On K-types of irreducible representations of $\operatorname{SU}(2,2)$

Domagoj Kovačević

Faculty of Electrical Engineering and Computing
University of Zagreb

Representation Theory XVII
Dubrovnik, October 3-9, 2022

$G=S U(2,2)$

$$
G=S U(2,2)=\left\{g \in S L(4, \mathbb{C}) \mid g^{*} I_{2,2} g=I_{2,2}\right\}
$$

$(\cdot)^{*}$ is conjugate transpose
$I_{2,2}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]$

$$
\mathfrak{g}_{0}=\mathfrak{s u}(2,2)=\left\{X \in \mathfrak{s l} /(4, \mathbb{C}) \mid X^{*} I_{2,2}+I_{2,2} X=0\right\}
$$

$$
\mathfrak{g}_{0}=\left[\begin{array}{cc}
Y & Z \\
Z^{*} & T
\end{array}\right], Y, T \in \mathfrak{u}(2), \operatorname{tr} Y+\operatorname{tr} T=0, Z \in \mathfrak{g} /(2, \mathbb{C})
$$

$$
\mathfrak{g}=\left(\mathfrak{g}_{0}\right)^{\mathbb{C}}=\mathfrak{s} /(4, \mathbb{C})
$$

$$
\mathfrak{k}_{0}=\mathfrak{s} u(2) \oplus \mathfrak{s} u(2) \oplus \mathbb{R}
$$

$$
\mathfrak{k}=\left(\mathfrak{k}_{0}\right)^{\mathbb{C}}=\mathfrak{s} /(2, C) \oplus \mathfrak{s} /(2, C) \oplus \mathbb{C}
$$

Roots

Simple roots: $\alpha, \beta, \gamma, \alpha+\beta, \beta+\gamma, \alpha+\beta+\gamma$

Compact roots: α, γ

What do we want?

What do we want?

The unitary dual of $\operatorname{SU}(2,2)$ is already found - [KnappSpeh1982].

What do we want?

The unitary dual of $S U(2,2)$ is already found - [KnappSpeh1982].
We want to find the unitary dual of $S U(2,2)$ using (\mathfrak{g}, K)-modules.

What do we want?

The unitary dual of $S U(2,2)$ is already found - [KnappSpeh1982].
We want to find the unitary dual of $S U(2,2)$ using (\mathfrak{g}, K)-modules.
We hope that it will lead us to unitary dual of some other groups.

We analyze finitedimensional modules.

We analyze finitedimensional modules.
$V_{n, k, m}$, the highest weight is $v_{n, k, m}$,

$$
H_{\alpha} \cdot v_{n, k, m}=n v_{n, k, m}, H_{\beta} \cdot v_{n, k, m}=k v_{n, k \cdot m}, H_{\gamma} \cdot v_{n, k, m}=m v_{n, k, m}, \lambda=(n, k, m)
$$

How to handle K-types?

We analyze finitedimensional modules.
$V_{n, k, m}$, the highest weight is $v_{n, k, m}$,

$$
H_{\alpha} \cdot v_{n, k, m}=n v_{n, k, m}, H_{\beta} \cdot v_{n, k, m}=k v_{n, k \cdot m}, H_{\gamma} \cdot v_{n, k, m}=m v_{n, k, m}, \lambda=(n, k, m)
$$

How to handle K-types?
How do they look like?

We analyze finitedimensional modules.
$V_{n, k, m}$, the highest weight is $v_{n, k, m}$,

$$
H_{\alpha} \cdot v_{n, k, m}=n v_{n, k, m}, H_{\beta} \cdot v_{n, k, m}=k v_{n, k \cdot m}, H_{\gamma} \cdot v_{n, k, m}=m v_{n, k, m}, \lambda=(n, k, m)
$$

How to handle K-types?
How do they look like?
$\left(\bigoplus_{\substack{i \in\{0, \ldots, p\} \\ j \in\{0, \ldots, q\}}} \mathbb{C} v_{p-2 i, r+i+j, q-2 j}\right), p+2 r+q$.

We analyze finitedimensional modules.
$V_{n, k, m}$, the highest weight is $v_{n, k, m}$,

$$
H_{\alpha} \cdot v_{n, k, m}=n v_{n, k, m}, H_{\beta} \cdot v_{n, k, m}=k v_{n, k \cdot m}, H_{\gamma} \cdot v_{n, k, m}=m v_{n, k, m}, \lambda=(n, k, m)
$$

How to handle K-types?
How do they look like?
$\left(\bigoplus_{\substack{i \in\{0, \ldots, p\} \\ j \in\{0, \ldots, q\}}} \mathbb{C} v_{p-2 i, r+i+j, q-2 j}\right), p+2 r+q$.
By their highest weight vectors.

We analyze finitedimensional modules.
$V_{n, k, m}$, the highest weight is $v_{n, k, m}$,

$$
H_{\alpha} \cdot v_{n, k, m}=n v_{n, k, m}, H_{\beta} \cdot v_{n, k, m}=k v_{n, k \cdot m}, H_{\gamma} \cdot v_{n, k, m}=m v_{n, k, m}, \lambda=(n, k, m)
$$

How to handle K-types?
How do they look like?
$\left(\bigoplus_{\substack{i \in\{0, \ldots, p\} \\ j \in\{0, \ldots, q\}}} \mathbb{C} v_{p-2 i, r+i+j, q-2 j}\right), p+2 r+q$.
By their highest weight vectors.

$$
v_{p, r, q} .
$$

We analyze finitedimensional modules.
$V_{n, k, m}$, the highest weight is $v_{n, k, m}$,

$$
H_{\alpha} \cdot v_{n, k, m}=n v_{n, k, m}, H_{\beta} \cdot v_{n, k, m}=k v_{n, k \cdot m}, H_{\gamma} \cdot v_{n, k, m}=m v_{n, k, m}, \lambda=(n, k, m)
$$

How to handle K-types?
How do they look like?
$\left(\bigoplus_{\substack{i \in\{0, \ldots, p\} \\ j \in\{0, \ldots, q\}}} \mathbb{C} v_{p-2 i, r+i+j, q-2 j}\right), p+2 r+q$.
By their highest weight vectors.

$$
v_{p, r, q} .
$$

We need modified operators.

$$
\begin{aligned}
& A_{\alpha+\beta+\gamma}=X_{\alpha+\beta+\gamma} \\
& B_{\beta}=Y_{\beta} \\
& A_{\alpha+\beta}=X_{\alpha+\beta}\left(H_{\gamma}+1\right)+Y_{\gamma} X_{\alpha+\beta+\gamma} \\
& A_{\beta+\gamma}=X_{\beta+\gamma}\left(H_{\alpha}+1\right)-Y_{\gamma} X_{\alpha+\beta+\gamma} \\
& A_{\beta}=X_{\beta}\left(H_{\alpha}+1\right)\left(H_{\gamma}+1\right)-Y_{\alpha} X_{\alpha+\beta}\left(H_{\gamma}+1\right)+Y_{\gamma} X_{\beta+\gamma}\left(H_{\alpha}+1\right)-Y_{\alpha} Y_{\gamma} X_{\alpha+\beta+\gamma} \\
& B_{\alpha+\beta}=Y_{\alpha+\beta}\left(H_{\alpha}+1\right)+Y_{\alpha} Y_{\beta} \\
& B_{\beta+\gamma}=Y_{\beta+\gamma}\left(H_{\gamma}+1\right)-Y_{\gamma} Y_{\beta} \\
& B_{\alpha+\beta+\gamma}=Y_{\alpha+\beta+\gamma}\left(H_{\alpha}+1\right)\left(H_{\gamma}+1\right)+Y_{\alpha} Y_{\beta+\gamma}\left(H_{\gamma}+1\right)-Y_{\gamma} Y_{\alpha+\beta}\left(H_{\alpha}+1\right)-Y_{\alpha} Y_{\gamma} Y_{\beta}
\end{aligned}
$$

Proposition

Operators As and $B \mathrm{~s}$ send highest weight vectors to highest weight vectors

Proof

The vector v is the highest weight vector of some K-type if and only if it satisfies $X_{\alpha} . v=0$ and $X_{\gamma} \cdot v=0$. Now, let v be the highest weight vector of some K-type. Then

$$
X_{\alpha} \cdot\left(A_{\alpha+\beta+\gamma} \cdot v\right)=X_{\alpha} \cdot\left(X_{\alpha+\beta+\gamma} \cdot v\right)=X_{\alpha+\beta+\gamma} \cdot\left(X_{\alpha} \cdot v\right)+\left[X_{\alpha}, X_{\alpha+\beta+\gamma}\right] \cdot v=0
$$

since $X_{\alpha} \cdot v=0$ and $\left[X_{\alpha}, X_{\alpha+\beta+\gamma}\right]=0$. Similarly, $X_{\gamma} \cdot\left(A_{\alpha+\beta+\gamma} \cdot v\right)=0$.
Similarly, $B_{\beta} . v$ is the highest weight vector. Also,

$$
X_{\alpha} \cdot\left(A_{\alpha+\beta} \cdot v\right)=X_{\alpha} \cdot\left(\left(X_{\alpha+\beta}\left(H_{\gamma}+1\right)+Y_{\gamma} X_{\alpha+\beta+\gamma}\right) \cdot v\right)=\left(X_{\alpha+\beta}\left(H_{\gamma}+1\right)+Y_{\gamma} X_{\alpha+\beta+\gamma}\right) \cdot\left(X_{\alpha} \cdot v\right)=0
$$

Now,

$$
\begin{gathered}
X_{\gamma} \cdot\left(A_{\alpha+\beta} \cdot v\right)=X_{\gamma} \cdot\left(\left(X_{\alpha+\beta}\left(H_{\gamma}+1\right)+Y_{\gamma} X_{\alpha+\beta+\gamma}\right) \cdot v\right)= \\
=\left(X_{\alpha+\beta} X_{\gamma}\left(H_{\gamma}+1\right)-X_{\alpha+\beta+\gamma}\left(H_{\gamma}+1\right)+\left(H_{\gamma}+Y_{\gamma} X_{\gamma}\right) X_{\alpha+\beta+\gamma}\right) \cdot v=0
\end{gathered}
$$

since $X_{\alpha+\beta} X_{\gamma}\left(H_{\gamma}+1\right) . v=0, Y_{\gamma} X_{\gamma} X_{\alpha+\beta+\gamma} \cdot v=0$ and

$$
H_{\gamma} X_{\alpha+\beta+\gamma}=X_{\alpha+\beta+\gamma}\left(H_{\gamma}+1\right)\left(\left[H_{\gamma}, X_{\alpha+\beta+\gamma}\right]=X_{\alpha+\beta+\gamma}\right) .
$$

The proof is not complete, but, it is clear how to finish it.
For example,

$$
\begin{gathered}
X_{\gamma} \cdot\left(B_{\alpha+\beta+\gamma} \cdot v\right)= \\
=X_{\gamma} \cdot\left(\left(Y_{\alpha+\beta+\gamma}\left(H_{\alpha}+1\right)\left(H_{\gamma}+1\right)+Y_{\alpha} Y_{\beta+\gamma}\left(H_{\gamma}+1\right)-Y_{\gamma} Y_{\alpha+\beta}\left(H_{\alpha}+1\right)-Y_{\alpha} Y_{\gamma} Y_{\beta}\right) \cdot v\right)= \\
\left(Y_{\alpha+\beta}\left(H_{\alpha}+1\right)\left(H_{\gamma}+1\right)+Y_{\alpha} Y_{\beta}\left(H_{\gamma}+1\right)-H_{\gamma} Y_{\alpha+\beta}\left(H_{\alpha}+1\right)-Y_{\alpha} H_{\gamma} Y_{\beta}\right) \cdot v=0
\end{gathered}
$$

Again, we used that

$$
H_{\gamma} X_{\alpha+\beta+\gamma}=X_{\alpha+\beta+\gamma}\left(H_{\gamma}+1\right)
$$

What do we have?

What do we have?
Operators $X_{\alpha+\beta}, \ldots$ send the highest weight vector v to the highest weight of another K-type and "something" from the third K-type, and we want to "clean" that "something".

$V_{3,2,1}$

Example

$V_{3,2,1}$ means that $v_{3,2,1}$ is the highest weight vector and

$$
H_{\alpha} \cdot v_{3,2,1}=3 v_{3,2,1}, H_{\beta} \cdot v_{3,2,1}=3 v_{3,2.1}, H_{\gamma} \cdot v_{3,2,1}=3 v_{3,2,1}, \lambda=(3,2,1)
$$

$\operatorname{dim} V_{3,2,1}=630$
The number of K-types is 57 .

$V_{3,2,1}$

Example

$V_{3,2,1}$ means that $v_{3,2,1}$ is the highest weight vector and

$$
H_{\alpha} \cdot v_{3,2,1}=3 v_{3,2,1}, H_{\beta} \cdot v_{3,2,1}=3 v_{3,2.1}, H_{\gamma} \cdot v_{3,2,1}=3 v_{3,2,1}, \lambda=(3,2,1)
$$

$\operatorname{dim} V_{3,2,1}=630$
The number of K-types is 57 .

How do we get it?

$V_{3,2,1}$

Example

$V_{3,2,1}$ means that $v_{3,2,1}$ is the highest weight vector and

$$
H_{\alpha} \cdot v_{3,2,1}=3 v_{3,2,1}, H_{\beta} \cdot v_{3,2,1}=3 v_{3,2 \cdot 1}, H_{\gamma} \cdot v_{3,2,1}=3 v_{3,2,1}, \lambda=(3,2,1)
$$

$\operatorname{dim} V_{3,2,1}=630$
The number of K-types is 57 .

How do we get it?
By Freudenthal's formula and computer.

$V_{3,2,1}$

Example

$V_{3,2,1}$ means that $v_{3,2,1}$ is the highest weight vector and

$$
H_{\alpha} \cdot v_{3,2,1}=3 v_{3,2,1}, H_{\beta} \cdot v_{3,2,1}=3 v_{3,2 \cdot 1}, H_{\gamma} \cdot v_{3,2,1}=3 v_{3,2,1}, \lambda=(3,2,1)
$$

$\operatorname{dim} V_{3,2,1}=630$
The number of K-types is 57 .
How do we get it?
By Freudenthal's formula and computer.
Freudenthal's formula produces weights. Then computer calculates K-types.

$V_{3,2,1}$

Example

We obtain

0	0	1	0	0	0	0
0	2	0	2	0	0	0
3	0	4	0	2	0	0
0	6	0	4	0	2	0
3	0	6	0	$\mathbf{4}$	0	1
0	3	0	$\mathbf{6}$	0	2	0
0	0	$\mathbf{3}$	0	3	0	0

Numbers in table denote number of K-types.
Rows and columns go from 0.
Bolded 3 means $3 K$-types with the highest weight (2,0).

Example

Example

Next 2 "slices" are the same.

Next 2 "slices" are the same.
It looks like $\mathfrak{s l}(3, \mathbb{C})$-module.

Next 2 "slices" are the same.
It looks like $\mathfrak{s l}(3, \mathbb{C})$-module.
We do not have perpendicular lines.

Next 2 "slices" are the same.
It looks like $\mathfrak{s l}(3, \mathbb{C})$-module.
We do not have perpendicular lines.
Let us consider operators

$$
Q=X_{\alpha+\beta} X_{\beta+\gamma}-X_{\beta} X_{\alpha+\beta+\gamma}, \quad R=Y_{\alpha+\beta} Y_{\beta+\gamma}-Y_{\beta} Y_{\alpha+\beta+\gamma}
$$

Next 2 "slices" are the same.
It looks like $\mathfrak{s l}(3, \mathbb{C})$-module.
We do not have perpendicular lines.
Let us consider operators

$$
Q=X_{\alpha+\beta} X_{\beta+\gamma}-X_{\beta} X_{\alpha+\beta+\gamma}, \quad R=Y_{\alpha+\beta} Y_{\beta+\gamma}-Y_{\beta} Y_{\alpha+\beta+\gamma}
$$

Proposition

Operators Q and R send highest weight vectors to highest weight vectors

Proof

The vector v is the highest weight vector of some K-type if and only if it satisfies $X_{\alpha} . v=0$ and $X_{\gamma} \cdot v=0$. Now, let v be the highest weight vector of some K-type. Then

$$
\begin{gathered}
X_{\alpha} \cdot(Q \cdot v)=X_{\alpha} \cdot\left(\left(X_{\alpha+\beta} X_{\beta+\gamma}-X_{\beta} X_{\alpha+\beta+\gamma}\right) \cdot v\right)=\left(X_{\alpha+\beta} X_{\alpha+\beta+\gamma}-X_{\alpha+\beta} X_{\alpha+\beta+\gamma}\right) \cdot v=0 \\
X_{\gamma} \cdot(Q \cdot v)=X_{\gamma} \cdot\left(\left(X_{\alpha+\beta} X_{\beta+\gamma}-X_{\beta} X_{\alpha+\beta+\gamma}\right) \cdot v\right)=\left(-X_{\alpha+\beta+\gamma} X_{\beta+\gamma}+X_{\beta+\gamma} X_{\alpha+\beta+\gamma}\right) \cdot v=0 \\
X_{\alpha} \cdot(R \cdot v)=X_{\alpha} \cdot\left(\left(Y_{\alpha+\beta} Y_{\beta+\gamma}-Y_{\beta} Y_{\alpha+\beta+\gamma}\right) \cdot v\right)=\left(-Y_{\beta} Y_{\beta+\gamma}+Y_{\beta} Y_{\beta+\gamma}\right) \cdot v=0 \\
X_{\gamma} \cdot(R \cdot v)=X_{\gamma} \cdot\left(\left(Y_{\alpha+\beta} Y_{\beta+\gamma}-Y_{\beta} Y_{\beta+\gamma}\right) \cdot v\right)=\left(Y_{\alpha+\beta} Y_{\beta}-Y_{\beta} Y_{\alpha+\beta}\right) \cdot v=0
\end{gathered}
$$

Proof

The vector v is the highest weight vector of some K-type if and only if it satisfies $X_{\alpha} . v=0$ and $X_{\gamma} \cdot v=0$. Now, let v be the highest weight vector of some K-type. Then

$$
\begin{gathered}
X_{\alpha} \cdot(Q \cdot v)=X_{\alpha} \cdot\left(\left(X_{\alpha+\beta} X_{\beta+\gamma}-X_{\beta} X_{\alpha+\beta+\gamma}\right) \cdot v\right)=\left(X_{\alpha+\beta} X_{\alpha+\beta+\gamma}-X_{\alpha+\beta} X_{\alpha+\beta+\gamma}\right) \cdot v=0 \\
X_{\gamma} \cdot(Q \cdot v)=X_{\gamma} \cdot\left(\left(X_{\alpha+\beta} X_{\beta+\gamma}-X_{\beta} X_{\alpha+\beta+\gamma}\right) \cdot v\right)=\left(-X_{\alpha+\beta+\gamma} X_{\beta+\gamma}+X_{\beta+\gamma} X_{\alpha+\beta+\gamma}\right) \cdot v=0 \\
X_{\alpha} \cdot(R \cdot v)=X_{\alpha} \cdot\left(\left(Y_{\alpha+\beta} Y_{\beta+\gamma}-Y_{\beta} Y_{\alpha+\beta+\gamma}\right) \cdot v\right)=\left(-Y_{\beta} Y_{\beta+\gamma}+Y_{\beta} Y_{\beta+\gamma}\right) \cdot v=0 \\
X_{\gamma} \cdot(R \cdot v)=X_{\gamma} \cdot\left(\left(Y_{\alpha+\beta} Y_{\beta+\gamma}-Y_{\beta} Y_{\beta+\gamma}\right) \cdot v\right)=\left(Y_{\alpha+\beta} Y_{\beta}-Y_{\beta} Y_{\alpha+\beta}\right) \cdot v=0
\end{gathered}
$$

Remark

Actually, $\left[X_{\alpha}, Q\right]=\left[X_{\gamma}, Q\right]=\left[X_{\alpha}, R\right]=\left[X_{\gamma}, R\right]=0$.

Commutation relations

They satisfy

$$
\begin{gathered}
{\left[A_{\beta}, R\right]=B_{\alpha+\beta+\gamma}\left(1-H_{\beta}\right), \quad\left[A_{\alpha+\beta+\gamma}, R\right]=-B_{\beta}\left(H_{\alpha}+H_{\beta}+H_{\gamma}\right),} \\
{\left[B_{\beta}, Q\right]=A_{\alpha+\beta+\gamma}\left(H_{\beta}-1\right),\left[B_{\alpha+\beta+\gamma}, Q\right]=A_{\beta}\left(H_{\alpha}+H_{\beta}+H_{\gamma}\right),} \\
{\left[A_{\alpha+\beta+\gamma}, A_{\beta}\right]=Q\left(H_{\alpha}+H_{\gamma}+2\right),\left[B_{\beta}, B_{\alpha+\beta+\gamma}\right]=R\left(H_{\alpha}+H_{\gamma}+2\right),} \\
{\left[A_{\beta}, Q\right]=\left[A_{\alpha+\beta+\gamma}, Q\right]=\left[B_{\beta}, R\right]=\left[B_{\alpha+\beta+\gamma}, R\right]=\left[A_{\beta}, B_{\alpha+\beta+\gamma}\right]=\left[B_{\beta}, A_{\alpha+\beta+\gamma}\right]=0,} \\
{\left[A_{\beta+\gamma}, B_{\alpha+\beta}\right]=\left[B_{\beta+\gamma}, A_{\alpha+\beta}\right]=0 .}
\end{gathered}
$$

I do not see $\mathfrak{s l}(3, \mathbb{C})$ here.

I do not see $\mathfrak{s l}(3, \mathbb{C})$ here.
Q and R are not good enough.

I do not see $\mathfrak{s l}(3, \mathbb{C})$ here.
Q and R are not good enough.
Let us consider $V_{1,1,1}$.

Example

- $u \rightarrow B_{\alpha+\beta+\gamma \cdot v}$
- $p \rightarrow B_{\beta} . u$
- $z \rightarrow A_{\beta} . w$
- $q \rightarrow A_{\alpha+\beta+\gamma} \cdot z$
- R.v $\rightarrow \frac{2}{5} p-\frac{3}{5} q$
- $Q . w \rightarrow-\frac{3}{5} p+\frac{2}{3} q$

It shows that Q and R are not good ...

It shows that Q and R are not good ...
Also, As and Bs are not good ...

It shows that Q and R are not good ...
Also, As and Bs are not good ...
However, let us consider following example: $V_{5,4,0}$.

It shows that Q and R are not good ...
Also, As and Bs are not good ...
However, let us consider following example: $V_{5,4,0}$.
Multiplicities of all K-types are $1(m=0)$.

It shows that Q and R are not good ...
Also, As and Bs are not good ...
However, let us consider following example: $V_{5,4,0}$.
Multiplicities of all K-types are $1(m=0)$.
We do not want to construct a basis. We calculate expressions

$$
A_{\beta} B_{\beta}, A_{\alpha+\beta} B_{\alpha+\beta}, A_{\beta+\gamma} B_{\beta+\gamma}, A_{\alpha+\beta+\gamma} B_{\alpha+\beta+\gamma}
$$

It shows that Q and R are not good ...
Also, As and Bs are not good ...
However, let us consider following example: $V_{5,4,0}$.
Multiplicities of all K-types are $1(m=0)$.
We do not want to construct a basis. We calculate expressions

$$
A_{\beta} B_{\beta}, A_{\alpha+\beta} B_{\alpha+\beta}, A_{\beta+\gamma} B_{\beta+\gamma}, A_{\alpha+\beta+\gamma} B_{\alpha+\beta+\gamma}
$$

If the multiplicity is 1 , these expressions are numbers.

It shows that Q and R are not good ...
Also, As and Bs are not good...
However, let us consider following example: $V_{5,4,0}$.
Multiplicities of all K-types are $1(m=0)$.
We do not want to construct a basis. We calculate expressions

$$
A_{\beta} B_{\beta}, A_{\alpha+\beta} B_{\alpha+\beta}, A_{\beta+\gamma} B_{\beta+\gamma}, A_{\alpha+\beta+\gamma} B_{\alpha+\beta+\gamma}
$$

If the multiplicity is 1 , these expressions are numbers.
They are given in the following example.

$V_{5,4,0}$

Example

0	0	0	0	1	0	0	0	0	0
0	0	0	2	0	1	0	0	0	0
0	0	3	0	2	0	1	0	0	0
0	4	0	3	0	2	0	1	0	0
5	0	4	0	3	0	2	0	1	0
0	5	0	4	0	3	0	2	0	$\mathbf{1}$
0	0	5	0	4	0	3	0	$\mathbf{2}$	0
0	0	0	5	0	4	0	$\mathbf{3}$	0	0
0	0	0	0	5	0	$\mathbf{4}$	0	0	0
0	0	0	0	0	$\mathbf{5}$	0	0	0	0

$m=0$ ensures that all multiplicities are equal to 1 .

We can also calculate products $R Q(Q R)$.

We can also calculate products $R Q(Q R)$.
We have

$$
\begin{gathered}
{\left[B_{\alpha+\beta+\gamma}, A_{\alpha+\beta+\gamma}\right]+[Q, R]=} \\
\frac{1}{8}\left(c-3\left(H_{\alpha}+H_{\gamma}+2\right)^{2}-4\left(H_{\alpha+H_{\beta}}\right)\left(H_{\beta}+H_{\gamma}\right)\right)\left(H_{\alpha}+H_{\gamma}+H_{\gamma}+1\right)
\end{gathered}
$$

and

$$
\begin{gathered}
{\left[B_{\beta}, A_{\beta}\right]+[Q, R]=} \\
\frac{1}{8}\left(c-3\left(H_{\alpha}+H_{\gamma}+2\right)^{2}-4\left(H_{\alpha}+H_{\beta}\right)\left(H_{\beta}+H_{\gamma}\right)\right)\left(H_{\beta}-1\right)
\end{gathered}
$$

We can also calculate products $R Q(Q R)$.
We have

$$
\begin{gathered}
{\left[B_{\alpha+\beta+\gamma}, A_{\alpha+\beta+\gamma}\right]+[Q, R]=} \\
\frac{1}{8}\left(c-3\left(H_{\alpha}+H_{\gamma}+2\right)^{2}-4\left(H_{\alpha+H_{\beta}}\right)\left(H_{\beta}+H_{\gamma}\right)\right)\left(H_{\alpha}+H_{\gamma}+H_{\gamma}+1\right)
\end{gathered}
$$

and

$$
\begin{gathered}
{\left[B_{\beta}, A_{\beta}\right]+[Q, R]=} \\
\frac{1}{8}\left(c-3\left(H_{\alpha}+H_{\gamma}+2\right)^{2}-4\left(H_{\alpha}+H_{\beta}\right)\left(H_{\beta}+H_{\gamma}\right)\right)\left(H_{\beta}-1\right)
\end{gathered}
$$

In our example, $c=355$.

References

囯 A. W. Knapp, B. Speh
Irreducible Unitary Representations of $S U(2,2)$,
Journal of Functional Analysis 45, 41-73 (1982)

Thank you!
Kareví (Fachty

