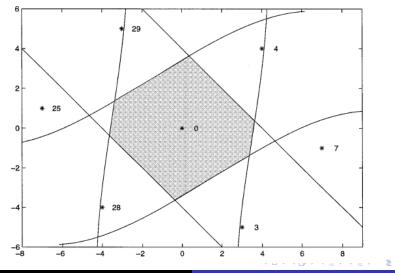
$$\mathcal{C}_{ch} \longleftarrow \arg\min_{[B] \in Gr(M,T)} \max_{g \in G} \operatorname{Tr}[(B^*gB)(B^*g^{-1}B)]$$
$$\mathcal{C}_{UB} \longleftarrow \arg\min_{[B] \in Gr(M,T)} \sum_{g \in G} \det[1_M - (B^*gB)(B^*g^{-1}B)]^{-N}$$

Constellations of subspaces

Detection for abelian subgroups



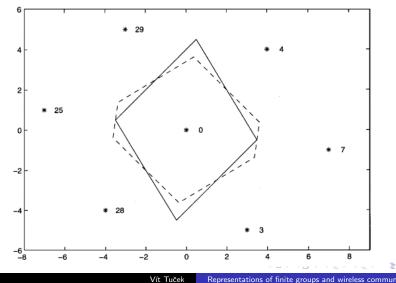
Detection for abelian subgroups



Vít Tuček

Light introduction to wireless communication Constellations of subspaces

Detection for abelian subgroups



Finite group constellations – advantages

- encoding and storage: $G = \{g_1^{i_1} \cdots g_k^{i_k} \mid i_j = 1, \dots, N_j\} \text{ and } k \sim \log |G|$
- for each group one gets constellation for any Grassmannian (add transmit antennas = store one more basepoint)
- some provably optimal constellations are of this type (see e.g. Conway et al)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Finite group constellations – performance

Percentage of bound attained

Finite group constellations – obstacles

Problem

Which subgroups should we choose?

For our applications we could in principle just numerically explore finite subgroups of U(T) for $T \le 10$, but classification of finite subgroups of U(T) is known only for $T \le 4$

< 同 > < 三 > < 三 > -

Finite group constellations – obstacles

Theorem (Jordan)

There exists a real function f such that every finite subgroup of $GL_d(\mathbb{C})$ has a normal Abelian subgroup of index bounded by f(d).

$$f(d) = (d + 1)!$$
 for $d \ge 71$

- 4 同 ト 4 回 ト -

Finite group constellations – group approximability

Let $\epsilon > 0$.

Vít Tuček Representations of finite groups and wireless communication

.

Finite group constellations – group approximability

Let $\epsilon > 0$. Consider a metric group *G* with a left-invariant distance function. We say that *G* is ϵ -approximable if there exists a finite subset $H \subset G$ and with its own group law \circ_H such that

- For each $g \in G$ there exists a point in H of distance at most ϵ .
- **2** For each $a, b \in H$ we have $d(a \circ_G b, a \circ_H b) \leq \epsilon$.

Group G is approximable if it is ϵ -approximable for any $\epsilon > 0$.

く 伺 ト く ラ ト く ラ ト

Finite group constellations – obstacles

Theorem (Turing)

- If a metric group is approximable and has a faithfull representation in GL(ℂ, d), then it is approximable by groups which also have faithful degree d linear representations.
- **2** If a Lie group is approximable, then it is compact and abelian.

• • = • • = •

Thank you!

< ロ > < 回 > < 回 > < 回 > < 回 >

æ