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3. Application to affine Lie algebra ŝl(2)
4. Application to Weyl vertex algebra orbifolds.
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Summary of previous results

Whittaker modules for simple Lie algebras

• Anna Romanov talk

Whittaker VOA modules

• affine VOAs - Adamovic, Lu, Zhao
• Virasoro VOAs - Mazorchuk, Zhao, Lu, Ondrus, Wiesner
• Heisenberg VOAs - Yu, Hartwig, Tanabe

Whittaker non-VOA modules

• Imaginary Whittaker modules for Heisenberg and affine algebras -
K. Christodoulopoulou (not restricted)
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Vertex Operator Algebra

Vertex operator algebra (V ,Y , 1, ω) is a Z-graded vector space

V =
∐
n∈Z

V(n),

such that

• wtv = n, for v ∈ V(n),
• dimV(n) <∞, for n ∈ Z,
• V(n) = 0, for n sufficiently small,

equipped with a linear map

V → (EndV )[[x , x−1]]

v 7→ Y (v , x) =
∑
n∈Z

vnx−n−1,

Y (v , x) denoting the vertex operator associated with v,

and equipped also with two distinguished homogenous vectors 1 ∈ V(0)
(the vacuum) and ω ∈ V(2).
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Vertex Operator Algebra

The following conditions are assumed for u, v ∈ V :

• unv = 0 for n sufficiently large,
• Y (1, x) = 1,
• Y (v , x)1 ∈ V [[x ]] and limx→0 Y (v , x)1 = v ,
• Jacobi identity holds:

x−1
0 δ( x1 − x2

x0
)Y (u, x1)Y (v , x2)− x−1

0 δ( x2 − x1
−x0

)Y (v , x2)Y (u, x1)

= x−1
2 δ( x1 − x0

x2
)Y (Y (u, x0)v , x2).

Also, the Virasoro algebra relations hold (acting on V ):

[L(m), L(n)] = (m − n)L(n + n) + 1
12 (m3 −m)δn+m,0(rkV )1,

for m, n ∈ Z, where L(n) = ωn+1 i.e., Y (ω, x) =
∑

n∈Z L(n)x−n−2

and rk V ∈ C, L(0)v = nv = (wt v)v for n ∈ Z and v ∈ V(n),
d
dx Y (v , x) = Y (L(−1)v , x).
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Weak module for a VOA

A weak V –module is a pair (M,YM) where M is a complex vector
space, and YM(·, z) is a linear map

YM : V → End(M)[[z , z−1]],

a 7→ YM(a, z) =
∑
n∈Z

anz−n−1,

satisfying the following conditions on a, b ∈ V and v ∈ M:

• anv = 0 for n sufficiently large.
• YM(1, z) = IM .
• The following Jacobi identity holds:

z−1
0 δ

(
z1−z2

z0

)
YM(a, z1)YM(b, z2)− z−1

0 δ
(

z2−z1
−z0

)
YM(b, z2)YM(a, z1)

= z−1
2 δ

(
z1−z0

z2

)
YM(Y (a, z0)b, z2)

6



Ordinary module for a VOA

Note: every weak V –module (M,YM) is a module for the Virasoro
algebra generated by components of the field

YM(ω, z) =
∑
n∈Z

L(n)z−n−2.

Module (M,YM) is called ordinary if L(0) acts diagonally on finite
dimensional weight spaces + some extra conditions on grading.
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Dong-Mason theorem

Let V be a VOA. An automorphism g of a VOA V is a mapping V → V
such that g(anb) = g(a)ng(b), for all a, b ∈ V , n ∈ Z and such that
g(ω) = ω.

Let M be a weak module for the VOA V . We define the composition
M ◦ g to be the module whose vertex operator is given by
YM◦g (v , z) = Y (gv , z), for all v ∈ V .

Theorem (Dong-Mason (1997))

Let (M,YM) be an irreducible ordinary module for the vertex operator
algebra V . Let g be an automorphism of V of prime order p, such that
M ◦ g � M. Then M is an irreducible module for the orbifold subalgebra
V g .

Main goal: extend this result to weak modules for VOAs.

8



Main result

Let g be an automorphism of order n. Let W be a V –module. We define

M = W0 ⊕W1 ⊕ · · · ⊕Wn−1,

where Wi = W ◦ g i , i = 0, 1, · · · , n − 1.

Lemma

Let W be an irreducible V –module and M be as above. Assume that
(w , . . . ,w) is cyclic in M, for every w ∈W , w 6= 0. Then W is an
irreducible V 〈g〉–module, where V 〈g〉 =

{
v ∈ V

∣∣ gv = v
}

.

Theorem

Let W be an irreducible V –module, and g an automorphism of finite
order n such that W ◦ g i � W for i = 1, . . . , n − 1. Then W is an
irreducible V 〈g〉–module.
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Order 2 case

Let θ be an automorphism of order two of V . Let

V + = {v ∈ V | θ(v) = v}, V− = {v ∈ V | θ(v) = −v}.

Then V + is a vertex subalgebra of V and V− is a V +-module.

Lemma

Let Li , i = 1, . . . , t, be non-isomorphic irreducible weak V –modules and
L = ⊕t

i=1Li . Then for each wi 6= 0, wi ∈ Li , vector (w1,w2, . . . ,wt) is
cyclic in L.

Theorem

Let W be an irreducible weak V – module such that W ◦ θ � W . Then
W is an irreducible V +–module.
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Order 2 case: proof

Consider V – module M = W ⊕Wθ. Let us define

∆± : W →M, w 7→ (w ,±w).

Then ∆± are V +– homomorphisms and we have

M = ∆+(W )
⊕

∆−(W ).

Also,
V +.∆+ (W ) = ∆+ (W )

and
V−.∆+ (W ) = ∆− (W )

Assume W is not an irreducible V +- module and 0 6= S $ W . In
particular, 0 6= ∆+(S) $ ∆+(W ).

On the other hand, V .∆+(S) =M. Since

V±.∆+(S) ⊂ ∆±(W ),

we must have V +.∆+(S) = ∆+(W ). Contradiction.
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Whittaker modules for Lie algebras: general case

Let g be a (possibly infinite dimensional) Lie algebra with triangular
decomposition:

g = n− + h + n+.

Let λ ∈ n∗+ be a Lie homomorphism.

The universal Whittaker module with Whittaker function λ is defined as

W̃ (λ) = U(g)/J(λ),

where J(λ) = U(g).
{

x − λ(x)1
∣∣ x ∈ n+

}
. (= the left ideal generated by

{x − λ(x)1 |x ∈ n+}).

If the simple quotient of W̃ (λ) is unique, we denote it by W (λ).

Problem: Determine the structure of W (λ).
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Affine Lie algebras

Let g be a finite - dimensional simple Lie algebra over C and let (·, ·) be
a nondegenerate symmetric bilinear form on g. Let g = n− + h + n+ be
the associated triangular decomposition.

The (untwisted) affine Kac-Moody Lie algebra ĝ associated with g is
defined as ĝ = g⊗ C[t, t−1]⊕ CK .

For example, if g = sln+1, then we say that ĝ is of type A(1)
n , where K is

the canonical central element and the Lie algebra structure is given by

[x ⊗ tn, y ⊗ tm] = [x , y ]⊗ tn+m + n(x , y)δn+m,0K .

We say that M is a ĝ–module of level k if the central element K acts
on M as a multiplication with k.

We have the following triangular decomposition

ĝ = n̂− + ĥ + n̂+,

n̂± = n± ⊕ g⊗ t±1C[t±1], ĥ = h + CK .
13



Affine Lie algebra A(1)
1

Let g = sl2 with the standard basis e, f , h. The corresponding affine Lie
algebra ĝ is of type A(1)

1 .

Then n̂+ is generated as a Lie algebra by

e0 = e ⊗ t0; e1 = f ⊗ t1.

Lie algebra homomorphism λ : n̂+ → C is uniquely determined by

(λ1, λ2) = (λ(e0), λ(e1)).

Let W̃ (k, λ1, λ2) and W (k, λ1, λ2) denote the universal and simple
Whittaker modules of level k and type (λ1, λ2). If λ1 · λ2 6= 0, then the
Whittaker module W (k, λ1, λ2) is called non-degenerate.
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The universal affine vertex algebra V k(g)

Let us set x(n) = x ⊗ tn, for x ∈ g, n ∈ Z, and identify g as the
subalgebra g⊗ t0.

Let C1k be the 1-dimensional ĝ≥0 +CK–module on which ĝ≥0 = g⊗C[t]
acts trivially and K acts as multiplication by the complex number k.

Define the following generalized Verma module

V k(g) = U(ĝ)⊗U(ĝ≥0+CK) C.1k

V k(g) has the structure of a vertex algebra which is uniquely determined
by the fields

x(z) =
∑
n∈Z

x(n)z−n−1 (x ∈ g).

V k(g) has the role of the universal affine vertex algebra of level k.

If the simple quotient is unique, we denote it by Vk(g).
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Whittaker modules for A(1)
1

The following result gives the irreducibility of non-degenerate Whittaker
modules:

Theorem (Adamovic-Lu-Zhao, Advances in Math. (2016))

Assume that k 6= −2 and λ1 · λ2 6= 0. Then the universal Whittaker
module W̃ (k, λ1, λ2) is an irreducible ŝl(2)–module.

Problem: Find a higher rank generalization of Adamovic-Lu-Zhao
theorem.
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Application to the affine Lie algebra ̂sl(2)

Let W̃ (k, λ1, λ2) be the universal Whittaker module for the affine Lie
algebra ŝl(2), where k is not the critical level, and λ1, λ2 are Whittaker
functions such that λ1 · λ2 6= 0. Then W̃ (k, λ1, λ2) is irreducible as a
V k(sl(2))〈θ〉–module, where θ is an automorphism of order 2, uniquely
determined by the folllowing relations:

e(n) 7→ −e(n)

f (n) 7→ −f (n)

h(n) 7→ h(n)
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Weyl vertex algebra

Weyl algebra Â is an associative algebra with generators a(n), a∗(n),
n ∈ Z, and relations (for n,m ∈ Z)

[a(n), a∗(m)] = δn+m,0, [a(n), a(m)] = [a∗(m), a∗(n)] = 0.

Let M be a simple Weyl module generated by the cyclic vector 1 such
that

a(n)1 = a∗(n + 1)1 = 0. (n ≥ 0).
As a vector space,

M ∼= C[a(−n), a∗(−m) | n > 0, m ≥ 0].

There is a unique vertex algebra (M,Y , 1) where the vertex operator is
given by Y : M → End(M)[[z , z−1]], such that

Y (a(−1)1, z) = a(z), Y (a∗(0)1, z) = a∗(z),

a(z) =
∑
n∈Z

a(n)z−n−1, a∗(z) =
∑
n∈Z

a∗(n)z−n.
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Whittaker module for the Weyl algebra

Whittaker module for Â is the quotient

M1(λ,µ) = Â/I,

where λ = (λ0, . . . , λn), µ = (µ1, . . . , µn) and I is the left ideal

I =
〈
a(0)−λ0, . . . , a(n)−λn, a∗(1)−µ1, . . . , a∗(n)−µn, a(n+1), a∗(n+1), . . .

〉
.

Proposition

We have:

(i) M1(λ,µ) is an irreducible Â–module.

(ii) M1(λ,µ) is an irreducible weak module for the Weyl VOA M.

19



Irreducible module for orbifold subalgebras

Let ζn = e2πi/n be the primitive n-th root of unity. Let gn be the
automorphism of vertex algebra M, uniquely determined by the following
automorphism of Weyl algebra Â:

a(n) 7→ ζna(n), a∗(n) 7→ ζ−1
n a∗(n) (n ∈ Z).

Then gn is the automorphism of M of order n.

Theorem

Assume that Λ = (λ,µ) 6= 0. Then M1(λ,µ) is an irreducible module for
the orbifold subalgebra MZn = M〈gn〉 for each n ≥ 1.
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Example of irreducible modules: n = 2

Corollary

Assume that Λ = (λ,µ) 6= 0. Then M1(λ,µ) is an irreducible module for
the affine Lie algebra ŝl(2) at the level k = − 1

2 .

Proof.
For n = 2, MZ2 is isomorphic to the affine VOA V− 1

2
(sl(2)). Therefore,

module M1(λ,µ) is irreducible for V− 1
2
(sl(2)).

Example
For k = − 1

2 , W̃ (k, λ1, λ2), λ1 · λ2 6= 0 is an irreducible module only for
universal affine VOA V k(sl(2)).

However, M1(λ,µ) is a module for the simple VOA Vk(sl(2)).
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Thank you!
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