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Motivating Preliminaries

Let g be a finite dimensional simple Lie algebra of type A,D,E and
of rank n. Fix:

a Cartan subalgebra h ⊂ g

the Killing form 〈·, ·〉
a set of roots ∆ and a set of simple roots {α1, . . . , αn}
let ∆+ denote the set of positive roots

let xα denote a nonzero root vector for the root α.

denote by {λ1, . . . , λn} the simple weights, dual to the simple
roots: 〈λi , αj〉 = δi ,j
Let L = ⊕n

i=1Zαi be the root lattice

Let P = ⊕n
i=1Zλi be the weight lattice.

Let ∆+ denote the set of positive roots, and let xα denote a
nonzero root vector for the root α. Define also the subalgebra

n =
∑
α∈∆+

Cxα
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Motivating Preliminaries

We consider the affine Lie algebra ĝ, and denote by VL the vertex
operator algebra constructed from L (cf. [LL]).

VL gives a realization of the level 1 basic ĝ-module L(Λ0), and
VLe

λi gives a realization of the basic ĝ-module L(Λi ), in both cases
with the action of xα ⊗ tn given by the n-th mode of the vertex
operator

Y (ι(eα), x) =
∑
n∈Z

xα(n)x−n−1.
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Principal subspaces

Consider the subalgebra of ĝ:

n̄ = n⊗ C[t, t−1]

Let vΛ be the highest weight vector of L(Λ). The principal
subspace W (Λ) of L(Λ) is defined by

W (Λ) = U(n̄) · vΛ.

Principal subspaces were originally defined and studied by Feigin
and Stoyanovsky.
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Principal subspaces

The principal subspace inherits certain compatible gradings from
L(Λ). First, we have the conformal weight grading:

W (Λ) =
∐
s∈Z

W (Λ)s+hΛ
,

Given a monomial

xβ1(m1) . . . xβr (mr )vΛ ∈W (Λ),

its conformal weight is

−m1 − · · · −mr + hΛ,

where hΛ ∈ Q is determined by Λ.
This grading is given by the Virasoro L(0) operator’s eigenvalues
when acting on W (Λ).
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Principal subspaces

Second, W (Λ) has λi -charge gradings:

W (Λ) =
∐
ri∈Z

W (Λ)ri+〈λi ,Λ〉

for each i = 1, . . . , n.

Given a monomial

xβ1(m1) . . . xβr (mr )vΛ ∈W (Λ),

it’s λi -charge is
r∑

j=1

〈λi , βj〉+ 〈λi ,Λ〉

These gradings are given by the eigenvalues of each λi (0),
i = 1, . . . , n, acting on W (Λ) and “count” the number of αi ’s
appearing as subscripts in each monomial.
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Principal subspaces

These gradings are compatible, and we have that:

W (Λ) =
∐

r1,...,rn,s∈Z
W (Λ)r1+〈λ1,Λ〉,...,rn+〈λn,Λ〉;s+hΛ

.

We define the multigraded dimensions of W (Λ) by:

χW (Λ)(x1, . . . , xn, q) = trW (Λ)x
λ1
1 · · · x

λn
n qL(0).

and a modified version

χ′W (Λ)(x1, . . . , xn, q) = x
−〈Λ,λ1〉
1 . . . x

−〈Λ,λn〉
n q−〈Λ,Λ〉/2trW (Λ)x

λ1
1 · · · x

λn
n qL(0)

in order to have series with integer powers.
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Principal subspaces

In a series of papers, Capparelli, Calinescu, Lepowsky, and Milas
studied the principal subspaces of basic modules for all the cases
mentioned above, and also studied the principal subspaces of the

higher level ŝl(2)-modules. They constructed exact sequences
among principal subspaces:

0→W (Λi )→W (Λ0)→W (Λi )→ 0,

where the maps used arise naturally from the lattice construction
of L(Λ) and intertwining operators among standard modules.

They
then used these to find recursions satisfied by the multigraded
dimension of each W (Λi ):

χ′W (Λi )
(x1, . . . , xn, q) =

∑
m=(m1,...,mn)∈Nn

qmMmT +2mi

(q)m1 . . . (q)ml
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Principal subspaces

In order to prove exactness, certain natural relations arising from
appropriate powers of vertex operators. In particular, for the level 1
cases we’ve been discussing, they needed to use the fact that

Y (eα, x)2 =

(∑
n∈Z

xα(n)x−n−1

)2

= 0

They defined operators

R(αi , αi |t) =
∑

m1,m2∈Z
m1+m2=−t

xαi (m1)xαi (m2)

and their truncations

R0(αi , αi |t) =
∑

m1,m2∈Z<0
m1+m2=−t

xαi (m1)xαi (m2)
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Principal subspaces

Consider the surjection

FΛi
: U (ĝ)→ L(Λi )

a 7→ a · vΛ
(1)

and its restriction
fΛi

: U (n)→W (Λi )

a 7→ a · vΛ
(2)

Calinescu, Lepowsky, and Milas showed that

Theorem (Calinescu, Lepowsky, Milas)

KerfΛ0 =
∑n

i=1 U(n̄)R0(αi , αi |t) + U(n̄)n̄+

and

KerfΛi
=
∑n

i=1 U(n̄)R0(αi , αi |t) + U(n̄)n̄+ + U(n̄)xαi (−1)
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Known results

The exact sequences yield recursions:

In the case that g = sl(2), Capparelli, Lepowsky, and Milas
interpreted the Rogers-Ramanujan recursion in this context:

χW (Λ0)(x , q) = χW (Λ0)(xq, q) + xqχW (Λ0)(xq2, q),

and obtained

χW (Λ0)(x , q) =
∑
n≥0

xnqn
2

(q)n

and

χW (Λ1)(x , q) = x1/2q1/4
∑
n≥0

xnqn
2+n

(q)n
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Known results

For higher level ŝl(2)-modules, Capparelli, Lepowsky, and
Milas obtained the Rogers-Selberg recursions, giving the sum
side of the Gordon-Andrews identities as graded dimensions.
Namely, they interpreted the Rogers-Selberg recursion in this

context, and showed that:

χW (iΛ0+(k−i)Λ1)(x , q) =∑
m≥0

∑
N1+···+Nk=m

N1≥···≥Nk≥0

xm+(k−i)/2qhiΛ0+(k−i)Λ1
+N2

1 +···+N2
k+Ni+1+···+Nk

(q)N1−N2 · · · (q)Nk−1−Nk
(q)Nk

.
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A few other extensions

Penn studied the case where L is a positive definite even
lattice of rank n whose Gram matrix has non-negative entries.
In this work, he found presentations, constructed exact
sequences, and obtained recursions and characters.

Penn and Milas later constructed combinatorial bases for a
more general case of this problem, namely when L is an
integral lattice

In both of these works, the character of the principal subspace
takes a familiar form:

χ′(x, q) =
∑ qm

TAm

(q)m1 · · · (q)mn

xm1
1 · · · x

mn
m

The aim of the work in this talk is to generalize the results found
in the work by Penn to twisted modules for VL.
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Towards the twisted case

Calinescu, Lepowsky, and Milas extended their results to the

principal subspace W (Λ) of the basic A
(2)
2 -module L(Λ), and

obtained (among many other results):

χ′W (Λ)(x , q) =
∏
n≥1

(1− xq2n+1)−1

Specializing x = 1,

χ′W (Λ1)(1, q) =
∏
n≥1

(1− q2n+1)−1

gives the generating function for partitions whose parts are odd
and distinct.
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Towards the twisted case

In various other works, the principal subspaces of standard modules
for twisted affine Lie algebras have been studied in other works:

A
(2)
2n level 1, presentations, recursions, and graded dimensions

(Calinescu, Milas, Penn)

A
(2)
2n−1,D

(2)
n ,E

(2)
6 ,D

(3)
4 level 1, presentations, recursions, and

graded dimensions (Penn, S.)

A
(2)
2n−1,D

(2)
n ,E

(2)
6 ,D

(3)
4 level k ≥ 1, combinatorial bases and

characters (Butorac, S.)

A
(2)
2 level k ≥ 1, presentations, some recursions, conjectured

characters with computational evidence (Calinescu, Penn, S.)
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Setting

Consider a rank D
positive-definite even lattice

L = Zα1 ⊕ · · ·ZαD

equipped with a symmetric,
nondegenerate, bilinear form
〈·, ·, 〉, and its Gram matrix

A = (ai ,j) = (〈αi , αj〉)1≤i ,j≤D .

Running Example: Consider the
lattice

L = Zα1 ⊕ Zα2 ⊕ Zα3 ⊕ Zα4

with Gram matrix
2 1 1 1
1 2 0 0
1 0 2 0
1 0 0 2


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Setting

Let

L+ = Z≥0α1 ⊕ · · ·Z≥0αD .

Consider an isometry
ν : L→ L such that
ν(L+) ⊂ L+.

It’s easy to show that ν is a
permutation of the αi .

We realize ν as a
permutation, decomposed
into ld disjoint cycles:

(1, 2, . . . , l1)(l1+1, l1+2, . . . , l2) · · · (l1+l2+· · ·+ld−1+1, . . . , ld).

Running Example: Consider the
automorphism ν : L→ ν defined
by:

ν(α1) = α1

ν(α2) = α3, ν(α3) = α4

Which can be realized by the
permutation:

(1)(2, 3, 4).
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Setting

We relabel the elements of our
basis of L to interact more nicely
with the isometry ν. Define:

α
(r)
1 = αl1+l2+···+lr−1+1

and

α
(r)
1 = αl1+l2+···+lr−1+j = ν jα

(r)
1 .

For simplicity, set

α(r) = α
(r)
1 ,

the first element of each orbit,
for 1 ≤ r ≤ d .

Running Example: Define

α
(1)
1 = α1

and

α
(2)
1 = α2

α
(2)
2 = να2

α
(2)
3 = ν2α2

In particular, we have

α(1) = α1, α(2) = α2.
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Setting

Now, let k be twice the order of ν, and let η be a k-th root of
unity. We consider the two central extentions of L by 〈ν〉:

1 −→ 〈η〉 −→ L̂ −→ L −→ 0

and
1 −→ 〈η〉 −→ L̂ν −→ L −→ 0

with commutator maps

C0(α, β) = (−1)〈α,β〉

and

C (α, β) =
k−1∏
j=0

(−ηj)〈ν jα,β〉

respectively.
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Setting

Let e : L→ L̂ be a normalized section such that:

e0 = 1 and eα = α for all α ∈ L.

Let εC0 be the normalized cocycle defined by:

εC0(αi , αj) =

{
1 if i ≤ j

(−1)〈αi ,αj 〉 if i > j .

under which we have

eαeβ = εC0(α, β)eα+β.
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Setting

We lift ν to an automorphism ν̂ of L̂ such that

ν̂a = νa

and
ν̂a = a if νa = a.

For α ∈ {α(r)
j |1 ≤ j ≤ lr}, we define this lifting by:

ν̂eα =


eνα if lr is odd

eνα if lr is even and
〈
ν lr/2α, α

〉
∈ 2Z

η2lr eνα if lr is even and
〈
ν lr/2α, α

〉
/∈ 2Z,

We say that αi ∈ L satisfies the evenness condition if αi = α
(r)
j

for some 0 ≤ j ≤ lr − 1 and one of the following holds

1 lr is a positive even integer and
〈
αi , ν

lr/2αi

〉
∈ 2Z

2 lr is a positive odd integer.
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The VOA VL

Consider the lattice VOA VL characterized by the linear
isomorphism

VL
∼= S(ĥ−)⊗ C[L]

where
h = L⊗Z C, and ĥ− = t−1C[t−1]

with the vertex operators

Y (h, x) =
∑
n∈Z

h(n)x−n−1

for h ∈ h and

Y (ι(eα), x) = E−(−α, x)E+(−α, x)eαx
α.

and vacuum and conformal vectors

1 = 1⊗ 1, ω =
1

2

D∑
i=1

ui (−1)2
1

respectively.
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The twisted module V T
L

We now construct the twisted module we call V T
L for the VOA VL.

For n ∈ Z, consider

h(n) := {h ∈ h|νh = ηnh}

so that
h =

∐
n∈Z/kZ

h(n).

We also project each h ∈ h onto h(n) via the map

Pn : h→ h(n)

given by Pn(h) = 1
k (h + η−nνh + η−2nν2h + · · ·+ η−(k−1)nνk−1h)

for h ∈ h, and we call this projection simply h(n)
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The twisted module V T
L

Running Example: We will be primarily concerned with the 0-th
projection, and as such we have: In our example, we have that

h(0) = Cα1 + C(α2 + α3 + α4)

and
α1(0) = α1

α2(0) =
1

3
(α2 + α3 + α4)

In general:

(α
(r)
j )(0) =

1

lr

(
α

(r)
1 + · · ·+ α

(r)
lr

)
,

for 1 ≤ r ≤ d and 1 ≤ j ≤ lr .
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The twisted module V T
L

Form the affine Lie algebra

ĥ[ν] =
∐

n ∈ 1

k
Zh(kn) ⊗ tn ⊕ Ck

with
[α⊗ tm, β ⊗ tn] = 〈α, β〉mδm+n,0k

for α ∈ h(km), β ∈ h(kn), m, n ∈ 1
kZ and k is central.

Form the induced module

S [ν] = U
(
ĥ[ν]

)
⊗U(

∐
n≥0 h(kn)⊗tn⊕Ck) C, (3)

where
∐

n≥0 h(kn) ⊗ tn acts trivially on C and k acts as 1. We will

make use of the fact that this is linearly isomorphic to S
(
ĥ[ν]−

)
.

Christopher Sadowski Lattice Principal Subspace



The twisted module V T
L

Following the construction in [L] and the work of Calinescu,
Lepowsky, and Milas, we define:

N = {α ∈ L|〈α, h(0)〉 = 0}

M = (1− ν)L ⊂ N

R = {α ∈ N|η
∑k−1

j=0 〈jν
jα,β〉 = 0}

Using a theorem of [L], we assume that what we call the ”twisted
Gram matrix”:

AνL = (〈α(i)
(0), α

(j)
(0)〉)

d
i ,j=1

of our lattice is invertible, to ensure that R = M = N, which gives
us a unique irreducible twisted module for VL, which we call V T

L ,
characterized by the linear isomorphism

V T
L
∼= S

(
ĥ[ν]−

)
⊗ C[L/N]
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The twisted module V T
L

Importantly, we have a twisted vertex operator, and we focus on

Y ν̂(ι(eα), x) = k−〈α,α〉/2σ(α)E−(−α, x)E+(−α, x)eαx
α(0)+〈α(0),α(0)〉/2−〈α,α〉/2,

(4)

where

E±(−α, x) = exp

 ∑
n∈± 1

k
Z+

−α(kn)(n)

n
x−n

 . (5)

We define the following modes of the twisted vertex operators

Y ν̂(ι(eα), x) =
∑

m∈ 1
k
Z

(eα)ν̂m x−m−
〈α,α〉

2 .
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The principal subspace W T
L

We assume now that the Gram matrix of L contains only
non-negative entries. We define the principal subalgebra of VL to
be

WL = 〈eα1 , . . . , eαD 〉,

the smallest vertex subalgebra of VL containing eα1 , . . . , eαD .

We define the principal subspace of W T
L by

W T
L = WL · 1T

where 1T = 1⊗ 1 ∈ V T
L .
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The principal subspace W T
L

V T
L , and thus W T

L is 1
kZ-graded by the eigenvalues of Lν̂(0), given

by

Y ν̂(ω, x) =
∑
n∈Z

Lν̂(n)x−n−2.

We call this the grading by conformal weight. In particular, we
have

Lν̂(0)(eαi1
)ν̂m1
· · · (eαir

)ν̂mr
· 1T

= (−(m1 + · · ·+ mr + r) + wt(1T )) (eαi1
)ν̂m1
· · · (eαir

)ν̂mr
· 1T

In particular, we will use kLν̂(0) to ensure that our weights are integers.
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Setting

We also have d gradings by
charge, given by the eigenvalues
of li (λ

(i))(0) for 1 ≤ i ≤ d . We
call the sum of these charges the
total charge.

In essence, the (λ(i))(0)-charge
counts the number of αi

appearing in a monomial in W T
L .

Running Example: The element

(eα(1))ν̂−3(eα(1))ν̂−1(eα(2))ν̂− 1
3
· 1T

has

conformal weight
= 9 + 3 + 1 + wt(1T )

(λ(1))(0)-charge = 2

(λ(2))(0)-charge = 1.
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The principal subspace W T
L

Now that we have endowed W T
L with (d + 1)-gradings, define the

homogeneous graded components(
W T

L

)
(n,m)

= {v ∈W T
L |wt v = n, ch v = m}.

and the multigraded dimension

χ(q; x) = tr|WT
L
x
l1(λ(1))(0)

1 · · · x ld (λ(d))(0)

d qkL̂
ν̂(0),

where xm = xm1
1 · · · x

md
d . We also define the shifted multigraded

dimensions

χ′(q; x) = q−wt(1T )χ(q; x) =
∑

n∈Z≥0

m∈(Z≥0)d

dim
(
W T

L

)
(n,m)

qnxm

so that the powers of x1, . . . , xd and q are all integers.
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Properties of W T
L

Following [L], we have that

Y ν̂(ν̂rv , x) = lim
x1/k→η−rx1/k

Y ν̂(v , x).

From this, we have n fact, if lj is odd or if lj is even and

〈a(j), ν
lj
2 α(j)〉 ∈ 2Z we have

Y ν̂(eα
(j)

, x) =
∑
n∈ 1

lj
Z

(eα
(j)

)ν̂nx
−n−<α

(j),α(j)>
2

∈ (End V T
L )[[x1/lj , x−1/lj ]] ⊂ (End V T

L )[[x1/k , x−1/k ]]

. (6)

Further, if lj is even and 〈α(j), ν
lj
2 α(j)〉 /∈ 2Z we have

Y ν̂(eα
(j)

, x) =
∑

n∈ 1
2lj

+ 1
lj
Z

(eα
(j)

)ν̂nx
−n−<α

(j),α(j)>
2

∈ (End V T
L )[[x1/2lj , x−1/2lj ]] ⊂ (End V T

L )[[x1/k , x−1/k ]].
(7)
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Properties of W T
L

Running Example: In our example, we have

Y ν̂(eα
(1)
, x) =

∑
n∈Z

(eα
(1)

)ν̂nx
−n−1

and
Y ν̂(eα

(2)
, x) =

∑
n∈ 1

3
Z

(eα
(2)

)ν̂nx
−n−1

since we satisfy the evenness condition in all cases.
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Properties of W T
L

Our twisted properties satisfy several other conditions. Namely, we
have that:

(eν
rα(i)

)ν̂n = ηrnlili
(eα

(i)
)ν̂n,

if α(i) satisfies the evenness condition

(eν
rα(i)

)ν̂n = η2rnli−1
2li

(eα
(i)

)ν̂n,

otherwise.

We have
(eα)ν̂n 1T = 0

for all n > −〈α(0),α(0)〉
2 . This is the first of our relations in W T

L .

All of the operators which occur as modes of the twisted
vertex operator commute, due to the fact that the Gram
matrix of L contains only non-negative entries.
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Relations

Our operators satisfy a certain natural set of relations, namely:

1

(m − 1)!

(
∂

∂x

)m−1(
Y ν̂(eαi , x)

)
Y ν̂(eαj , x) = 0. (8)

It follows that for all 1 ≤ m ≤
〈
νrα(i), α(j)

〉
we have

1

(m − 1)!

(
∂

∂x

)m−1(
Y ν̂(eν

rα(i)
, x)

)
Y ν̂(eα

(j)
, x) = 0. (9)

Extracting appropriate coefficients of the formal variable x from
(??) we have the expressions

R(i , j , r ,m|t) =
∑

n1+n2=−t
n1∈Z−i
n2∈Z−j

ηrn1Li
Li

(
−n1 −

〈α(i),α(i)〉
2

m − 1

)
(eα

(i)
)ν̂n1

(eα
(j)

)ν̂n2
,

(10)
which act as 0 on 1T .
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Presentation of W T
L

We define

UT
L = C

[
x ν̂
α(i)(n)

∣∣∣∣1 ≤ i ≤ d , n ∈ Zi

]
.

We have a projection

f TL : UT
L →W T

L

x ν̂
α(i1)(ni1) · · · x ν̂

α
(ij )(nij ) 7→ (eα

(i1)
)ν̂ni1
· · · (eα

(ij )

)ν̂nij
· 1T ,

(recall, the modes of the twisted vertex operator commute due to
our restriction on the Gram matrix of L).
By presentation, we mean to find the generators of kerf TL .
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Presentation of W T
L

Consider the following expressions

R(i , j , r ,m|t) =
∑

n1+n2=−t
n1∈Z−i
n2∈Z−j

ηrn1Li
Li

(
−n1 −

〈α(i),α(i)〉
2

m − 1

)
x ν̂
α(i)(n1)x ν̂

α(j)(n2),

(11)
and let JTL be the left ideal generated by these expressions. Also,
define left ideal

UT+
L = UT

L C
[
x ν̂
α(i)(n)

∣∣∣∣1 ≤ i ≤ d , n ∈ Z+
i

]
. (12)
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Presentation of W T
L

Theorem (Penn, S., Webb)

We have that
Ker f TL = JTL + UT+

L .

Idea of the proof: The fact that JTL + UT+
L ⊂ Ker f TL is true by

the above slides. For the reverse inclusion, we consider an element

from Ker f TL which is not in JTL + UT+
L . We consider a

homogeneous element with respect to all gradings with smallest
positive total charge. Among these elements, we choose one which
has lowest conformal weights.
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Presentation of W T
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Idea of the proof: We use certain shifting maps to move our
element and eventually end up with a ∈ ITL , a contradiction. The
most important ingredients in the proof are the maps: For each
λ(i), 1 ≤ i ≤ d , define:

τλ(i) : UT
L → UT

L

x ν̂
α(j)(n) 7→ x ν̂

α(j)

(
n +

〈(
α(i)
)

(0)
, λ(i)

〉)
,

(13)

where n ∈ Zi .
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At the level of W T
L , we have analogous maps, which are twisted

analogues of maps originally introduced in the work of Haisheng Li:

∆T (λ(i),−x) = (

li−1∏
j=0

(−ηjli )
−ν jλ(i)

)x
λ

(i)
(0)E+(−λ(i), x). (14)

Taking the constant term of this map and calling it ∆T
c (λ(i),−x),

we have that

∆T
c (λ(i),−x) : W T

L →W T
L

a · 1T 7→ τλ(i)(a) · 1T ,
(15)

where a ∈ UT
L . We note here that the map τλ(i) : UT

L → UT
L is a

lifting of the map ∆T
c (λ(i),−x)
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Presentation of W T
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Finally, we also need to show a few more relations hold. Namely,
we need:
For all i , j , s, t ∈ Z such that 1 ≤ i , j ≤ d , s, t ≥ 0, and

s + t ≤ li

〈
α

(i)
(0), α

(j)
〉
− 1, we have

x ν̂
α(i)

−
〈
α

(i)
(0), α

(i)
(0)

〉
2

− s

li

 x ν̂
α(j)

−
〈
α

(j)
(0), α

(j)
(0)

〉
2

− t

li

 ∈ ITL .

These types of relations only appeared in earlier work by Milas and
Penn, but were not needed in the affine Lie algebra cases (both
untwisted and twisted).
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Exact Sequences

Knowing this presentation, it is easy to construct exact sequences:

Theorem (Penn, S., Webb)

For each i = 1, . . . , d, we have the following short exact sequences

0→W T
L

e
α(i)−−−→W T

L
∆T

c (λ(i),−x)−−−−−−−→W T
L → 0

Importantly, we have the
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Corollary

We have the following short exact sequences for i = 1, . . . , d:

0 →
(
W T

L

)
(m−εi ,n+k

〈
α

(i)
(0)
,α

(i)
(0)

〉
2

−k
∑d

j=1 mj

〈
α

(i)
(0)
,α

(j)
(0)

〉
)

e
α(i)−−−→

(
W T

L

)
(m,n)

∆T
c (λ(i),−x)−−−−−−−→

(
W T

L

)
(m,n− k

li
mi )
→ 0.

Moreover, we have recursions for i = 1, . . . , d of the form:

χ′(x; q) (16)

= χ′(x1, . . . , xi−1, q
k
li xi , xi+1, . . . , xd ; q)

+xiq
k

〈
α

(i)
(0)
,α

(i)
(0)

〉
2 χ′(q

k
〈
α

(1)
(0)
,α

(i)
(0)

〉
x1, . . . , q

k
〈
α

(d)
(0)
,α

(i)
(0)

〉
xd ; q).
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Character of W T
L

Finally, we solve this recursion to obtain:

Corollary

We have

χ
′
(x; q) =

∑
m∈(Zd

≥0)

q
mtAm

2

(q
k
l1 ; q

k
l1 )m1 · · · (q

k
ld ; q

k
ld )md

xm1
1 · · · x

md
d

where A is the (d × d)-matrix defined by

Ai ,j = k
〈
α

(i)
(0), α

(j)
(0)

〉
.
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Character of W T
L

Running Example: In our example from earlier, we obtain:

χ′(1, 1, q) =
∑

m1,m2≥0

q3m2
1+3m1m2+m2

2

(q3; q3)m1(q; q)m2

. (17)

We note that this is the analytic sum-side for the Kanade-Russell
Conjecture I1, found by Kursungoz. Namely, one form of the
Kanade-Russell Conjecture I1 is:

∑
m1,m2≥0

q3m2
1+3m1m2+m2

2

(q3; q3)m1(q; q)m2

=
1

(q, q3, q6, q8; q9)∞
, (18)
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Character of W T
L

In a similar example, we can delete the last row and last column of
our Gram matrix in our example to obtain a 3× 3 Gram matrix
(and rank 3 lattice), and applying the above theory we obtain:

χ′(1, 1, q) =
∑

m1,m2≥0

q2m2
1+2m1m2+m2

2

(q2; q2)m1(q; q)m2

, (19)

which can be interpreted as the generating function of partitions of
n in which no part appears more than twice and no two parts differ
by 1 (Bressoud).

Beyond this, this example doesn’t generalize since the Gram matrix
is no longer positive definite if we increase the rank of the lattice.

Christopher Sadowski Lattice Principal Subspace



Thank you!
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