Conformal embeddings in basic classical Lie superalgebras

Pierluigi Möseneder Frajria

joint work with D. Adamović, P. Papi, O. Perše

4 D > 4 B > 4 E > 4 E > 9 Q C

Definitions

Vertex operator algebra

A (super) Vertex Operator Algebra is a vertex algebra V equipped with a Virasoro vector ω_V , $(\omega_V)_0$ is diagonalizable with (half) integer eigenvalues and its spectrum is bounded below.

Definitions

Vertex operator algebra

A (super) Vertex Operator Algebra is a vertex algebra V equipped with a Virasoro vector ω_V , $(\omega_V)_0$ is diagonalizable with (half) integer eigenvalues and its spectrum is bounded below.

Conformal embedding

A conformal embedding is a homomorphism of vertex operator algebras: it is an embedding $\phi: V \to W$ of vertex algebras such that $\phi(\omega_V) = \omega_W$.

Basic classical Lie superalgebras

A Lie superalgebra $\mathfrak{g}=\mathfrak{g}_{\bar 0}\oplus\mathfrak{g}_{\bar 1}$ is a basic classical simple Lie superalgebra if

- \bullet The even part $\mathfrak{g}_{\bar{0}}$ is reductive
- \mathfrak{g} admits a non-degenerate invariant supersymmetric bilinear form $(\cdot|\cdot)$.

Basic example of conformal embedding

- g basic classical Lie superalgebra and $k \in \mathbb{C}$.
- h^{\vee} the dual Coxeter number of \mathfrak{g} w.r.t. $(\cdot|\cdot)$.
- $V^k(\mathfrak{g})$ level k universal affine vertex algebra.
- $V_k(\mathfrak{g})$ level k simple affine vertex algebra.

If $k \neq -h^{\vee}$, both $V^k(\mathfrak{g})$ and $V_k(\mathfrak{g})$ are vertex operator algebras with Virasoro vector given by Sugawara construction:

$$\omega_{\mathfrak{g}} = \frac{1}{2(k+h^{\vee})} \sum : x^{i}x_{i} : .$$

($\{x_i\}$, $\{x^i\}$ dual bases of \mathfrak{g} w.r.t the chosen invariant form).

Basic example continued

- \mathfrak{g}^0 quadratic Lie subalgebra of \mathfrak{g} (i.e. $(\cdot|\cdot)_{|\mathfrak{g}^0\times\mathfrak{g}^0}$ is nondegenerate).
- Further assume that $\mathfrak{g}^0 = \mathfrak{g}_0^0 \oplus \cdots \oplus \mathfrak{g}_s^0$ with \mathfrak{g}_0^0 even abelian and \mathfrak{g}_i^0 basic classical simple ideals for i > 0.

Define $\widetilde{V}(\mathfrak{g}^0)$ the vertex subalgebra of $V_k(\mathfrak{g})$ generated by $x(-1)\mathbf{1}$, $x \in \mathfrak{g}^0$.

Basic conformal embedding

Since $\widetilde{V}(\mathfrak{g}^0)$ is a quotient of a universal affine vertex algebra, then it is a vertex operator algebras with Virasoro vector $\omega_{\mathfrak{g}^0}$ given by Sugawara construction.

The embedding $\widetilde{V}(\mathfrak{g}^0) \hookrightarrow V_k(\mathfrak{g})$ is a conformal embedding if

$$\omega_{\mathfrak{g}^0} = \omega_{\mathfrak{g}}.$$

Problems

Three general problems:

- ullet Classification problem: find all conformal embeddings $\widetilde{V}(\mathfrak{g}^0) \hookrightarrow V_k(\mathfrak{g})$
- Simplicity problem: determine whether $\widetilde{V}(\mathfrak{g}^0)$ is simple
- Decomposition problem: describe $V_k(\mathfrak{g})$ as a $\widetilde{V}(\mathfrak{g}^0)$ -module

Classification problem: AP-criterion

The main tool for detecting conformal embeddings is AP-criterion.

 $\mathfrak{g}^0=\mathfrak{g}^0_0\oplus\cdots\oplus\mathfrak{g}^0_t$ quadratic subalgebra of \mathfrak{g} ; let \mathfrak{g}^1 be its orthocomplement in \mathfrak{g} . Assume that \mathfrak{g}^1 is completely reducible as a \mathfrak{g}^0 -module, and let

$$\mathfrak{g}^1 = igoplus_{i=1}^{\iota} V_{\mathfrak{g}^0}(\mu_i)$$

be its decomposition.

Theorem (Adamovic-Perse)

$$\widetilde{V}(\mathfrak{g}^0)$$
 is conformally embedded in $V_k(\mathfrak{g})$ if and only if

$$\sum_{j=0}^t \frac{(\mu_i^j, \mu_i^j + 2\rho_0^j)_j}{2(k_j + h_j^\vee)} = 1$$

Application of AP-criterion to the embedding \tilde{a}

$$\widetilde{V}(\mathfrak{g}_{\bar{0}})\hookrightarrow V_k(\mathfrak{g})$$

If $\widetilde{V}_{(\mathfrak{g}_{\bar{0}})}$ embeds conformally in $V_k(\mathfrak{g})$ we call k a conformal level.

- ① If $\mathfrak{g} = sl(m|n)$, m > n, the conformal levels are k = 1, k = -1 if $m \neq n+1$, $k = \frac{n-m}{2}$;
- ② If $\mathfrak{g} = psl(m|m)$, the conformal levels are k = 1, -1;
- ③ If \mathfrak{g} is of type B(m, n), the conformal levels are $k = 1, \frac{3-2m+2n}{2}$;
- 4 If \mathfrak{g} is of type D(m, n), the conformal levels are k = 1, 2 m + n;
- ⑤ If $\mathfrak g$ is of type C(n+1), the conformal levels are $k=-\frac{1}{2},-\frac{1+n}{2}$;
- (a) If g is of type F(4), the conformal levels are $k=1,-\frac{3}{2}$;
- **1** If \mathfrak{g} is of type G(3), the conformal levels are $k=1,-\frac{4}{3}$;
- **8** If $\mathfrak g$ is of type D(2,1,a), the conformal levels are k=1,-1-a,a;

Other cases of conformal embedding

Consider the embeddings $\mathfrak{g}^0 \subset \mathfrak{g}$ with

- \bullet $gl(m|n) \subset sl(n+1|m),$
- $sl(2) \times spo(2|3) \subset G(3)$.

Theorem

- (1) Assume $n \neq m, m-1$. The conformal levels for the embedding
- $gl(n|m) \subset sl(n+1|m)$ are k=1 and $k=-\frac{n+1-m}{2}$.
- (2) The conformal levels for the embedding $sl(2) \times spo(2|3) \subset G(3)$ are k = 1 and k = -4/3.

Solving the simplicity and decomposition problems: the dot product

If U, W are subspaces in a vertex algebra then

$$U \cdot W = span(u(n)w \mid u \in U, w \in W, n \in \mathbb{Z}).$$

The dot product is associative

$$U \cdot (W \cdot Z) = (U \cdot W) \cdot Z.$$

and, if the subspaces are *T*-stable, commutative

$$U \cdot W = W \cdot U$$
.

The dot product in a simple vertex algebra does not have zero divisors: if $U \cdot V = \{0\}$ then either $U = \{0\}$ or $W = \{0\}$.

Fusion rules argument

Suppose that $W \subset V$ is an embedding of vertex algebras. Let \mathcal{M} be a collection of W-submodules of V that generates V as a vertex algebra. Then the structure of $span(\mathcal{M})$ under the dot product in the set of all W-submodules gives information about the simplicity and decomposition problem.

If the embedding is conformal then there are constraints that allow in many cases to recover the structure of $span(\mathcal{M})$ and solve the simplicity and sometimes also the decomposition problem.

Enhanced fusion rules argument

If V is semisimple as a W-module and M_1, M_2 are simple components, then projecting onto a simple component of $M_1 \cdot M_2$ defines an intertwining operator of type $\begin{bmatrix} M_3 \\ M_1 & M_2 \end{bmatrix}$.

If the fusion coefficients dim $\begin{bmatrix} M_3 \\ M_1 & M_2 \end{bmatrix}$ are known then this gives further constraints for the computation of the structure of $span(\mathcal{M})$.

Application of f.r.a. to the case of \mathfrak{g}^0 fixed point set of an automorphism

Assume

- $\mathfrak{g}_0^0 = \{0\}$
- \mathfrak{g}^0 is the set of fixed points an automorphism σ of \mathfrak{g} of order s and let $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}/s\mathbb{Z}} \mathfrak{g}^{(i)}$ be the corresponding eigenspace decomposition.
- ullet Since \mathfrak{g}^1 is assumed to be completely reducible as \mathfrak{g}^0 -module, we have

$$\mathfrak{g}^{(i)} = \sum_{r} V(\mu_r),$$

The map σ can be extended to a finite order automorphism of the simple vertex algebra $V_k(\mathfrak{g})$ which induces the eigenspace decomposition

$$V_k(\mathfrak{g}) = \bigoplus_{i \in \mathbb{Z}/s\mathbb{Z}} V_k(\mathfrak{g})^{(i)}.$$

Fusion rules argument

Theorem

Assume that, if ν is the weight of a \mathfrak{g}^0 -primitive vector occurring in $V(\mu_i) \otimes V(\mu_j)$, then there is a $V^k(\mathfrak{g}^0)$ -primitive vector in $V_k(\mathfrak{g})$ of weight ν if and only if $\nu = \mu_r$ for some r.

Then $\widetilde{V}(\mathfrak{g}^0)$ is simple and

$$V_k(\mathfrak{g}) = V_{\mathbf{k}}(\mathfrak{g}^0) \oplus (\oplus_{i=1}^t L_{\mathfrak{g}^0}(\mu_i)).$$

Proof: Set $M_i = \widetilde{V}(\mathfrak{g}^0) \cdot V(\mu_i)$. The hypothesis implies that $M_i \cdot M_j \subset M_r$ so $\sum M_i$ is a vertex algebra. This implies that $V_k(\mathfrak{g}) = \sum M_i$ so

$$M_i = V_k(\mathfrak{g})^{(i)}$$
.

Numerical criterion

The fact that $\widetilde{V}(\mathfrak{g}^0)$ embeds conformally in $V_k(\mathfrak{g})$ leads to an easy sufficient condition for the hypothesis of the previous theorem to hold.

Let c_{ν} be the eigenvalue of $(\omega_{\mathfrak{g}^0})_0$ on the highest weight vector of $L_{\mathfrak{g}^0}(\nu)$. Since

$$\omega_{\mathfrak{g}} = \omega_{\mathfrak{g}^0},$$

the hypothesis of the previous theorem holds whenever for all primitive vectors of weight ν occurring in $V_{\mathfrak{g}^0}(\mu_i) \otimes V_{\mathfrak{g}^0}(\mu_j)$, one has that either $\nu = \mu_r$ for some r or $c_{\nu} \notin \mathbb{Z}_+$.

Examples

Applying the numerical criterion one obtains:

$$(1) \ V_{-4/3}(G(3)) = V_{1}(sl(2)) \otimes V_{-4/3}(G_{2}) \oplus L_{sl(2)}(\omega_{1}) \otimes L_{G_{2}}(\omega_{1}),$$

$$(2) \ V_{-3/2}(F(4)) = V_{1}(sl(2)) \otimes V_{-3/2}(so(7)) \oplus L_{sl(2)}(\omega_{1}) \otimes L_{so(7)}(\omega_{3}),$$

$$(3) \ V_{1}(B(m,n)) = V_{1}(so(2m+1)) \otimes V_{-1/2}(sp(2n))$$

$$\oplus L_{so(2m+1)}(\omega_{1}) \otimes L_{sp(2n)}(\omega_{1}), m \neq n,$$

$$(4) \ V_{1}(D(m,n)) = V_{1}(so(2m)) \otimes V_{-1/2}(sp(2n))$$

$$\oplus L_{so(2m)}(\omega_{1}) \otimes L_{sp(2n)}(\omega_{1}), m \neq n+1,$$

The case of \mathfrak{g} of type D(n+1, n)

In this case the numerical criterion fails, but the decomposition still holds:

$$V_{1}(D(n+1,n)) = V_{1}(so(2n+2)) \otimes V_{-1/2}(sp(2n))$$

$$\oplus L_{so(2n+2)}(\omega_{1}) \otimes L_{sp(2n)}(\omega_{1}).$$

One has to work harder to show that primitive vectors of weight $(\omega_2, 2\omega_1)$ and $(2\omega_1, \omega_2)$ cannot occur.

osp(m|2n)

Consider the superspace $\mathbb{C}^{m|2n}$ equipped with the standard supersymmetric form $\langle\cdot,\cdot\rangle$. Let $F_{m|2n}$ be the universal vertex algebra generated by $\mathbb{C}^{m|2n}$ with λ -bracket

$$[v_{\lambda}w]=\langle w,v\rangle.$$

Let $\{e_i\}$ be the standard basis of $\mathbb{C}^{m|2n}$ and let $\{e^i\}$ be its dual basis with respect to $\langle \cdot, \cdot \rangle$ (i. e. $\langle e_i, e^j \rangle = \delta_{ij}$).

There is a non-trivial homomorphism $\Phi: V^1(osp(m|2n)) \to F_{m|2n}$ uniquely determined by

$$X \mapsto 1/2\sum_{i}: X(e_i)e^i:, X \in osp(m|2n).$$

Set $\tilde{V}(osp(m|2n))$ the image of Φ . Embed $\mathbb{C}^{m|2n}$ in $F_{m|2n}$ via $v\mapsto v(-1)\mathbf{1}$ and set

$$M = \tilde{V}(osp(m|2n)) \cdot \mathbb{C}^{m|2n}$$
.

Free field realization of $V_1(osp(m|2n))$

The map Φ induces a conformal embedding $V_1(osp(m|2n)) \hookrightarrow F_{m|2n}$ and one has the decomposition

$$F_{m|2n} = V_1(osp(m|2n)) \oplus L_{osp(m|2n)}(\mathbb{C}^{m|2n}).$$

(free field realization of $V_1(osp(m|2n))$ due to Kac-Wakimoto)

Proof: a generalization of AP-criterion reduces the check that the embedding is conformal to the check that, if $\lambda_{m|2n}$ is the highest weight of $\mathbb{C}^{m|2n}$, then

$$\frac{\left(\lambda_{m|2n},\lambda_{m|2n}+2\rho\right)}{2(1+h^{\vee})}=\frac{1}{2}$$

Fusion rules argument for free field realization

The map -Id on $\mathbb{C}^{m|2n}$ induces an involution of $F_{m|2n}$. Write

$$F_{m|2n} = F^+ \oplus F^-$$

for the eigenspace decomposition. Clearly $\tilde{V}(osp(m|2n)) \subset F^+$ and $M \subset F^-$. If

$$M \cdot M \subset \tilde{V}(osp(m|2n))$$

then $\tilde{V}(osp(m|2n))+M$ is a vertex algebra and, since it generates $F_{m|2n}$, $\tilde{V}(osp(m|2n))+M=F_{m|2n}$ so

$$\tilde{V}(osp(m|2n)) = F^+, \quad M = F^-.$$

$M \cdot M \subset \tilde{V}(osp(m|2n))$

To check that $M \cdot M \subset \tilde{V}(osp(m|2n))$ we compute the composition factors of $\mathbb{C}^{m|2n} \otimes \mathbb{C}^{m|2n}$.

In δ,ϵ notation for roots and weights these are:

	highest weights of composition factors
$n \geq 2, m \geq 2$	$2\delta_{1},\ \delta_{1}+\delta_{2},\ 0$
n = 1, m > 2	$2\delta_1$, $\delta_1 + \epsilon_1$, 0
n = 1, m = 2	$2\delta_{1}, \ \delta_{1}+\epsilon_{1}, \ \delta_{1}-\epsilon_{1}, \ 0$
$n \ge 2, m \ge 2$ n = 1, m > 2 n = 1, m = 2 n = 1, m = 1	$2\delta_1$, δ_1 , 0

One checks that, for λ in the list above, $\frac{(\lambda,\lambda+2\rho)}{2(k+h^{\vee})} \in \mathbb{Z}_+$ iff $\lambda=0$.

Application: realization of osp(2m|2n) at level -2

Consider $\mathbb{C}^{0|2}\otimes\mathbb{C}^{2m|2n}\simeq\mathbb{C}^{4n|4m}.$ This isomorphism induces an embedding

$$\mathit{sl}(2) \times \mathit{osp}(2m|2n) \hookrightarrow \mathit{osp}(4n|4m)$$

hence homomorphisms

$$V^{-2}(osp(2m|2n)) \rightarrow \widetilde{V}(sl(2) \times osp(2m|2n)) \subset V_1(osp(4n|4m)) \hookrightarrow F_{4n|4m}.$$

Let $\tilde{V}(osp(2m|2n))$ be the image of the first homomorphism.

Restricting to the even part we have a homomorphism

$$V^{-2}(so(2m)) \otimes V_1(sp(2n))
ightarrow ilde{V}(osp(2m|2n))$$

Let $\tilde{V}(so(2m)) \otimes V_1(sp(2n))$ be its image.

Special case: osp(2n + 8|2n)

The algebras $\tilde{V}(so(2n+8))$ and $\tilde{V}(osp(2m|2n))$ are not simple.

The embedding

$$\tilde{V}(so(2n+8)) \otimes V_1(sp(2n)) \hookrightarrow \tilde{V}(osp(2n+8|2n))$$

is not conformal and the coset Virasoro has central charge 0

We have a homomorphism

$$\tilde{V}(so(2n+8))\otimes V_1(sp(2n))\rightarrow V_{-2}(osp(2n+8|2n))$$

Let $\overline{V}(so(2n+8)) \otimes V_1(sp(2n)) \hookrightarrow V_{-2}(osp(2n+8|2n))$ be its image.

The embedding

$$\overline{V}(\mathit{so}(2n+8)) \otimes V_1(\mathit{sp}(2n)) \hookrightarrow V_{-2}(\mathit{osp}(2n+8|2n))$$

- The embedding $\overline{V}(so(2n+8)) \otimes V_1(sp(2n)) \hookrightarrow V_{-2}(osp(2n+8|2n))$ is conformal.
- ullet $\overline{V}(so(2n+8))\otimes V_1(sp(2n))$ is simple
- The action of $\overline{V}(so(2n+8))\otimes V_1(sp(2n))=V_{-2}(so(2n+8))\otimes V_1(sp(2n))$ on $V_{-2}(osp(2n+8|2n))$ is semisimple

Proof

- The embedding is conformal by AP-criterion.
- $\overline{V}(so(2n+8))\otimes V_1(sp(2n))$ is simple by a nice application of the fusion rules argument: set U to be the submodule of $V_{-2}(osp(2n+8|2n)$ generated by $\mathfrak{g}_{\overline{1}}$. It is known that

$$V_{-2}(so(2n+8)) = \tilde{V}(so(2n+8))/\langle v \rangle$$

with v an explicit singular vector. Let V be the submodule generated by v.

One shows that there is r such that $U^r \cdot V = 0$. Since $U \neq 0$, V = 0 in $V_{-2}(osp(2n + 8|2n)$.

• The action of $V_{-2}(so(2n+8)) \otimes V_1(sp(2n))$ is semisimple because Kazhdan-Lusztig category for $V_{-2}(so(2n+8))$ is semisimple at level -2.

Decomposition of $V_{-2}(osp(2n + 8|2n)$

As $V_{-2}(so(2n+8)) \otimes V_1(sp(2n))$ -module

$$V_{-2}(osp(2n+8|2n)) = \bigoplus_{i=0}^{n} V_{-2}(i\omega_1) \otimes V_1(\omega_i).$$

Proof: One constructs singular vectors w_i of the correct weight. Set W_i to be the submodule generated by w_i .

We have the following dot product inside of $V_{-2}(osp(2n + 8|2n))$:

$$W_1 \cdot W_i = W_{i-1} \oplus W_{i+1} \quad (1 \le i \le n-1)$$

 $W_1 \cdot W_n = W_{n-1}.$

It follows that $\sum W_i$ is a sub-vertex algebra. Since W_1 generates $V_{-2}(osp(2n+8|2n)$ we have $V_{-2}(osp(2n+8|2n)) = \sum W_i$

Other examples of simplicity of $ilde{V}(\mathfrak{g}^0)$

The fusion rules argument can be used in solving the simplicity problem also in the following example.

Consider
$$\tilde{V}(sl(2)\times G_2)\subset V_1(G(3))$$
. We have $\tilde{V}(sl(2)\times G_2)=\tilde{V}_{-3/4}(sl(2))\otimes V_1(G_2)$. If $\tilde{V}_{-3/4}(sl(2))\neq V_{-3/4}(sl(2))$ then there is a singular vector in $\tilde{V}_{-3/4}(sl(2))$ of $sl(2)$ -weight $8\omega_1$.

Let $v_{n,m}$ be the set of $\mathfrak{g}_{\bar{0}}$ singular vector in $V_1(G(3))$ of \mathfrak{g}_0 weight $(n\omega_1, m\omega_2)$, where $n \in \mathbb{Z}_{\geq 0}$ and $m \in \{0, 1\}$. Let $V_{n,m} = \widetilde{V}_1(\mathfrak{g}_{\bar{0}}) \cdot v_{n,m}$.

Example continued

The fusion rules for $V_1(G_2)$ and Clebsch-Gordan decomposition imply that

$$V_{n,0} \cdot V_{1,1} \subset V_{n+1,1} + V_{n-1,1}.$$

 $V_{n,1} \cdot V_{1,1} \subset V_{n+1,1} + V_{n-1,1} + V_{n+1,0} + V_{n-1,0}.$

By conformal embedding we can drop the summands that give noninteger conformal weight. Then it follows that

$$V_{8,0} \cdot V_{1,1} \subset V_{7,1},$$

$$V_{7,1} \cdot V_{1,1} \subset V_{6,1} + V_{8,0},$$

$$V_{6,1} \cdot V_{1,1} \subset V_{5,0} + V_{7,1},$$

$$V_{5,0} \cdot V_{1,1} \subset V_{6,1},$$

and this implies that $V_{8,0}$ generates a proper ideal in $V_1(\mathfrak{g})$. A contradiction.

Other cases

Similar arguments give the simplicity of

- $\tilde{V}_1(so(7) \times sl(2))$ in $V_1(F(4))$
- $\tilde{V}_{-3/4}(sl(2) \times sl(2))$ in $V_{-3/4}(spo(2|3))$

Once the simplicity of $\tilde{V}_k(\mathfrak{g}^0)$ is established, then its action on $V_k(\mathfrak{g})$ is semisimple and one can hope to use fusion rules to compute the decomposition. Unfortunately fusion rules alone do not suffice in this cases.

Example: $V_{-3/4}(sl(2)) \otimes V_3(sl(2))$ in $V_{-3/4}(spo(2|3))$

Let $v_{n,m}$ be the space of $\widehat{\mathfrak{g}}_{\overline{0}}$ -singular vectors in $V_{-3/4}(spo(2|3))$ of $sl(2)\times sl(2)$ -weight $(n\omega_1,m\omega_1)$. Let $V_{n,m}=\widetilde{V}_k(\mathfrak{g}_{\overline{0}})\cdot v_{n,m}$. We know that $V_{1,2}\neq\{0\}$. There are two possibilities

$$V_{1,2} \cdot V_{1,2} \subset V_{0,0}$$
.

or

$$V_{1,2} \cdot V_{1,2} \subset V_{0,0} + V_{2,2}$$
 $V_{1,2} \cdot V_{2,2} \subset V_{3,0} + V_{1,2},$
 $V_{1,2} \cdot V_{3,0} \subset V_{2,2}$
 $V_{2,2} \cdot V_{2,2} \subset V_{0,0} + V_{2,2}$
 $V_{2,2} \cdot V_{3,0} \subset V_{3,0} + V_{1,2}$
 $V_{3,0} \cdot V_{3,0} \subset V_{0,0}$

Example continued

To check the correct structure of $span(V_{1,2})$ under dot product it is enough to check if $V_{3,0} \neq \{0\}$. Let $V^{-3/4}(\mathfrak{g})_{3,0,3}$ be the space of vectors in $V^{-3/4}(\mathfrak{g})$ of weight $(3\omega_1,0)$ and conformal weight 3. The maximal ideal of $V^{-3/4}(\mathfrak{g})$ intersects $V^{-3/4}(\mathfrak{g})_{3,0,3}$ in a one dimensional subspace that we compute explicitly and we can then find a singular vector in $V^{-3/4}(\mathfrak{g})_{3,0,3}$ and check that it is not in the maximal ideal.

We carry out a similar argument for $V_1(F(4))$ using an explicit computation of the structure constants of F(4).

Outcome

We obtain the following decomposition

$$V_{-3/4}(spo(2|3)) = (V_{-3/4}(sl(2)) \oplus L_{sl(2)}(3\omega_1)) \otimes V_3(sl(2)) \bigoplus (L_{sl(2)}(\omega_1) \oplus L_{sl(2)}(2\omega_1)) \otimes L_{sl(2)}(2\omega_1).$$

$$V_1(F(4)) = V_1(so(7)) \otimes V_{-\frac{2}{3}}(sl(2)) \bigoplus L_{so(7)}(\omega_3) \otimes L_{sl(2)}(\omega_1)$$
$$\bigoplus L_{so(7)}(\omega_1) \otimes L_{sl(2)}(2\omega_1).$$

Remarks

An easy argument of Creutzig shows how to obtain the decomposition of $V_1(G(3))$ from the decomposition for $V_{-3/4}(spo(2|3))$. Namely

$$V_1(G(3)) = \begin{pmatrix} V_{-\frac{3}{4}}(sl(2)) \oplus L_{sl(2)}(3\omega_1) \end{pmatrix} \otimes V_1(G_2)$$
$$\bigoplus (L_{sl(2)}(\omega_1) \oplus L_{sl(2)}(2\omega_1)) \otimes L_{G_2}(\omega_1)$$

The F(4) and spo(2|3) decompositions appear in T. Creutzig's RIMS lecture notes. There the crucial fact that $V_{3,0} \neq \{0\}$ is obtained using vertex tensor category theory and Huang-Kirillov-Lepowski extension theory.

Application of f.r.a. to the case of $\mathfrak{g}_0^0=\mathbb{C}\varpi$

Assume that $\mathfrak{g}_0^0=\mathbb{C}\varpi$ and that \mathfrak{g}^1 decomposes as

$$\mathfrak{g}^1 = V_{\mathfrak{g}^0}(\mu) \oplus V_{\mathfrak{g}^0}(\mu)^*.$$

By a suitable choice of ϖ we can assume that ϖ acts as the identity on $V_{\mathfrak{g}_0}(\mu)$ and as minus the identity on its dual.

If $q \in \mathbb{Z}$, let $V_k(\mathfrak{g})^{(q)}$ be the eigenspace for the action of $\varpi(0)$ on $V_k(\mathfrak{g})$ relative to the eigenvalue q. Let $\{0, \nu_1, \cdots, \nu_m\}$ be the set of weights of \mathfrak{g}^0 -primitive vectors occurring in $V_{\mathfrak{g}^0}(\mu) \otimes V_{\mathfrak{g}^0}(\mu)^*$.

Fusion rules argument

Theorem

Assume that $V_k(\mathfrak{g})^{(0)}$ does not contain primitive vectors of weight ν_r , where $r=1,\ldots,m$, then

$$\widetilde{V}(\mathfrak{g}^0)\cong V_{\mathbf{k}}(\mathfrak{g}^0)=V_k(\mathfrak{g})^{(0)}$$

and $V_k(\mathfrak{g})^{(q)}$ is a simple $V_k(\mathfrak{g}^0)$ -module so that $V_k(\mathfrak{g})$ is completely reducible.

Moreover, if
$$M^+ = \widetilde{V}(\mathfrak{g}^0) \cdot V_{\mathfrak{g}^0}(\mu)$$
, $M^- = \widetilde{V}(\mathfrak{g}^0) \cdot V_{\mathfrak{g}^0}(\mu)^*$,

$$V_k(\mathfrak{g})^{(q)} = \underbrace{M^+ \cdot M^+ \cdot \ldots \cdot M^+}_{q \text{ times}}$$
 if $q > 0$,

$$V_k(\mathfrak{g})^{(q)} = \underbrace{M^- \cdot M^- \cdot \ldots \cdot M^-}_{\text{if } q < 0.}$$

|q| times

Numerical criterion

Let c_{ν} be the eigenvalue of $(\omega_{\mathfrak{g}^0})_0$ on the highest weight vector of $L_{\mathfrak{g}^0}(\nu)$. Since

$$\omega_{\mathfrak{g}} = \omega_{\mathfrak{g}^0},$$

the hypothesis of the previous theorem holds whenever $c_{\nu_i} \notin \mathbb{Z}_+$ for all i.

Example: \mathfrak{g} of type C(n+1)

Here the numerical criterion suffices:

$$egin{aligned} V_1(\mathit{C}(n+1)) &= \mathit{M}_c(1) \otimes \mathit{V}_{-1/2}(\mathit{sp}(2n)) \ &\oplus \sum_{q \in \mathbb{Z} \setminus \{0\}} \mathit{M}_c(1,2q) \otimes \mathit{V}_{-1/2}(\mathit{sp}(2n)) \ &\oplus \sum_{q \in \mathbb{Z}} \mathit{M}_c(1,2q+1) \otimes \mathit{L}_{\mathit{sp}(2n)}(\omega_1) \end{aligned}$$

First one uses the fusion rules argument to show that the action of $\tilde{V}(\mathfrak{g}_{\bar{0}})$ is semisimple, then one uses the enhanced fusion rules argument and the fact that the rules are known to compute the decomposition.

Another example: g = sl(m|n)

The numerical criterion suffices except when m = n - 2 and the decomposition is

$$\begin{split} V_1(sl(m|n)) &= M_c(1) \otimes V_1(sl(m)) \otimes V_{-1}(sl(n)) \\ &\oplus \sum_{q \in \mathbb{Z} \setminus \{0\}} M_c(1, \sqrt{\frac{n-m}{nm}}qm) \otimes V_1(sl(m)) \otimes U_{-qm}^{(n)} \\ &\oplus \sum_{j=1}^{m-1} \sum_{q \in \mathbb{Z}} M_c(1, \sqrt{\frac{n-m}{nm}}(qm+j)) \otimes L_{sl(m)}(\omega_j) \otimes U_{-qm-j}^{(n)} \\ m &\neq n, n-2, m \geq 2, n \geq 3. \end{split}$$

where $U_r^{(n)} = L_{sl(n)}(r\omega_1)$ if r > 0 and $U_r^{(n)} = L_{sl(n)}(-r\omega_{n-1})$ if r < 0.

$$m = n - 2$$

For m = n - 2 the numerical criterion fails but the decomposition still holds.

Indeed, if one proves that the action of $\tilde{V}(\mathfrak{g}_{\bar{0}})$ is semisimple, the one can use the enhanced fusion rules argument and compute the decomposition. Semisimplicity follows from the free field realization of $V_1(sl(m|n))$ of Kac-Wakimoto.

The case $\mathfrak{g} = psl(m|m)$

The free field realization implies that the action of $V(\mathfrak{g}_{\bar{0}})$ on $V_1(psl(m|m))$ is semisimple so one can use fusion rules and obtain the decomposition for m > 3:

$$V_1(psl(m|m)) = \sum_{i=0}^{m-1} \sum_{g \in \mathbb{Z}} L_{sl(m)}(\omega_j) \otimes U_{-qm-j}^{(m)}.$$

For m=2 it has been shown by T. Creutzig and D. Gaiotto that

$$V_1(psl(2|2)) = \bigoplus_{i=0}^{\infty} \left((2i+1)V_1(sl(2)) \otimes U_{2i}^{(2)} \right)$$

$$\oplus \bigoplus_{i=0}^{\infty} \left((2i+2)L_{sl(2)}(\omega_1) \otimes U_{2i+1}^{(2)} \right).$$