6A-Algebra and its Representations

Nina Yu

Xiamen University (Joint with Chongying Dong and Xiangyu Jiao)

June 24, 2019

Outline

Basics/background

6A-Algebra

Main Results

Basics

Let $(V, Y, 1, \omega)$ be a vertex operator algebra. Let $Y(v, z) = \sum_{n \in \mathbb{Z}} v_n z^{-n-1}$ denote the vertex operator of V for $v \in V$, where $v_n \in \operatorname{End}(V)$.

Definition. Let V be a Moonshine type VOA. For $u, v \in V_2$ we can define a product $u \cdot v = u_1 v$ and an inner product $u_3 v = \langle u, v \rangle$ 1. The inner product is invariant, that is $\langle u_1 v, w \rangle = \langle v, u_1 w \rangle$ for $u, v, w \in V_2$. With the product and the inner product V_2 becomes an algebra, which is called the *Griess algebra* of V.

Basics

Definition. A vector $v \in V_2$ is called a **conformal vector** with central charge c_v if it satisfies $v_1v=2v$ and $v_3v=\frac{c_v}{2}1$. Then the operator $L_n^v:=v_{n+1}$, $n\in\mathbb{Z}$ satisfy the Virasoro commutation relation

$$[L_m^{\nu}, L_n^{\nu}] = (m-n) L_{m+n}^{\nu} + \delta_{m+n,0} \frac{m^3 - m}{12} c_{\nu}.$$

A conformal vector $v \in V_2$ with central charge 1/2 is called **Ising vector** if v generates the Virasoro VOA L(1/2, 0).

Moonshine VOA V^{\sharp} and the Monster group M

The Monster simple group \mathbb{M} is realized as the automorphism group of the Moonshine VOA V^{\sharp} .

 $\mathbb M$ is a 6-transposition group, i.e., $\mathbb M$ is generated by some 2A-involutions and it satisfies $|\phi\psi|\leq 6$ for any two 2A-involutions ϕ and ψ . Moreover, $\phi\psi$ must lie in one of the nine conjugacy classes 1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A.

Moonshine VOA V^{\sharp} and the Monster group M

Theorem. [Conway, 1985] Each 2A-involution ϕ of the Monster simple group uniquely defines an idempotent e_{ϕ} called an **axis** in the Monstrous Griess algebra V_2^{\sharp} . And $\langle e_{\phi}, e_{\psi} \rangle$ is uniquely determined by the conjugacy class of $\phi \psi$: 1A, 2A, 3A, 4A, 5A, 6A, 4B, 2B, 3C.

Moonshine VOA and the Monster simple group

Study of a VOA generated by two Ising vectors initiated in [Miyamoto, 1996].

Theorem. [Miyamoto, 1996] There exist involutions $\tau_e \in Aut(V)$ that are in bijection with Ising vectors $e \in V_2$. Moreover, when $V = V^{\sharp}$, the vectors $\frac{1}{2}e$ are the 2A-axes of the Griess algebra V_2^{\sharp} and the τ_e are the 2A-involutions of \mathbb{M} .

Griess subalgebra generated by two Ising vectors

Theorem. [Conway, 1985] The structure of the subalgebra generated by two Ising vectors e and f in the algebra V_2^{\natural} depends on only the conjugacy class of $\tau_e \tau_f$, and the inner product $\langle e, f \rangle$ is given by the following table:

$\langle au_{\mathbf{e}} au_{\mathbf{f}} angle^{\mathbb{M}}$	1 <i>A</i>	2 <i>A</i>	3 <i>A</i>	4 <i>A</i>	5 <i>A</i>	6 <i>A</i>	3 <i>C</i>	4 <i>B</i>	2 <i>B</i>
$\langle e, f \rangle$	1/4	1 2 ⁵	$\frac{13}{2^{10}}$	$\frac{1}{2^{7}}$	$\frac{3}{2^9}$	5 2 ¹⁰	$\frac{1}{2^8}$	$\frac{1}{2^8}$	0

Griess subalgebra generated by two Ising vectors

Theorem. [Sakuma, 2007] Let V be an arbitrary simple VOA. The structure of the subalgebra generated by two Ising vectors in the Griess algebra V_2 of V is uniquely determined by the inner product of the two Ising vectors. The inner product of two Ising vectors again has 9 possibilities same as the case of the Moonshine VOA V^{\sharp} .

Question:

What is the vertex operator subalgebra generated by two Ising vectors ?

Coset subalgebra of $V_{\sqrt{2}E_8}$

Certain vertex operator subslagebra \mathcal{U}_{nX} of the lattice vertex operator algebra $V_{\sqrt{2}E_8}$ were constructed in [Lam-Yamada-Yamauchi, 2005].

$$(nX = 1A, 2A, 3A, 4A, 5A, 6A, 4B, 2B, 3C)$$

Coset subalgebra of $V_{\sqrt{2}E_8}$

Theorem. [Lam-Yamada-Yamauchi, 2005, 2007] The coset subalgebra \mathcal{U}_{nX} always contains some conformal vectors e and f of central charge 1/2 such that the inner product $\langle e, f \rangle$ is exactly those given in the table.

The structure and representations of these coset subalgebras are studied. \mathcal{U}_{nX} are all generated by two conformal vectors of central charge 1/2.

1A, 2A, 4A, 4B, 2B: Tensor product of Virasoro VOAs, or extension of them

3A: Studied in [Sakuma-Yamauchi, 2003] , denote it by ${\mathcal V}$

5A, 3C: Irreducible modules for 5A and 3C are classified in [Lam-Yamada-Yamauchi, 2007]

6A: not well understood yet.

6A-Algebra \mathcal{U}_{6A}

The 3A-algebra \mathcal{V} : [Sakuma-Yamauchi, 2003] Rationality, C_2 -cofiniteness, classification of irreducible modules, fusions rules were obtained.

6A-algebra:

 \mathcal{U}_{6A}

$$\begin{split} &\cong \mathcal{V} \otimes L\left(\frac{25}{28},0\right) \oplus \mathcal{V}\left(\frac{1}{7}\right) \otimes L\left(\frac{25}{28},\frac{34}{7}\right) \oplus \mathcal{V}\left(\frac{5}{7}\right) \otimes L\left(\frac{25}{28},\frac{9}{7}\right) \\ &= P_1 \otimes Q_1 \oplus P_2 \otimes Q_2 \oplus P_3 \otimes Q_3 \end{split}$$

Where $\mathcal{V}\left(\frac{1}{7}\right)$, $\mathcal{V}\left(\frac{5}{7}\right)$ are irreducible \mathcal{V} -modules and

$$P_1=\mathcal{V},\;P_2=\mathcal{V}\left(rac{1}{7}
ight),\;P_3=\mathcal{V}\left(rac{5}{7}
ight),$$

$$\textit{Q}_1 = \textit{L}\left(\frac{25}{28}, 0\right), \ \textit{Q}_2 = \textit{L}\left(\frac{25}{28}, \frac{34}{7}\right), \ \textit{Q}_3 = \textit{L}\left(\frac{25}{28}, \frac{9}{7}\right).$$

6A-Algebra \mathcal{U}_{6A}

Fusion rules of P_i , Q_i 's are as follows:

P_1	P_2	P_3		
P_2	$P_1 + P_3$	$P_2 + P_3$		
P_3	$P_2 + P_3$	$P_1 + P_2 + P_3$		

Q_1	Q_2	Q_3		
Q_2	$Q_1 + Q_3$	$Q_2 + Q_3$		
Q_3	$Q_2 + Q_3$	$Q_1+Q_2+Q_3$		

Denote

$$U^i=P_i\otimes Q_i, i=1,2,3.$$

Then

$$\mathcal{U}_{6A}\cong \mathit{U}^{1}\oplus \mathit{U}^{2}\oplus \mathit{U}^{3}$$

is an extension of a rational, C_2 -cofinite VOA $U^1 = \mathcal{V} \otimes L\left(\frac{25}{28},0\right)$ by two irreducible U^1 -modules U^2 and U^3 which are not simple current modules.

Main difficulty: Uniqueness of VOA structure on \mathcal{U}_{6A} .

Rough Idea: Let $(\mathcal{U}_{6A},\ Y)$ be a vertex operator algebra structure on \mathcal{U}_{6A} . We fix a basis $\overline{\mathcal{Y}}_{a,b}^c \in I_{Q_1}\left(\begin{smallmatrix}Q_c\\Q_a&Q_b\end{smallmatrix}\right)$ as in [Felder-Fröhlich-Keller, 1989] and choose an arbitrary basis of $\mathcal{Y}_{a,b}^c \in I_{P_1}\left(\begin{smallmatrix}P_c\\P_a&P_b\end{smallmatrix}\right)$. Then $\mathcal{I}_{a,b}^c = \mathcal{Y}_{a,b}^c \otimes \overline{\mathcal{Y}}_{a,b}^c$ is a basis of $I_{U^1}\left(\begin{smallmatrix}U^c\\U^a&U^b\end{smallmatrix}\right)$. Then for any $u^k, v^k \in U^k, \ k=1,2,3$,

$$Y\left(u^{2},z\right)u^{1} = \mathcal{I}_{2,1}^{2}(u^{2},z)u^{1};$$

$$Y\left(u^{3},z\right)u^{1} = \mathcal{I}_{3,1}^{3}\left(u^{3},z\right)u^{1};$$

$$Y\left(u^{2},z\right)v^{2} = \left(\mathcal{I}_{2,2}^{1}\left(u^{2},z\right) + \mathcal{I}_{2,2}^{3}\left(u^{2},z\right)\right)v^{2};$$

$$Y\left(u^{2},z\right)v^{3} = \left(\mathcal{I}_{2,3}^{2}\left(u^{2},z\right) + \mathcal{I}_{2,3}^{3}\left(u^{2},z\right)\right)v^{3};$$

Assume that there is another VOA structure $(\mathcal{U}_{6A}, \overline{Y})$, then for any $u^i, v^i \in U^i$, i = 1, 2, 3, we have

$$\begin{split} \overline{Y}\left(u^{2},z\right)u^{1} &= \lambda_{2,1}^{2} \cdot \mathcal{I}_{2,1}^{2}(u^{2},z)u^{1}, \\ \overline{Y}\left(u^{3},z\right)u^{1} &= \lambda_{3,1}^{3} \cdot \mathcal{I}_{3,1}^{3}\left(u^{3},z\right)u^{1}, \\ \overline{Y}\left(u^{2},z\right)v^{2} &= \left(\lambda_{2,2}^{1} \cdot \mathcal{I}_{2,2}^{1}\left(u^{2},z\right) + \lambda_{2,2}^{3} \cdot \mathcal{I}_{2,2}^{3}\left(u^{2},z\right)\right)v^{2}, \end{split}$$

.

for some $\lambda_{a,b}^c$ $a,b,c \in \{1,2,3\}$.

We use results in [Huang, 1995, 1996, 2000], [Knizhnik-Zamolodchikov, 1984], [Tsuchiya- Kanie, 1988] and [Felder-Fröhlich-Keller, 1989] to prove certain entries in the braiding matrices for $L\left(\frac{25}{28},0\right)$ -modules are nonzero and hence obtain relations among these coefficients $\lambda_{a,b}^c$ and then prove the uniqueness of the VOA structure.

Main Results-Uniqueness of the VOA structure

Theorem. [Dong-Jiao-Y., 2019] The VOA structure on \mathcal{U}_{6A} over $\mathbb C$ is unique.

First we construct 14 irreducible \mathcal{U}_{6A} -modules $M^0,\ M^1,\cdots,M^{13}$ from decomposition of an even lattice VOA

Use $[h_1, h_2]$ to denote the module $\mathcal{V}(h_1) \otimes L(\frac{25}{28}, h_2)$.

$$M^{0} = [0,0] \oplus \left[\frac{1}{7}, \frac{34}{7}\right] \oplus \left[\frac{5}{7}, \frac{9}{7}\right],$$

$$M^{1} = \left[0, \frac{3}{4}\right] \oplus \left[\frac{1}{7}, \frac{45}{28}\right] \oplus \left[\frac{5}{7}, \frac{1}{28}\right],$$

$$\vdots$$

$$M^{13} = \left[\frac{2}{5}, \frac{165}{32}\right] \oplus \left[\frac{19}{35}, \frac{3}{224}\right] \oplus \left[\frac{39}{35}, \frac{323}{224}\right].$$

Recall: Let V be a vertex operator algebra with finitely many inequivalent irreducible modules M^0, \dots, M^d . The *global dimension* of V is defined as

$$\mathsf{glob}(V) = \sum_{i=0}^d \left(q \dim_V M^i \right)^2.$$

We say a vertex operator algebra V is "good" if V is a rational and C_2 -cofinite simple vertex operator algebra of CFT type with $V \cong V'$. Let M^0 , M^1 , \cdots , M^d be all the inequivalent irreducible V-modules with $M^0 \cong V$. The corresponding conformal weights λ_i satisfy $\lambda_i > 0$ for $0 < i \le d$.

Theorem. [Abe-Buhl-Dong, 2004; Huang-Kirillov-Lepowsky, 2015, Ai-Dong-Jiao-Ren, 2018] Let V be a "good" vertex operator algebra. Let U be a simple vertex operator algebra which is an extension of V. Then U is also "good" and

$$glob(V) = glob(U) \cdot (q \dim_V(U))^2$$
.

In particular,

$$\mathsf{glob}\left(\mathcal{U}_{3A}\otimes L\left(\frac{25}{28},0\right)\right) = \left(q\dim_{\mathcal{V}_{3A}\otimes L\left(\frac{25}{28},0\right)}\mathcal{U}_{6A}\right)^2 \cdot \mathsf{glob}\ \mathcal{U}_{6A},$$

It turns out

glob
$$\mathcal{U}_{6A} = \sum_{i=0}^{13} \left(q \dim_V M^i \right)^2$$

Theorem. [Dong-Jiao-Y., 2019] \mathcal{U} has exactly 14 inequivalent irreducible modules M^0, M^1, \dots, M^{13} .

Main Results-Fusion Rules

For modules M^i , $i=0,1,\cdots,13$, we denote the summands of each M^i by M^i_1 , M^i_2 , M^i_3 from left to right.

Theorem. [Dong-Jiao-Y., 2019] All fusion rules for irreducible \mathcal{U} -modules are given by

$$\dim_{\mathcal{U}} \begin{pmatrix} M^k \\ M^i, M^j \end{pmatrix} = \dim_{\mathcal{U}^1} \begin{pmatrix} M^k_1 \\ M^i_1, M^i_1 \end{pmatrix}$$

where $i, j, k = 0, 1, \dots, 13$.

Thank you!