Dirac inequality for highest weight Harish-Chandra modules

Ana Prlić

University of Zagreb

(joint work with Pavle Pandžić, Vladimír Souček, Vít Tuček)

Dubrovnik, October 2022

Dirac inequality for highest weight Harish-Chandra modules

Supported by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004).

Europska unija Zajedno do fondova EU

Notation

- G : a connected simply connected noncompact simple Lie group of Hermitian type
- \triangleright Θ : a Cartan involution
- $K = G^{\Theta}$: the group of fixed points of Θ
- ▶ \mathfrak{g}_0 : Lie algebra of *G* with Cartan involution $\theta = d\Theta$.
- ▶ $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$: Cartan decomposition corresponding to θ .

$$\mathfrak{k}_0 = \{ x \in \mathfrak{g}_{\mathfrak{o}} \, | \, \theta(x) = x \}, \quad \mathfrak{p}_{\mathfrak{o}} = \{ x \in \mathfrak{g}_{\mathfrak{o}} \, | \, \theta(x) = -x \}$$

• \mathfrak{t}_0 = common Cartan subalgebra of \mathfrak{g}_0 and \mathfrak{k}_0

Notation

- $\mathfrak{g}, \mathfrak{k}, \mathfrak{t}$: complexifications of Lie algebras $\mathfrak{g}_0, \mathfrak{k}_0$ and \mathfrak{t}_0
- Δ_{t}^{+} : the set of positive compact roots
- p = p⁺ ⊕ p⁻: a K−invariant decomposition, p[±] are abelian subalgebras of p
- ρ : the half-sum of positive roots
- $W_{\mathfrak{k}}$: Weyl group of $(\mathfrak{k}, \mathfrak{t})$
- ▶ λ^+ : the unique dominant $W_{\mathfrak{k}}$ -conjugate of $\lambda \in \mathfrak{t}^*$

• $N(\lambda)$: the generalized Verma module

 $N(\lambda) = S(\mathfrak{p}^-) \otimes F_{\lambda},$

where F_{λ} is the irreducible \mathfrak{k} -module with highest weight λ . Here λ is also \mathfrak{g} -highest weight of $N(\lambda)$.

- Highest weight modules are generated by a weight vector that is annihilated by the action of all positive root spaces in g.
- $L(\lambda)$: the irreducible quotient of $N(\lambda)$.
- L(λ) is called unitarizable if it is equivalent to the g-module of t-finite vectors in a unitary representations of G.

Unitary highest weight modules

- The t-finiteness implies that λ must be Δ⁺_t-dominant integral and unitarity of L(λ) implies that λ is a real weight
- ► $\lambda \in \mathfrak{t}^*$: $\Delta_{\mathfrak{k}}^+$ dominant integral, real
- Goal: determine those L(λ) which correspond to unitary irreducible representation of G.
- Harish-Chandra: G admits non-trivial unitary highest weight modules precisely when (G, K) is a Hermitian symmetric pair.
- ► That is precisely when the Lie algebra is one of the Lie algebras: $\mathfrak{sp}(2n, \mathbb{R}), \mathfrak{so}^*(2n), \mathfrak{su}(p,q) p \leq q, \mathfrak{so}(2, 2n-2), \mathfrak{so}(2, 2n-1), \mathfrak{e}_6, \mathfrak{e}_7$

Dirac operator

- $U(\mathfrak{g})$ = universal enveloping algebra of \mathfrak{g} .
- $C(\mathfrak{p}) =$ Clifford algebra of \mathfrak{p} with respect to Killing form *B*.
- $\square \text{ Dirac operator } D \in U(\mathfrak{g}) \otimes C(\mathfrak{p})$

$$D = \sum_i b_i \otimes d_i$$

- b_i basis of \mathfrak{p} , d_i dual basis of \mathfrak{p} with respect to B.
- D is independent of the choice of b_i, K-invariant for adjoint action on both factors.
- $S = \text{spin module}, S = \bigwedge \mathfrak{p}^+$

$$D^2 = -(\mathsf{Cas}_{\mathfrak{g}} \otimes 1 + \|\rho\|^2) + (\mathsf{Cas}_{\mathfrak{k}_{\Delta}} + \|\rho_{\mathfrak{k}}^2\|)$$

Necessary condition for unitarity: Dirac inequality

$$D^2 \ge 0$$

- The *K*-types of S(p⁻) are very well known. They are called the Schmid modules.
- The general Schmid module s is a nonnegative integer combination of the basic Schmid modules

PRW component

- ► F_{μ}, F_{ν} : finite-dimensional -modules with highest weights μ, ν
- What are the *K*-types of $F_{\mu} \otimes F_{\nu}$???
- Cartan component: $F_{\mu+\nu}$
- Parthasarthy Ranga Rao Varadarajan (PRV)

Theorem (Parthasarthy - Ranga Rao - Varadarajan)

Let ν^- be the lowest weight of F_{ν} , and let $\tau = (\mu + \nu^-)^+$. Then F_{τ} appears in $F_{\mu} \otimes F_{\nu}$, with multiplicity one. Moreover, for any F_{σ} appearing in $F_{\mu} \otimes F_{\nu}$,

$$\|\sigma + \rho_{\mathfrak{k}}\|^2 \ge \|\tau + \rho_{\mathfrak{k}}\|^2,$$

with equality attained if and only if $\sigma = \tau$.

- EHW: complete classification of the unitary highest weight modules using the Dirac inequality, Jantzen's fomula and Howe's theory of dual pairs
- L(λ) is unitarizable if and only if for all K−types F_µ in L(λ) other than F_λ the strict Dirac inequality holds, that is

$$\|\mu+\rho\|^2 > \|\lambda+\rho\|^2$$

The same result can be proved more directly using the Dirac inequality in a more substantial way

Dirac inequality for the PRW component

We check the Dirac inequality for the PRW component of F_{λ} tensored with each *K*-type of $S(\mathfrak{p}^{-})$.

Theorem

(1) Let s_0 be a Schmid module such that the strict Dirac inequality

$$\|(\lambda - s)^{+} + \rho\|^{2} > \|\lambda + \rho\|^{2}$$
(1)

holds for any Schmid module s of strictly lower level than s_0 , and such that

$$\|(\lambda - s_0)^+ + \rho\|^2 < \|\lambda + \rho\|^2.$$

Then $L(\lambda)$ is not unitary.

(2) If (1) holds for all Schmid modules s, then $N(\lambda)$ is irreducible and unitary.

Lemma

Let $M(\lambda)$ be the maximal submodule of the generalized Verma module $N(\lambda)$, and let $F_{\mu} \subset M(\lambda)$ be a highest K-type of $M(\lambda)$, with highest weight μ . Then

$$D^2 = 0$$
 on $F_\mu \otimes 1 \subset N(\lambda) \otimes S$.

Equivalently,

$$\|\mu + \rho\|^2 = \|\lambda + \rho\|^2.$$

Proof (1)

- By assumption, the Dirac inequality fails for the *K*-type (λ − s₀)⁺ of N(λ)
- We need to show that (λ − s₀)⁺ is a *K*-type of L(λ) and not just of N(λ).
- Suppose (λ − s₀)⁺ is a *K*-type of the maximal submodule M(λ) of N(λ).
- Then, by previous Lemma, it can not be a highest *K*-type of $M(\lambda)$.
- Thus it must have strictly lower level than some highest *K*-type of *M*(λ)
- On that highest K-type the Dirac inequality would be an equality, and that is a contradiction with the assumption.

(λ − s₀)⁺ can not be a K-type of M(λ), so it must be a K-type of L(λ)

The assumption implies that

$$\|\mu+\rho\|^2>\|\lambda+\rho\|^2$$

for any *K*-type $\mu \neq \lambda$ of the generalized Verma module $N(\lambda)$.

- **b** By previous Lemma, it follows that $N(\lambda)$ is irreducible.
- Unitarity of $N(\lambda)$ follows from the strict Dirac inequality (EHW)

 $\mathfrak{sp}(2n,\mathbb{R})$

The basic Schmid -submodules of S(p⁻) have lowest weights -s_i, where

$$s_i = (\underbrace{2, \dots, 2}_{i}, 0, \dots, 0), \qquad i = 1, \dots, n.$$

- The highest weight (g, K)-modules have highest weight of the form λ = (λ₁, λ₂,..., λ_n), where λ_i − λ_j ∈ N₀, i > j, ρ = (n, n − 1,..., 2, 1)
- Let $q \leq r$ be integers in [1, n] such that

$$\lambda = (\underbrace{\lambda_1, \ldots, \lambda_1}_{q}, \underbrace{\lambda_1 - 1, \ldots, \lambda_1 - 1}_{r-q}, \lambda_{r+1}, \ldots, \lambda_n),$$

with $\lambda_1 - 2 \geq \lambda_{r+1} \geq \cdots \geq \lambda_n$.

$$(\lambda - s_1)^+ = (\underbrace{\lambda_1, \dots, \lambda_1}_{q-1}, \underbrace{\lambda_1 - 1, \dots, \lambda_1 - 1}_{r-q}, \lambda_1 - 2, \lambda_{r+1}, \dots, \lambda_n)$$
$$= \lambda - (\epsilon_q + \epsilon_r).$$

The basic necessary condition for unitarity is the Dirac inequality

$$\|(\lambda - s_1)^+ + \rho\|^2 \ge \|\lambda + \rho\|^2.$$

► $\lambda_1 \leq -n + \frac{r+q}{2}$.

The Dirac inequality for $s_i, i \in \{2, \ldots, q\}$

$$(\lambda - s_i)^+ = (\underbrace{\lambda_1}_{q-i}, \underbrace{\lambda_1 - 1}_{i}, \underbrace{\lambda_1 - 1}_{r-q-i}, \underbrace{\lambda_1 - 2}_{i}, \lambda_{r+1}, \dots, \lambda_n)$$

$$\lambda = (\underbrace{\lambda_1}_{q-i}, \underbrace{\lambda_1}_{i}, \underbrace{\lambda_1 - 1}_{r-q-i}, \underbrace{\lambda_1 - 1}_{i}, \lambda_{r+1}, \dots, \lambda_n)$$

$$\| (\lambda - s_i)^+ + \rho \|^2 \ge \| \lambda + \rho \|^2$$

$$\lambda_1 \le -n + \frac{r+q-i+1}{2}$$

$\mathfrak{sp}(2n,\mathbb{R})$, general Schmid module

Lemma

1

) If for some integer
$$i \in [1,q]$$

$$\lambda_1 < -n + \frac{r+q-i+1}{2},$$

then the Dirac inequality holds strictly for any Schmid module $s = (2b_1, \ldots, 2b_n), b_j \in \mathbb{Z}, b_1 \ge \cdots \ge b_n \ge 0$ with at most *i* nonzero components, *i.e.*

$$\|(\lambda - s)^{+} + \rho\|^{2} > \|\lambda + \rho\|^{2}.$$
 (2)

If

$$\lambda_1 < -n + \frac{r+1}{2},$$

then the Dirac inequality holds strictly for any Schmid module s.

Let $\lambda = (\underbrace{\lambda_1, \dots, \lambda_1}_{q}, \underbrace{\lambda_1 - 1, \dots, \lambda_1 - 1}_{r-q}, \lambda_{r+1}, \dots, \lambda_n)$. Then: 1 If $\lambda_1 > -n + \frac{r+q}{2}$,

then $L(\lambda)$ is not unitary.

2 If for some integer $i \in [1, q - 1]$

$$-n + \frac{r+q-i}{2} < \lambda_1 < -n + \frac{r+q-i+1}{2},$$

then $L(\lambda)$ is not unitary.

If

$$\lambda_1 < -n + \frac{r+1}{2},$$

then $L(\lambda) = N(\lambda)$ and it is unitary.

\mathfrak{e}_6 , roots

- We consider roots as 8-tuples which have the same sixth and seventh coordinate, and the eight coordinate is equal to minus the sixth coordinate.
- The positive compact roots are

$$\epsilon_i \pm \epsilon_j, \quad 5 \ge i > j.$$

and the positive noncompact roots are

$$\frac{1}{2}\left(\epsilon_8-\epsilon_7-\epsilon_6+\sum_{i=1}^5(-1)^{n(i)}\epsilon_i\right),\quad \sum_{i=1}^5n(i) \text{ even}.$$

In this case

$$\rho = (0, 1, 2, 3, 4, -4, -4, 4).$$

e₆, Schmid modules, simple roots

The set of simple roots is

$$\Pi = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6\}$$

= $\{\frac{1}{2}(\epsilon_8 - \epsilon_7 - \epsilon_6 - \epsilon_5 - \epsilon_4 - \epsilon_3 - \epsilon_2 + \epsilon_1), \epsilon_2 + \epsilon_1, \epsilon_2 - \epsilon_1, \epsilon_3 - \epsilon_2, \epsilon_4 - \epsilon_3, \epsilon_5 - \epsilon_4\}.$

The numbering of simple roots in the Dynkin diagram is given by

$$\binom{13456}{2}.$$

The strongly orthogonal non-compact positive roots are

$$\beta_{1} = \begin{pmatrix} 12321\\ 2 \end{pmatrix} = \alpha_{1} + 2\alpha_{3} + 3\alpha_{4} + 2\alpha_{5} + \alpha_{6} + 2\alpha_{2}$$
$$= \frac{1}{2} (1, 1, 1, 1, 1, -1, -1, 1),$$
$$\beta_{2} = \begin{pmatrix} 11111\\ 0 \end{pmatrix} = \alpha_{1} + \alpha_{3} + \alpha_{4} + \alpha_{5} + \alpha_{6}$$
$$= \frac{1}{2} (-1, -1, -1, -1, 1, -1, -1, 1).$$

The basic Schmid \mathfrak{k} -modules in $S(\mathfrak{p}^-)$ have lowest weight $-s_i$, i = 1, 2, where

$$s_1 = \beta_1 = \frac{1}{2} (1, 1, 1, 1, 1, -1, -1, 1),$$

$$s_2 = \beta_1 + \beta_2 = (0, 0, 0, 0, 1, -1, -1, 1).$$

The highest weight (\mathfrak{g}, K) -modules have highest weights of the form

$$\begin{split} \lambda &= (\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6, \lambda_6, -\lambda_6), \quad |\lambda_1| \le \lambda_2 \le \lambda_3 \le \lambda_4 \le \lambda_5, \\ \lambda_i - \lambda_j \in \mathbb{Z}, \ 2\lambda_i \in \mathbb{Z}, \quad i, j \in \{1, 2, 3, 4, 5\} \end{split}$$

In this case

$$\rho = (0, 1, 2, 3, 4, -4, -4, 4).$$

$$||(\lambda - s_i)^+ + \rho||^2 \ge ||\lambda + \rho||^2, \quad i \in \{1, 2\}$$

► **Case 1:** $\lambda_i = 0$, $i \in \{1, 2, 3, 4, 5\}$. The basic Dirac inequality can be written as

$$\lambda_6 \ge 0.$$

The Dirac inequality for the second basic Schmid module is equivalent to

$$\lambda_6 \geq 2.$$

► **Case 2:** $\lambda_i = 0$, $i \in \{1, 2, 3, 4\}$, $\lambda_5 \neq 0$. In this case the basic Dirac inequality can be written as

$$\lambda_5 + 8 \le 3\lambda_6.$$

The Dirac inequality for the second basic Schmid module is equivalent to

$$\lambda_5 + 14 \le 3\lambda_6.$$

Case 3: (λ₁, λ₂, λ₃, λ₄) ≠ (0, 0, 0, 0). The Dirac inequality for the second basic Schmid module is automatically satisfied if the basic Dirac inequality holds.

\mathfrak{e}_6 , case 1

Theorem

(Case 1) Let λ be the highest weight of the form $\lambda = (0, 0, 0, 0, 0, \lambda_6, \lambda_6, -\lambda_6)$.

1 If $\lambda_6 > 2$ then λ satisfies the strict Dirac inequality

 $\|(\lambda - s_{a,b})^+ + \rho\|^2 > \|\lambda + \rho\|^2 \quad \forall a, b \in \mathbb{N}_0, a + b \neq 0.$

2 If $0 < \lambda_6 < 2$ then

$$\|(\lambda - s_2)^+ + \rho\|^2 < \|\lambda + \rho\|^2$$

and the strict Dirac inequality holds for any Schmid module of strictly lower level than s_2 .

If
$$\lambda_6 < 0$$
 than the basic Dirac inequality fails.

Theorem

Let λ be the highest weight of the form $\lambda=(0,0,0,0,\lambda_5,\lambda_6,\lambda_6,-\lambda_6)$

1 If $3\lambda_6 - \lambda_5 > 14$ than λ satisfies the strict Dirac inequality

 $\|(\lambda - s_{a,b})^+ + \rho\|^2 > \|\lambda + \rho\|^2 \quad \forall a, b \in \mathbb{N}_0, a + b \neq 0.$

2) If
$$8 < 3\lambda_6 - \lambda_5 < 14$$
 then

$$\|(\lambda - s_2)^+ + \rho\|^2 < \|\lambda + \rho\|^2$$

and the strict Dirac inequality holds for any Schmid module of strictly lower level than s_2 .

If
$$3\lambda_6 - \lambda_5 < 8$$
 than the basic Dirac inequality fails.

Theorem

(Case 3) Let λ be the highest weight as in Case 3, i.e., $(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \neq (0, 0, 0, 0)$ such that strict basic Dirac inequality holds. Then

$$\|(\lambda - s_{a,b})^+ + \rho\|^2 - \|\lambda + \rho\|^2 > 0 \quad \forall a, b \in \mathbb{N}_0, (a, b) \neq (0, 0).$$

Thank you for your attention!