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I Free field VOAs
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I β − γ system

I Free fermion algebra
I symplectic fermions

I Associated to a Lie super-algebra

g V k(g) Lk(g)

I Associated to an integral lattice

L VL,

If L is the root lattice for g of type ADE then VL
∼= L1(g).

I Orbifolds: V is a VOA and G ⊂ Aut(V )

V G = {v ∈ V |g · v = v for all g ∈ G}
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Sources of VOAs

I Cosets: V is a VOA and W ⊂ V

Comm(W ,V ) = {v ∈ V |vnw = 0 for all w ∈W , n ≥ 0}

I W algebras:
I Start with a Lie superalgebra g and a nilpotent f ∈ g.
I Find an sl(2) triple in g associated to f : (h, e, f ).
I Decompose g by eigenvalues of ad h.
I Form a free field VOA, F(Ach)⊗F(Ane), related to this

decomposition.
I Consider C(g, f ) = V k(g)⊗F(Ach)⊗F(Ane) and a certain

vertex algebra homomorphism D.
I Wk(g, f ) is the homology of the related complex.
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H(3)S3

Consider the (rank 1) Heisenberg vertex algebra

H = 〈α〉 with α(z) =
∑
n∈Z

α(n)z−n−1

where

[α(m), α(n)] = mδm+n,0, equivalently, α(z)α(w) ∼ 1

(z − w)2
.

Set
H(3) = H⊗3 = 〈α1, α2, α3〉 .
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H(3)S3

We can diagonalize the action of (123) ∈ S3 with the change of
basis

βi =
1√
3

(α1 + ηiα2 + η2iα3)

where η is a primitive third root of unity. These have nontrivial
OPE given by

β0(z)β0(w) ∼ 1

(z − w)2
and β1(z)β2(w) ∼ 1

(z − w)2
.

This allows us to “push”

H(3)S3 = H⊗H(2)S3 ,

where

H = 〈β0〉 and H(2) = 〈β1, β2〉
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H(3)S3

By an argument involving the associated graded algebra and
classical invariant theory, H(2)S3 is strongly generated by

ω2(a, b) = ◦
◦∂

aβ1∂
bβ2

◦
◦ + ◦

◦∂
aβ2∂

bβ1
◦
◦

ω3(a, b, c) = ◦
◦∂

aβ1∂
bβ1∂

cβ1
◦
◦ + ◦

◦∂
aβ2∂

bβ2∂
cβ2

◦
◦

By [Linshaw 2012], we only require quadratic generators ω2(0, 0),
ω2(0, 2), ω2(0, 4), ω2(0, 6), and ω2(0, 8). Equations, such as

ω2(0, 6) =
53880

371
ω2(0, 4)−31 + · · ·+ 165

371
ω2(1, 1)−1ω2(0, 2)

· · ·+ 45

371
ω2(0, 0)−1ω2(0, 0)−1ω2(1, 1)

· · ·+ 60

371
ω3(0, 0, 0)−1ω3(0, 1, 1),

allow us to remove the need for ω2(0, 6) and ω2(0, 8)
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H(3)S3

Lemma
We can reduce the cubic generating set to the list

ω3(0, 0, 0), ω3(0, 0, 2), and ω3(0, 1, 2).

Proof.
(sketch)
Equations such as

ω0
3(0, 1, 3) = − 1

12
ω0

3(0, 0, 4)− 1

72
ω0

3(0, 1, 2)−21 +
1

72
ω0

3(0, 0, 2)−31,

ω0
3(0, 2, 2) = 3ω0

3(0, 0, 4) +
4

3
ω0

3(0, 1, 2)−21

− 1

3
ω0

3(0, 0, 2)−31−
1

3
ω0

3(0, 0, 0)−51, ,
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5

4
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Lemma
We can reduce the cubic generating set to the list

ω3(0, 0, 0), ω3(0, 0, 2), and ω3(0, 1, 2).

Proof.
(sketch)
allow us to write all vectors of the form ω0

3(0, a, b) with
0 ≤ a ≤ b ≤ 4 can be written, using only the translation operator,
in terms of our proposed generating set with the addition of the
vectors ω0

3(0, 0, 4), ω0
3(0, 1, 4), ω0

3(0, 2, 4), and ω0
3(0, c , d) with

0 ≤ c ≤ d where d ≥ 5.

Then

ω0
3(0, 0, 4) = −16
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ω0

3(0, 1, 2)−21 +
4

15
ω0

3(0, 0, 2)−31 +
24

45
ω0
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2

5
ω0

2(0, 0)−1ω
0
3(0, 1, 1)

+
4

5
ω0

2(0, 1)−1ω
0
3(0, 0, 1)− 2

5
ω0

2(1, 1)−1ω
0
3(0, 0, 0),
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Lemma
We can reduce the cubic generating set to the list

ω3(0, 0, 0), ω3(0, 0, 2), and ω3(0, 1, 2).

Proof.
(sketch)
and similar equations allow us to eliminate the need for ω0

3(0, 0, 4),
ω0

3(0, 1, 4), and ω0
3(0, 2, 4).

Next, we consider expansions of the
expression

D5(a) = ω2(a1, a2)−1ω3(a3, a4, a5)− ω2(a1, a5)−1ω3(a2, a3, a4)

− ω2(a2, a5)−1ω3(a1, a3, a4)− ω2(a3, a4)−1ω3(a1, a2, a5)

+ ω2(a3, a5)−1ω3(a1, a2, a4) + ω2(a4, a5)−1ω3(a1, a2, a3),
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H(3)S3

Lemma
We can reduce the cubic generating set to the list

ω3(0, 0, 0), ω3(0, 0, 2), and ω3(0, 1, 2).

Proof.
(sketch)
Next, linear combinations of D5(0, 0, 0, 1, a− 3),
D5(0, 0, 0, 2, a− 4), D5(0, 0, 1, 1, a− 4), D5(0, 0, 0, 3, a− 5),
D5(0, 0, 1, 2, a− 5), and D5(0, 1, 1, 1, a− 5), allow us to eliminate
the need for ω0

3(0, 0, a), ω0
3(0, 1, a− 1), ω0

3(0, 2, a− 2),
ω0

3(0, 3, a− 3), ω0
3(0, 4, a− 4), and ω0

3(0, 5, a− 5) for a ≥ 5.



H(3)S3

Lemma
We can reduce the cubic generating set to the list

ω3(0, 0, 0), ω3(0, 0, 2), and ω3(0, 1, 2).

Proof.
(sketch)
Finally,for 5 ≤ a < b, D5(b + 2, a− 1, 0, 0, 0) can be used to
construct

ω0
3(0, a + 1, b) = Aω0

3(0, a− 1, b + 2)

+ Bω0
3(0, 0, a + b + 1)

+ Ψ,

where Ψ is a vertex algebraic polynomial and A and B depend on a
and b can be inductively used to finish our argument.



H(3)S3

Theorem (Milas-P-Shao)

(i) The vertex operator algebra H(3)S3 is simple of type
(1, 2, 3, 4, 5, 62), i.e. it is strongly generated by seven vectors
whose conformal weights are: 1, 2, 3, 4, 5, 6, 6. This generating set
is minimal.
(ii) H(3)S3 is isomorphic to H(1)⊗W, where W is of type
(2, 3, 4, 5, 62).
(iii) H(3)S3 is not freely generated (by any set of generators).



The cyclic subgroup Z3
∼=
〈(
1 2 3

)〉
⊂ S3

We can perform a similar analysis of the orbifold H(3)Z3 , where
our initial generating set is

ω1(a) = β0(−1− a)1

ω2(a, b) = β1(−1− a)β2(−1− b)1

ω3,1(a, b, c) = β1(−1− a)β1(−1− b)β1(−1− c)1

ω3,2(a, b, c) = β2(−1− a)β2(−1− b)β2(−1− c)1

The minimal strong generating set is

ω1(0)

ω2(0, 0), ω2(0, 1), ω2(0, 2), ω2(0, 3)

ω3,1(0, 0, 0), ω3,1(0, 0, 2)

ω3,2(0, 0, 0), ω3,2(0, 0, 2)
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Theorem
(i) The vertex operator algebra H(3)Z3 is simple of type
(1, 2, 33, 4, 53), i.e. it is strongly generated by nine vectors whose
conformal weights are: 1, 2, 3, 3, 3, 4, 5, 5, 5. This generating set is
minimal.
(ii) H(3)Z3 is isomorphic to H(1)⊗W, where W is of type
(2, 33, 4, 53).
(iii) H(3)Z3 is not freely generated (by any set of generators).



Characters

From [Bantay-1997], it follows that

ch[H(3)S3 ](τ) =
q−1/8

6

( ∞∏
n=1

1

(1− qn)3

+3
∞∏
n=1

1

(1− q2n)

∞∏
n=1

1

(1− qn)
+ 2

∞∏
n=1

1

(1− q3n)

)
.

and

ch[H(3)Z3 ](τ) =
q−1/8

3

( ∞∏
n=1

1

(1− qn)3
+ 2

∞∏
n=1

1

(1− q3n)

)
.



Modular Invariance Properties

We have

ch[H(3)S3 ]

(
−1

τ

)
=

3∑
i=1

∫
Ri

SH(3)S3 ,Mλi
ch[Mλi (τ)]dλi ,

where λi ∈ Ri parameterize certain H(3)S3-modules, Mλi .



F(3)S3

Consider the (rank 1) free fermion vertex algebra

F = 〈α〉 with ϕ(z) =
∑
n∈Z

ϕ(n)z−n−
1
2

where

[ϕ(m), ϕ(n)] = δm+n,0, equivalently, ϕ(z)ϕ(w) ∼ 1

z − w
.

Set
F(3) = F⊗3 = 〈ϕ1, ϕ2, ϕ3〉 .
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F = 〈α〉 with ϕ(z) =
∑
n∈Z

ϕ(n)z−n−
1
2

where

[ϕ(m), ϕ(n)] = δm+n,0, equivalently, ϕ(z)ϕ(w) ∼ 1

z − w
.

Set
F(3) = F⊗3 = 〈ϕ1, ϕ2, ϕ3〉 .



F(3)S3

We can take the following as an initial generating set.

ω1(a) =
3∑

i=1

∂aϕi

ω2(a, b) =
3∑

i=1

◦
◦∂

aϕi∂
bϕi

◦
◦

ω3(a, b, c) =
3∑

i=1

◦
◦∂

aϕi∂
bϕi∂

cϕi
◦
◦



Reduced generators for F(3)S3

We employ the same strategy of:

I diagonalizing the action of the 3-cycle.

I Writing down generators in the changed basis.

I Looking for classical relations, which are easier to find due to
the anti-commutativity.

I Lifting the classical relations to reduce the generating set.

Proposition

The orbifold F(3)S3 is minimally strongly generated by

ω1(0), ω2(0, 1), ω2(0, 3), and ω3(0, 1, 2).



Reduced generators for F(3)S3

We employ the same strategy of:

I diagonalizing the action of the 3-cycle.

I Writing down generators in the changed basis.

I Looking for classical relations, which are easier to find due to
the anti-commutativity.

I Lifting the classical relations to reduce the generating set.

Proposition

The orbifold F(3)S3 is minimally strongly generated by

ω1(0), ω2(0, 1), ω2(0, 3), and ω3(0, 1, 2).



Structure of F(3)S3

Theorem (Milas-P-Wauchope)

(i) The vertex operator algebra F(3)S3 is simple of type
( 1

2 , 2, 4,
9
2 ), i.e. it is strongly generated by four vectors whose

conformal weights are: ( 1
2 , 2, 4,

9
2 ). This generating set is minimal.

(ii) F(3)S3 is isomorphic to F(1)⊗W, where W is of type
(2, 4, 9

2 ).
(iii) F(3)S3 is not freely generated (by any set of generators).



Structure of F(3)Z3

Theorem (Milas-P-Wauchope)

(i) The vertex operator algebra F(3)Z3 is simple of type ( 1
2 , 1,

9
2

2
),

i.e. it is strongly generated by five vectors whose conformal
weights are: ( 1

2 , 1,
9
2 ,

9
2 ). This generating set is minimal.

(ii) F(3)Z3 is isomorphic to F(1)⊗W, where W is of type (1, 9
2

2
).

(iii) F(3)Z3 is not freely generated (by any set of generators).



Another realization of F(3)Z3 and F(3)S3

Theorem (Milas-P-Wauchope)

I F(3)Z3 ∼= F ⊗ V3Z

I F(3)S3 ∼= F ⊗ V+
3Z

I V+
3Z
∼= SComm (V2(so(9)),V1(so(9))⊗ V1(so(9))), where

SComm(−) denotes a simple current extension of Comm(−).



Another realization of F(2)S3

By [Genra-2013], we know

Wk(osp(1|8), freg)

is of type
(
2, 4, 6, 8, 9

2

)
with central charge

c = −9(14k + 55)(16k + 65)

4(2k + 9)
.

Solving c = 1 gives us k = −63
16 or − 73

18 . At this level the weight 6
and 8 generators are singular. Further,

F(2)S3 ∼=W− 63
16

(osp(1|8), freg).
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Wk(osp(1|8), freg)

is of type
(
2, 4, 6, 8, 9

2

)
with central charge

c = −9(14k + 55)(16k + 65)

4(2k + 9)
.

Solving c = 1 gives us k = −63
16 or − 73

18 . At this level the weight 6
and 8 generators are singular. Further,

F(2)S3 ∼=W− 63
16

(osp(1|8), freg).



The character of F(3)S3 and F(3)Z3

We have

χF(3)S3 (q) =
q1/16

6

∏
n≥1

(1 + qn/2)3 + 3
∏
n≥1

(1 + qn/2)(1− qn)

+2
∏
n≥1

(1 + q3n/2)

 .

and

χF(3)Z3 (q) =
q1/16

3

∏
n≥1

(1 + qn/2)3 + 2
∏
n≥1

(1 + q3n/2)





F(2)Z3-“higher” Boson-Fermion correspondence

Comparing characters for F(2)Z3 and V3Z leads us to the following
q-series identity:

1

3

∏
n≥1

(1 + qn−
1
2 )2 +

2

3

∏
n≥1

(1 + q3(n− 1
2

))

(1 + qn−
1
2 )

=

∑
n∈Z q

9n2

2

(q; q)∞
.



SF(3)S3 and SF(3)Z3

Theorem (Milas-P.)

The vertex operator algebra SF(3)S3 is isomorphic to SF(1)⊗W
where W is of type (2, 33, 43, 55, 64). Further, there are even
generators of weight 2, 33, 4, 53 and odd generators of weight
12, 42, 52, 64.

Theorem (Milas-P.)

The vertex operator algebra SF(3)Z3 is isomorphic to SF(1)⊗W
where W is of type (12, 24, 34). Further, there are even generators
of weight 24, 34 and odd generators of weight 12.



(L1(sl(2))
⊗3)S3

Set
L = Zα1 ⊕ Zα2 ⊕ Zα3

and consider the lattice VOA

VL
∼= L1(sl(2))⊗3.

Similar to a result by [Dong-Lam-Wang-Yamada]:

Proposition

We have

VL = L(3Λ0)⊗
(
L(

1

2
, 0)⊗ L(

7

10
, 0)⊕ L(

1

2
,

1

2
)⊗ L(

7

10
,

3

2
)

)
⊕ L(Λ0 + 2Λ1)⊗

(
L(

1

2
,

1

2
)⊗ L(

7

10
,

1

10
)⊕ L(

1

2
, 0)⊗ L(

7

10
,

3

5
)

)
.
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(
L(

1

2
,

1

2
)⊗ L(

7

10
,

1

10
)⊕ L(

1

2
, 0)⊗ L(

7

10
,

3

5
)

)
.



(L1(sl(2))
⊗3)S3

Set
L = Zα1 ⊕ Zα2 ⊕ Zα3

and consider the lattice VOA

VL
∼= L1(sl(2))⊗3.

Similar to a result by [Dong-Lam-Wang-Yamada]:

Proposition

We have

VL = L(3Λ0)⊗M

⊕ L(Λ0 + 2Λ1)⊗M ′.



(L1(sl(2))
⊗3)S3

By [Dong-Lam-Tanabe-Yamada-Yokoyama] we have

MZ3 ∼= W3, 6
5
,

the simple quotient of the universal W(2, 3) algebra of central
charge 6

5 .

It follows that

MS3 ∼= W Z2

3, 6
5

.

By [Ali-Linshaw], the Z2 orbifold of the universal W(2, 3) algebra
of central charge 6

5 is of type (2, 6, 8, 10, 12).We can check that
the primary weight 12 generator is singular and thus

W Z2

3, 6
5

is of type (2, 6, 8, 10).
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(L1(sl(2))
⊗3)S3

By [Dong-Lam-Tanabe-Yamada-Yokoyama] we have

MZ3 ∼= W3, 6
5
,

the simple quotient of the universal W(2, 3) algebra of central
charge 6

5 . It follows that

MS3 ∼= W Z2

3, 6
5

.

By [Ali-Linshaw], the Z2 orbifold of the universal W(2, 3) algebra
of central charge 6

5 is of type (2, 6, 8, 10, 12).We can check that
the primary weight 12 generator is singular and thus

W Z2

3, 6
5

is of type (2, 6, 8, 10).



(L1(sl(2))
⊗3)S3

Theorem (Milas-P.)

V S3
L = L(3Λ0)⊗W Z2

2, 6
5

⊕ L(Λ0 + 2Λ1)⊗W ,

where W is a W Z2

2, 6
5

-module of conformal weight 2 + 2
5 .

Further,

L(Λ0 + 2Λ1)⊗W has highest weight vector

Z =
∑
σ∈S3

σ · Z̃ ,

where

Z̃ =4α1(−2)eα2 − 2α1(−1)α2(−1) (eα1 + eα2 + 2eα3)

+ α1(−1)2 (−2eα1 + 5eα2 + eα3)− 16eα1+α2−α3 .

thus V S3
L is of type (13, 2, 3, 6, 8, 10).



(L1(sl(2))
⊗3)S3

Theorem (Milas-P.)

V S3
L = L(3Λ0)⊗W Z2

2, 6
5

⊕ L(Λ0 + 2Λ1)⊗W ,

where W is a W Z2

2, 6
5

-module of conformal weight 2 + 2
5 .Further,

L(Λ0 + 2Λ1)⊗W has highest weight vector

Z =
∑
σ∈S3

σ · Z̃ ,

where

Z̃ =4α1(−2)eα2 − 2α1(−1)α2(−1) (eα1 + eα2 + 2eα3)

+ α1(−1)2 (−2eα1 + 5eα2 + eα3)− 16eα1+α2−α3 .

thus V S3
L is of type (13, 2, 3, 6, 8, 10).



(LVir(c , 0)
⊗3)S3 and (LVir(c , 0)

⊗3)Z3

Using similar techniques to the above cases, we expect

Conjecture

For generic c, the orbifold (LVir (c , 0)⊗3)S3 is of type
(2, 4, 62, 82, 9, 102, 11, 123, 14) and the orbifold (LVir (c , 0)⊗3)Z3 is
of type (2, 4, 5, 63, 7, 83, 93, 102).



VN=3(c , 0)
Z2

Consider the N = 3 SuperConformal algebra of central charge c ,
VN=3(c , 0), which is generated by

j0, j+, j−, L,G 0,G+,G−,

where j0, j+, j− generate a sub VOA isomorphic to V
1
3

(2c+1)(sl(2)).

Later, we will also consider this algebra tensored with, F = 〈ϕ〉,
such that

ϕ(z)ϕ(w) ∼
1
2 (2c + 1)

z − w
.

ie.

VN=3(c , 0)⊗F .



VN=3(c , 0)
Z2

Consider the N = 3 SuperConformal algebra of central charge c ,
VN=3(c , 0), which is generated by

j0, j+, j−, L,G 0,G+,G−,

where j0, j+, j− generate a sub VOA isomorphic to V
1
3

(2c+1)(sl(2)).
Later, we will also consider this algebra tensored with, F = 〈ϕ〉,
such that

ϕ(z)ϕ(w) ∼
1
2 (2c + 1)

z − w
.

ie.

VN=3(c , 0)⊗F .



VN=3(c , 0)
Z2

The N = 3 SuperConformal algebra of central charge c ,
VN=3(c , 0), described above admits an automorphism

G 0 7→ −G 0,G+ 7→ −G+, and G− 7→ −G−.

The building blocks for the strong generators of our orbifold are
the following elements, which are quadratic in the vectors G i for
i ∈ {0,+,−},

W 0, 0

a,b = ◦
◦∂

aG 0∂bG 0◦
◦,

W +,−

a,b = ◦
◦∂

aG+∂bG−◦
◦,

W +, 0

a,b = ◦
◦∂

aG+∂bG 0◦
◦,

W −, 0

a,b = ◦
◦∂

aG−∂bG 0◦
◦,

W +,+

a,b = ◦
◦∂

aG+∂bG+◦
◦,

W −,−

a,b = ◦
◦∂

aG−∂bG−◦
◦.



VN=3(c , 0)
Z2

The N = 3 SuperConformal algebra of central charge c ,
VN=3(c , 0), described above admits an automorphism

G 0 7→ −G 0,G+ 7→ −G+, and G− 7→ −G−.

The building blocks for the strong generators of our orbifold are
the following elements, which are quadratic in the vectors G i for
i ∈ {0,+,−},

W 0, 0

a,b = ◦
◦∂

aG 0∂bG 0◦
◦,

W +,−

a,b = ◦
◦∂

aG+∂bG−◦
◦,

W +, 0

a,b = ◦
◦∂

aG+∂bG 0◦
◦,

W −, 0

a,b = ◦
◦∂

aG−∂bG 0◦
◦,

W +,+

a,b = ◦
◦∂

aG+∂bG+◦
◦,

W −,−

a,b = ◦
◦∂

aG−∂bG−◦
◦.



VN=3(c , 0)
Z2

We have lowest weight relations for W +,−
a,0 and W 0, 0

a,0 given by

◦
◦W

+,−
0,0W

+,−
0,0

◦
◦ = −2

3
W 0, 0

3,0 +
1

108

(
−2c2 + c + 73

)
W +,−

3,0 + P0

◦
◦W

+, 0

0,0W
−, 0
0,0

◦
◦ =

1

216

(
2c2 − c − 73

)
W 0, 0

3,0 +
1

216

(
−2c2 + c + 217

)
W +,−

3,0

+ P±,

where P0 and P± are normally ordered polynomials in lower weight
vectors from the orbifold. These equations allow for us to solve for
the generators W 0, 0

3,0 and W +,−
3,0 in terms of lower weight members fo

the orbifold for all c /∈ {1
4 (1± 9i

√
7), 1

4 (1± 3
√

129)}, which we
refer to as the excluded set.



VN=3(c , 0)
Z2

Next, we have the equations

◦
◦W

+, 0

0,0W
+,−
0,0

◦
◦ =

1

216

(
−2c2 + c − 71

)
W +, 0

3,0 + P+,

◦
◦W

−, 0
0,0W

+,−
0,0

◦
◦ =

1

216

(
2c2 − c + 71

)
W −, 0

3,0 + P−,

◦
◦W

+, 0

0,0W
+, 0

0,0
◦
◦ =

1

216

(
−2c2 + c − 71

)
W +,+

3,0 + P̂+,

◦
◦W

−, 0
0,0W

−, 0
0,0

◦
◦ =

1

216

(
−2c2 + c − 71

)
W −,−

3,0 + P̂−,

where P+, P−, P̂+, and P̂− are normally ordered polynomials in
lower weight vectors from the orbifold. These equation allows us to
solve for the generators W +, 0

3,0, W +,−
3,0 , W +,+

3,0 , and W −,−
3,0 in terms of

lower weight vectors for all c 6= 1
4 (1± 9i

√
7).



VN=3(c , 0)
Z2

We similarly have relations at arbitrary weight for W +,−
a,0 and W 0, 0

a,0

given by given by

1296
(a+3

3

)
◦
◦W

+, 0

a,0W
−, 0
0,0

◦
◦ = b1W

0, 0

a+3,0 + b2W
+,−
a+3,0 + P1

1296
(a+3

3

)
◦
◦W

−, 0
a,0W

+, 0

0,0
◦
◦ = b3W

0, 0

a+3,0 + b4W
+,−
a+3,0 + P2

1296
(a+3

3

)
◦
◦W

+,−
a,0W

+,−
0,0

◦
◦ = b5W

0, 0

a+3,0 + b6W
+,−
a+3,0 + P3

where

b1 =
(
6a2 + 18a + 12

)
c2

+
(
18(−1)aa2 + 15a2 + 72(−1)aa− 9a+ 54(−1)a− 60(−1)

)
c

− 18(−1)aa2 − 75a2 − 99(−1)aa− 306a− 135(−1)a − 303,
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VN=3(c , 0)
Z2

We similarly have relations at arbitrary weight for W +,−
a,0 and W 0, 0

a,0

given by given by

1296
(a+3

3

)
◦
◦W

+, 0

a,0W
−, 0
0,0

◦
◦ = b1W

0, 0

a+3,0 + b2W
+,−
a+3,0 + P1

1296
(a+3

3

)
◦
◦W

−, 0
a,0W

+, 0

0,0
◦
◦ = b3W

0, 0

a+3,0 + b4W
+,−
a+3,0 + P2

1296
(a+3

3

)
◦
◦W

+,−
a,0W

+,−
0,0

◦
◦ = b5W

0, 0

a+3,0 + b6W
+,−
a+3,0 + P3

where

b2 = −26a3 − 30a2 +
(
−2a3 − 12a2 − 22a− 12

)
c2

+
(
−17a3 − 66a2 − 36(−1)aa− 79a− 54(−1)a − 48

)
c

+ 144(−1)aa + 362a + 351(−1)a + 573,



VN=3(c , 0)
Z2

We similarly have relations at arbitrary weight for W +,−
a,0 and W 0, 0

a,0

given by given by

1296
(a+3

3

)
◦
◦W

+, 0

a,0W
−, 0
0,0

◦
◦ = b1W

0, 0

a+3,0 + b2W
+,−
a+3,0 + P1

1296
(a+3

3

)
◦
◦W

−, 0
a,0W

+, 0

0,0
◦
◦ = b3W

0, 0

a+3,0 + b4W
+,−
a+3,0 + P2

1296
(a+3

3

)
◦
◦W

+,−
a,0W

+,−
0,0

◦
◦ = b5W

0, 0

a+3,0 + b6W
+,−
a+3,0 + P3

where

b3 = 3
(
2(−1)aa2 + 6(−1)aa + 4(−1)a

)
c2

+ 3
(
5(−1)aa2− 3(−1)aa+ 6(a+ 3)a− 20(−1)a + 6(a+ 3)

)
c

+ 3
(
−25(−1)aa2 − 102(−1)aa− 6(a + 3)a− 101(−1)a

− 15(a + 3)
)
,



VN=3(c , 0)
Z2

We similarly have relations at arbitrary weight for W +,−
a,0 and W 0, 0

a,0

given by given by

1296
(a+3

3

)
◦
◦W

+, 0

a,0W
−, 0
0,0

◦
◦ = b1W

0, 0

a+3,0 + b2W
+,−
a+3,0 + P1

1296
(a+3

3

)
◦
◦W

−, 0
a,0W

+, 0

0,0
◦
◦ = b3W

0, 0

a+3,0 + b4W
+,−
a+3,0 + P2

1296
(a+3

3

)
◦
◦W

+,−
a,0W

+,−
0,0

◦
◦ = b5W

0, 0

a+3,0 + b6W
+,−
a+3,0 + P3

where

b4 = 2(−1)a+1(a + 1)(a + 2)(a + 3)c2

+ ((−1)a(a(a + 42) + 119)a− 36a + 60(−1)a − 54) c

+ 951(−1)a + 144a + (−1)aa(a(37a + 348) + 1055) + 351,



VN=3(c , 0)
Z2

We similarly have relations at arbitrary weight for W +,−
a,0 and W 0, 0

a,0

given by given by

1296
(a+3

3

)
◦
◦W

+, 0

a,0W
−, 0
0,0

◦
◦ = b1W

0, 0

a+3,0 + b2W
+,−
a+3,0 + P1

1296
(a+3

3

)
◦
◦W

−, 0
a,0W

+, 0

0,0
◦
◦ = b3W

0, 0

a+3,0 + b4W
+,−
a+3,0 + P2

1296
(a+3

3

)
◦
◦W

+,−
a,0W

+,−
0,0

◦
◦ = b5W

0, 0

a+3,0 + b6W
+,−
a+3,0 + P3

where

b5 = −108a2 − 54 (3(−1)a + 9) a− 54 (7(−1)a + 9) ,



VN=3(c , 0)
Z2

We similarly have relations at arbitrary weight for W +,−
a,0 and W 0, 0

a,0

given by given by

1296
(a+3

3

)
◦
◦W

+, 0

a,0W
−, 0
0,0

◦
◦ = b1W

0, 0

a+3,0 + b2W
+,−
a+3,0 + P1

1296
(a+3

3

)
◦
◦W

−, 0
a,0W

+, 0

0,0
◦
◦ = b3W

0, 0

a+3,0 + b4W
+,−
a+3,0 + P2

1296
(a+3

3

)
◦
◦W

+,−
a,0W

+,−
0,0

◦
◦ = b5W

0, 0

a+3,0 + b6W
+,−
a+3,0 + P3

where

b6 = 37a3 + 333a2 +
(
−2a3 − 18a2 − 40a− 24

)
c2

+
(
a3 +9a2 +20a+12

)
c+54(−1)aa+902a+162(−1)a+714.



VN=3(c , 0)
Z2

Now if we consider the pair of matrices

B1 =

(
b1 b2

b3 b4

)
and B2 =

(
b1 b2

b5 b6

)
(1)

we can show that for all c ∈ C and a ≥ 1, det B1 and det B2 are
never simultaneously zero. As such, we may solve for W 0, 0

a+3,0 and
W +,−

a+3,0 for all a ≥ 1 in terms of lower weight terms from the
orbifold.

We make a similar argument to reduce the remaining generators.
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VN=3(c , 0)
Z2

Theorem (P)

For all c ∈ C outside of the excluded set the orbifold VN=3(c, 0)Z2

is minimally strongly generated by j0 ,j+, j−, L, W 0, 0

1,0, W +,+

1,0 , W −,−
1,0 ,

W +, 0

0,0, W +, 0

1,0, W +, 0

2,0, W −, 0
0,0, W −, 0

1,0, W −, 0
2,0, W +,−

0,0 , W +,−
1,0 , and W +,−

2,0 . Thus

it is of type (13, 2, 33, 46, 53).



(VN=3(c , 0)⊗F)Z2

For
(VN=3(c, 0)⊗F)Z2

we retain the generators for VN=3(c , 0)Z2 with the addition of

ωa,b = ◦
◦∂

aϕ∂bϕ◦
◦

w+
a,b = ◦

◦∂
aG+∂bϕ◦

◦

w−a,b = ◦
◦∂

aG−∂bϕ◦
◦

w0
a,b = ◦

◦∂
aG 0∂bϕ◦

◦.

Equations such as

W 0, 0

1,0 =
1

432(2c + 1)

(
◦
◦w

0
0,0w

0
0,0

◦
◦ + 27◦

◦j
0j0ω1,0

◦
◦

−36(1 + 2c)◦◦Lω1,0
◦
◦ + 2(1 + 1− 2c2)ω3,0

)
allow us to eliminate the need for most of the remaining generators
of the form W i ,j

a,0.
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Theorem (P)

For c 6= −1
2 , the orbifold (VN=3(c , 0)⊗F)Z2 is minimally

generated by the fields j0, j±, L,W +, 0

0,0,W
−, 0
0,0 W +,−

0,0 , ω1,0, w0
0,0, w0

1,0,

w±0,0, and w±0,0 and is of type (13, 24, 36).

Proof.
(sketch)
This follows from the explicit decoupling relations above.
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(VN=3(c , 0)⊗F)Z2

We now consider the special case when c = −2, which will be
important later in the talk. In this case, we can check that
T = L− Lsug, where

Lsug =
3

16
◦
◦j

0j0◦
◦ +

3

4
◦
◦j

+j−◦
◦ −

3

8
∂j0,

is singular and thus in the maximal ideal.

Further, equations such
as

W +,+

0,1 =− 2T1W
+,+

0,1 −
3

2
◦
◦j

+W +, 0

0,0
◦
◦ −

3

32
◦
◦∂j

0j+j+◦
◦

+
1

4
◦
◦∂j

+∂j+◦
◦ +

1

8
◦
◦∂

2j+j+◦
◦

allow us to eliminate all remaining vectors of the form W i ,j
0,a for

i , j ∈ {0,+,−} from the strong generating set.
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(VN=3(c , 0)⊗F)Z2

Now, equations such as

w+
1,0 = T0w

+
0,0 +

3

4
◦
◦j

0w+
0,0

◦
◦ −

3

4
◦
◦j

+w0
0,0

◦
◦,

will allow us to remove the fields w i
1,0 for i ∈ {0,+,−}. Observe

that we may replace the generator ω1,0 with the field

L̃ = Lsug + 3ω1,0,

setting up the following

Theorem (P)

(LN=3(c , 0)⊗F)Z2 is minimally strongly generated by j0, j+, j−,
L̃, w0

0,0, w+
0,0, w−0,0 and is of type (1, 1, 1, 2, 2, 2, 2).



Wk(sl(4), fshort)

Consider the Lie algebra sl(4) = A3, with simple roots α1, α2, α3.
The positive roots are given by

∆+ = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}

and all roots are given by ∆ = ∆+ ∪∆−.

We decompose

sl(4) = h
⊕
α∈∆

Cxα

and consider the nilpotent element

f = x−α1−α2 + x−α2−α3 ,

which is completed into an sl(2) triple with

e = xα1+α2 + xα2+α3 and h =
1

2
(α1 + 2α2 + a3).
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Wk(sl(4), fshort)

Proposition

The algebra Wk(sl(4), f ) is of type (1, 1, 1, 2, 2, 2, 2) and is
strongly generated by

J0, J+, and J−

which generate a sub VOA isomorphic to V 2k+4(sl(2)), L, which is
a Virasoro vector of central charge

c = −12k2 + 41k + 32

k + 4
,

and three remaining vectors of weight 2: H, E , and F .



Wk(sl(4), fshort)

Some levels collapse to the sl(2) sub-VOA.

Proposition

We have
W− 8

3
(sl(4), f ) ∼= L− 4

3
(sl(2))

and
W− 3

2
(sl(4), f ) ∼= L1(sl(2))

A level that collapses to a Virasoro VOA

Proposition

We have

W−2(sl(4), f ) ∼= L(1, 0)
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Wk(sl(4), fshort)

Consider the rank 2 βγ system, S(2), generated by even, weight
1/2 fields β1, β2, γ1, γ2 subject to the non-trivial OPE

βiγj ∼
δi ,j

z − w
.

Consider the field
h = ◦

◦β1γ1
◦
◦ + ◦

◦β2γ2
◦
◦,

which generates a rank 1 Heisenberg subalgebra of S(2), which we
denote by H.Finally consider the coset

C (2) = Comm(H,S(2)).
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Wk(sl(4), fshort)

Theorem (Creutzig-Kanade-Linshaw-Ridout)

C (2) is simple and of type W(1, 1, 1, 2, 2, 2). Moreover, explicit
primary generators are given by

x1,2 = −◦
◦β1γ2

◦
◦

x2,1 = −◦
◦β2γ1

◦
◦

h1 = −◦
◦β1γ1

◦
◦ + ◦

◦β2γ2
◦
◦

P = ◦
◦β1∂γ2

◦
◦ − ◦

◦(∂β1)γ2
◦
◦ +

1

3
◦
◦β1β1γ1γ2

◦
◦ +

2

3
◦
◦β1β2γ2γ2

◦
◦

Q = ◦
◦β2∂γ1

◦
◦ − ◦

◦(∂β2)γ1
◦
◦ +

1

3
◦
◦β1β2γ1γ1

◦
◦ +

2

3
◦
◦β2β2γ1γ2

◦
◦

R = ◦
◦β1β1γ1γ1

◦
◦ − ◦

◦β2β2γ2γ2
◦
◦ + 2◦

◦β1∂γ1
◦
◦ − 2◦

◦β2∂γ2
◦
◦ − 2◦

◦(∂β1)γ1
◦
◦ + 2◦

◦(∂β2)γ2
◦
◦,

where x1,2, x2,1, h1 generate a subalgebra isomorphic to L−1(sl2).



Wk(sl(4), fshort)

Following from the identification

P 7→ 2E − 1

6
◦
◦J

0J+◦
◦ +

1

6
∂J+

Q 7→ 2F − 1

6
◦
◦J

0J−◦
◦ −

1

6
∂J−

R 7→ −4H +
4

3
L− 4

3
◦
◦J

+J−◦
◦ −

1

3
◦
◦J

0J0◦
◦ +

2

3
∂J0,

Theorem (Adamovic-Milas-P. also
Creutzig-Kanade-Linshaw-Ridout)

We have
W− 5

2
(sl(4), f ) ∼= C (2).



Wk(sl(4), fshort)

Theorem (Adamovic-Milas-P.)

We have
W− 7

3
(sl(4), f ) ∼= (LN=3(−2, 0)⊗F)Z2 .

Proof.
(sketch)
It is straightforward to check that appropriate identification is

j0 7→ J0, j± 7→ J±,

L̃ 7→ L, w0
0,0 7→ −

i

2
√

6
H,

w+
0,0 7→

i

2
√

6
E , w−0,0 7→ −

i

2
√

6
F ,
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Wk(sl(4), fshort)

At level k = −1
2 the central charge of Wk(sl(4), f ) is

−29

7
=

9

5
− 208

35
.

This provides some motivation for W− 1
2
(sl(4), f ) to be an

extension of L3(sl(2))⊗ L(c5,14, 0).
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Thank You!


