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Definitions

Vertex operator algebra

A (super) Vertex Operator Algebra is a vertex algebra V equipped with a
Virasoro vector ωV , (ωV )0 is diagonalizable with (half) integer eigenvalues
and its spectrum is bounded below.

Conformal embedding

A conformal embedding is a homomorphism of vertex operator algebras: it
is an embedding φ : V →W of vertex algebras such that φ(ωV ) = ωW .
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Basic classical Lie superalgebras

A Lie superalgebra g = g0̄ ⊕ g1̄ is a basic classical simple Lie superalgebra
if

The even part g0̄ is reductive

g admits a non-degenerate invariant supersymmetric bilinear form
(·|·).
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Basic example of conformal embedding

g basic classical Lie superalgebra and k ∈ C.

h∨ the dual Coxeter number of g w.r.t. (·|·).

V k(g) level k universal affine vertex algebra.

Vk(g) level k simple affine vertex algebra.

If k 6= −h∨, both V k(g) and Vk(g) are vertex operator algebras with
Virasoro vector given by Sugawara construction:

ωg =
1

2(k + h∨)

∑
: x ixi : .

({xi}, {x i} dual bases of g w.r.t the chosen invariant form).
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Basic example continued

g0 quadratic Lie subalgebra of g (i.e. (·|·)|g0×g0 is nondegenerate).

Further assume that g0 = g0
0 ⊕ · · · ⊕ g0

s with g0
0 even abelian and g0

i

basic classical simple ideals for i > 0.

Define Ṽ (g0) the vertex subalgebra of Vk(g) generated by x(−1)1, x ∈ g0.
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Basic conformal embedding

Since Ṽ (g0) is a quotient of a universal affine vertex algebra, then it is a
vertex operator algebras with Virasoro vector ωg0 given by Sugawara
construction.

The embedding Ṽ (g0) ↪→ Vk(g) is a conformal embedding if

ωg0 = ωg.
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Problems

Three general problems:

Classification problem: find all conformal embeddings Ṽ (g0) ↪→ Vk(g)

Simplicity problem: determine whether Ṽ (g0) is simple

Decomposition problem: describe Vk(g) as a Ṽ (g0)–module
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Classification problem: AP-criterion

The main tool for detecting conformal embeddings is AP-criterion.

g0 = g0
0⊕· · ·⊕g0

t quadratic subalgebra of g; let g1 be its orthocomplement
in g. Assume that g1 is completely reducible as a g0-module, and let

g1 =
t⊕

i=1

Vg0(µi )

be its decomposition.

Theorem (Adamovic-Perse)

Ṽ (g0) is conformally embedded in Vk(g) if and only if

t∑
j=0

(µji , µ
j
i + 2ρj0)j

2(kj + h∨j )
= 1

for any i = 1, . . . , s. 9 / 1



Application of AP-criterion to the embedding

Ṽ (g0̄) ↪→ Vk(g)

If Ṽ(g0̄) embeds conformally in Vk(g) we call k a conformal level.

1 If g = sl(m|n), m > n, the conformal levels are k = 1, k = −1 if
m 6= n + 1, k = n−m

2 ;

2 If g = psl(m|m), the conformal levels are k = 1,−1;

3 If g is of type B(m, n), the conformal levels are k = 1, 3−2m+2n
2 ;

4 If g is of type D(m, n), the conformal levels are k = 1, 2−m + n;

5 If g is of type C (n + 1), the conformal levels are k = −1
2 ,−

1+n
2 ;

6 If g is of type F (4), the conformal levels are k = 1,−3
2 ;

7 If g is of type G (3), the conformal levels are k = 1,−4
3 ;

8 If g is of type D(2, 1, a), the conformal levels are k = 1,−1− a, a;
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Other cases of conformal embedding

Consider the embeddings g0 ⊂ g with

gl(m|n) ⊂ sl(n + 1|m),

sl(2)× spo(2|3) ⊂ G (3).

Theorem

(1) Assume n 6= m,m − 1.The conformal levels for the embedding
gl(n|m) ⊂ sl(n + 1|m) are k = 1 and k = −n+1−m

2 .
(2) The conformal levels for the embedding sl(2)× spo(2|3) ⊂ G (3) are
k = 1 and k = −4/3.

11 / 1



Solving the simplicity and decomposition problems: the
dot product

If U, W are subspaces in a vertex algebra then

U ·W = span(u(n)w | u ∈ U, w ∈W , n ∈ Z).

The dot product is associative

U · (W · Z ) = (U ·W ) · Z .

and, if the subspaces are T -stable, commutative

U ·W = W · U.

The dot product in a simple vertex algebra does not have zero divisors: if
U · V = {0} then either U = {0} or W = {0}.
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Fusion rules argument

Suppose that W ⊂ V is an embedding of vertex algebras. Let M be a
collection of W –submodules of V that generates V as a vertex algebra.
Then the structure of span(M) under the dot product in the set of all
W –submodules gives information about the simplicity and decomposition
problem.

If the embedding is conformal then there are constraints that allow in
many cases to recover the structure of span(M) and solve the simplicity
and sometimes also the decomposition problem.
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Enhanced fusion rules argument

If V is semisimple as a W –module and M1,M2 are simple components,
then projecting onto a simple component of M1 ·M2 defines an

intertwining operator of type

[
M3

M1 M2

]
.

If the fusion coefficients dim

[
M3

M1 M2

]
are known then this gives further

constraints for the computation of the structure of span(M).
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Application of f.r.a. to the case of g0 fixed point set of an
automorphism

Assume

g0
0 = {0}

g0 is the set of fixed points an automorphism σ of g of order s and let
g = ⊕i∈Z/sZg

(i) be the corresponding eigenspace decomposition.

Since g1 is assumed to be completely reducible as g0-module, we have

g(i) =
∑
r

V (µr ),

The map σ can be extended to a finite order automorphism of the simple
vertex algebra Vk(g) which induces the eigenspace decomposition

Vk(g) = ⊕i∈Z/sZVk(g)(i).
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Fusion rules argument

Theorem

Assume that, if ν is the weight of a g0-primitive vector occurring in
V (µi )⊗ V (µj), then there is a V k(g0)-primitive vector in Vk(g) of weight
ν if and only if ν = µr for some r .
Then Ṽ (g0) is simple and

Vk(g) = Vk(g0)⊕ (⊕t
i=1Lg0(µi )).

Proof: Set Mi = Ṽ (g0) · V (µi ). The hypothesis implies that Mi ·Mj ⊂ Mr

so
∑

Mi is a vertex algebra. This implies that Vk(g) =
∑

Mi so

Mi = Vk(g)(i).
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Numerical criterion

The fact that Ṽ (g0) embeds conformally in Vk(g) leads to an easy
sufficient condition for the hypothesis of the previous theorem to hold.

Let cν be the eigenvalue of (ωg0)0 on the highest weight vector of Lg0(ν).
Since

ωg = ωg0 ,

the hypothesis of the previous theorem holds whenever for all primitive
vectors of weight ν occurring in Vg0(µi )⊗ Vg0(µj), one has that either
ν = µr for some r or cν 6∈ Z+.
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Examples

Applying the numerical criterion one obtains:

(1) V−4/3(G (3)) = V1(sl(2))⊗ V−4/3(G2)⊕ Lsl(2)(ω1)⊗ LG2(ω1),

(2) V−3/2(F (4)) = V1(sl(2))⊗ V−3/2(so(7))⊕ Lsl(2)(ω1)⊗ Lso(7)(ω3),

(3) V1(B(m, n)) = V1(so(2m + 1))⊗ V−1/2(sp(2n))

⊕ Lso(2m+1)(ω1)⊗ Lsp(2n)(ω1),m 6= n,

(4) V1(D(m, n)) = V1(so(2m))⊗ V−1/2(sp(2n))

⊕ Lso(2m)(ω1)⊗ Lsp(2n)(ω1), m 6= n + 1,
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The case of g of type D(n + 1, n)

In this case the numerical criterion fails, but the decomposition still holds:

V1(D(n + 1, n)) = V1(so(2n + 2))⊗ V−1/2(sp(2n))

⊕ Lso(2n+2)(ω1)⊗ Lsp(2n)(ω1).

One has to work harder to show that primitive vectors of weight (ω2, 2ω1)
and (2ω1, ω2) cannot occur.
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osp(m|2n)

Consider the superspace Cm|2n equipped with the standard supersymmetric
form 〈·, ·〉. Let Fm|2n be the universal vertex algebra generated by Cm|2n

with λ–bracket
[vλw ] = 〈w , v〉.

Let {ei} be the standard basis of Cm|2n and let {e i} be its dual basis with
respect to 〈·, ·〉 (i. e. 〈ei , e j〉 = δij).
There is a non-trivial homomorphism Φ : V 1(osp(m|2n))→ Fm|2n uniquely
determined by

X 7→ 1/2
∑
i

: X (ei )e
i :, X ∈ osp(m|2n).

Set Ṽ (osp(m|2n)) the image of Φ. Embed Cm|2n in Fm|2n via
v 7→ v(−1)1 and set

M = Ṽ (osp(m|2n)) · Cm|2n.
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Free field realization of V1(osp(m|2n))

The map Φ induces a conformal embedding V1(osp(m|2n)) ↪→ Fm|2n and
one has the decomposition

Fm|2n = V1(osp(m|2n))⊕ Losp(m|2n)(Cm|2n).

(free field realization of V1(osp(m|2n)) due to Kac-Wakimoto)

Proof: a generalization of AP-criterion reduces the check that the
embedding is conformal to the check that, if λm|2n is the highest weight of

Cm|2n, then
(λm|2n, λm|2n + 2ρ)

2(1 + h∨)
=

1

2
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Fusion rules argument for free field realization

The map −Id on Cm|2n induces an involution of Fm|2n. Write

Fm|2n = F+ ⊕ F−

for the eigenspace decomposition. Clearly Ṽ (osp(m|2n)) ⊂ F+ and
M ⊂ F−. If

M ·M ⊂ Ṽ (osp(m|2n))

then Ṽ (osp(m|2n)) + M is a vertex algebra and, since it generates Fm|2n,

Ṽ (osp(m|2n)) + M = Fm|2n so

Ṽ (osp(m|2n)) = F+, M = F−.
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M ·M ⊂ Ṽ (osp(m|2n))

To check that M ·M ⊂ Ṽ (osp(m|2n)) we compute the composition
factors of Cm|2n ⊗ Cm|2n.
In δ, ε notation for roots and weights these are:

n,m highest weights of composition factors

n ≥ 2, m ≥ 2 2δ1, δ1 + δ2, 0
n = 1, m > 2 2δ1, δ1 + ε1, 0
n = 1, m = 2 2δ1, δ1 + ε1, δ1 − ε1, 0
n = 1, m = 1 2δ1, δ1, 0

One checks that, for λ in the list above, (λ,λ+2ρ)
2(k+h∨) ∈ Z+ iff λ = 0.
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Application: realization of osp(2m|2n) at level −2

Consider C0|2⊗C2m|2n ' C4n|4m. This isomorphism induces an embedding

sl(2)× osp(2m|2n) ↪→ osp(4n|4m)

hence homomorphisms

V−2(osp(2m|2n))→ Ṽ (sl(2)× osp(2m|2n))⊂ V1(osp(4n|4m)) ↪→ F4n|4m.

Let Ṽ (osp(2m|2n) be the image of the first homomorphism.

Restricting to the even part we have a homomorphism

V−2(so(2m))⊗ V1(sp(2n))→ Ṽ (osp(2m|2n))

Let Ṽ (so(2m))⊗ V1(sp(2n)) be its image.
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Special case: osp(2n + 8|2n)

The algebras Ṽ (so(2n + 8)) and Ṽ (osp(2m|2n)) are not simple.

The embedding

Ṽ (so(2n + 8))⊗ V1(sp(2n)) ↪→ Ṽ (osp(2n + 8|2n))

is not conformal and the coset Virasoro has central charge 0

We have a homomorphism

Ṽ (so(2n + 8))⊗ V1(sp(2n))→ V−2(osp(2n + 8|2n))

Let V (so(2n + 8))⊗ V1(sp(2n)) ↪→ V−2(osp(2n + 8|2n)) be its image.
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The embedding

V (so(2n + 8))⊗ V1(sp(2n)) ↪→ V−2(osp(2n + 8|2n))

The embedding V (so(2n + 8))⊗ V1(sp(2n)) ↪→ V−2(osp(2n + 8|2n))
is conformal.

V (so(2n + 8))⊗ V1(sp(2n)) is simple

The action of
V (so(2n + 8))⊗ V1(sp(2n)) = V−2(so(2n + 8))⊗ V1(sp(2n)) on
V−2(osp(2n + 8|2n)) is semisimple
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Proof

The embedding is conformal by AP-criterion.

V (so(2n + 8))⊗ V1(sp(2n)) is simple by a nice application of the
fusion rules argument: set U to be the submodule of
V−2(osp(2n + 8|2n) generated by g1̄.
It is known that

V−2(so(2n + 8)) = Ṽ (so(2n + 8))/〈v〉

with v an explicit singular vector. Let V be the submodule generated
by v .
One shows that there is r such that U r · V = 0. Since U 6= 0, V = 0
in V−2(osp(2n + 8|2n).

The action of V−2(so(2n + 8))⊗ V1(sp(2n)) is semisimple because
Kazhdan-Lusztig category for V−2(so(2n + 8)) is semisimple at level
−2.
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Decomposition of V−2(osp(2n + 8|2n)

As V−2(so(2n + 8))⊗ V1(sp(2n))-module

V−2(osp(2n + 8|2n)) =
n⊕

i=0

V−2(iω1)⊗ V1(ωi ).

Proof: One constructs singular vectors wi of the correct weight. Set Wi to
be the submodule generated by wi .
We have the following dot product inside of V−2(osp(2n + 8|2n)):

W1 ·Wi = Wi−1 ⊕Wi+1 (1 ≤ i ≤ n − 1)

W1 ·Wn = Wn−1.

It follows that
∑

Wi is a sub-vertex algebra. Since W1 generates
V−2(osp(2n + 8|2n) we have V−2(osp(2n + 8|2n) =

∑
Wi

28 / 1



Other examples of simplicity of Ṽ (g0)

The fusion rules argument can be used in solving the simplicity problem
also in the following example.

Consider Ṽ (sl(2)× G2) ⊂ V1(G (3)). We have
Ṽ (sl(2)× G2) = Ṽ−3/4(sl(2))⊗ V1(G2). If Ṽ−3/4(sl(2)) 6= V−3/4(sl(2))

then there is a singular vector in Ṽ−3/4(sl(2)) of sl(2)-weight 8ω1.

Let vn,m be the set of g0̄ singular vector in V1(G (3)) of g0 weight

(nω1,mω2), where n ∈ Z≥0 and m ∈ {0, 1}. Let Vn,m = Ṽ1(g0̄) · vn,m.
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Example continued

The fusion rules for V1(G2) and Clebsch-Gordan decomposition imply that

Vn,0 · V1,1 ⊂ Vn+1,1 + Vn−1,1.

Vn,1 · V1,1 ⊂ Vn+1,1 + Vn−1,1 + Vn+1,0 + Vn−1,0.

By conformal embedding we can drop the summands that give noninteger
conformal weight. Then it follows that

V8,0 · V1,1 ⊂ V7,1,

V7,1 · V1,1 ⊂ V6,1 + V8,0,

V6,1 · V1,1 ⊂ V5,0 + V7,1,

V5,0 · V1,1 ⊂ V6,1,

and this implies that V8,0 generates a proper ideal in V1(g). A
contradiction.
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Other cases

Similar arguments give the simplicity of

Ṽ1(so(7)× sl(2)) in V1(F (4))

Ṽ−3/4(sl(2)× sl(2)) in V−3/4(spo(2|3))

Once the simplicity of Ṽk(g0) is established, then its action on Vk(g) is
semisimple and one can hope to use fusion rules to compute the
decomposition. Unfortunately fusion rules alone do not suffice in this
cases.
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Example: V−3/4(sl(2))⊗ V3(sl(2)) in V−3/4(spo(2|3))

Let vn,m be the space of ĝ0̄–singular vectors in V−3/4(spo(2|3)) of

sl(2)× sl(2)–weight (nω1,mω1). Let Vn,m = Ṽk(g0̄) · vn,m. We know that
V1,2 6= {0}. There are two possibilities

V1,2 · V1,2 ⊂ V0,0.

or

V1,2 · V1,2 ⊂ V0,0 + V2,2

V1,2 · V2,2 ⊂ V3,0 + V1,2,

V1,2 · V3,0 ⊂ V2,2

V2,2 · V2,2 ⊂ V0,0 + V2,2

V2,2 · V3,0 ⊂ V3,0 + V1,2

V3,0 · V3,0 ⊂ V0,0
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Example continued

To check the correct structure of span(V1,2) under dot product it is
enough to check if V3,0 6= {0}. Let V−3/4(g)3,0,3 be the space of vectors
in V−3/4(g) of weight (3ω1, 0) and conformal weight 3. The maximal ideal
of V−3/4(g) intersects V−3/4(g)3,0,3 in a one dimensional subspace that
we compute explicitly and we can then find a singular vector in
V−3/4(g)3,0,3 and check that it is not in the maximal ideal.

We carry out a similar argument for V1(F (4)) using an explicit
computation of the structure constants of F (4).
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Outcome

We obtain the following decomposition

V−3/4(spo(2|3)) = (V−3/4(sl(2))⊕ Lsl(2)(3ω1))⊗ V3(sl(2))
⊕

(Lsl(2)(ω1)⊕ Lsl(2)(2ω1))⊗ Lsl(2)(2ω1).

V1(F (4)) = V1(so(7))⊗ V− 2
3
(sl(2))

⊕
Lso(7)(ω3)⊗ Lsl(2)(ω1)⊕

Lso(7)(ω1)⊗ Lsl(2)(2ω1).
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Remarks

An easy argument of Creutzig shows how to obtain the decomposition of
V1(G (3)) from the decomposition for V−3/4(spo(2|3)). Namely

V1(G (3)) =
(
V− 3

4
(sl(2))⊕ Lsl(2)(3ω1)

)
⊗ V1(G2)⊕(

Lsl(2)(ω1)⊕ Lsl(2)(2ω1)
)
⊗ LG2(ω1)

The F (4) and spo(2|3) decompositions appear in T. Creutzig’s RIMS
lecture notes. There the crucial fact that V3,0 6= {0} is obtained using
vertex tensor category theory and Huang-Kirillov-Lepowski extension
theory.
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Application of f.r.a. to the case of g0
0 = C$

Assume that g0
0 = C$ and that g1 decomposes as

g1 = Vg0(µ)⊕ Vg0(µ)∗.

By a suitable choice of $ we can assume that $ acts as the identity on
Vg0(µ) and as minus the identity on its dual.

If q ∈ Z, let Vk(g)(q) be the eigenspace for the action of $(0) on Vk(g)
relative to the eigenvalue q. Let {0, ν1, · · · , νm} be the set of weights of
g0–primitive vectors occurring in Vg0(µ)⊗ Vg0(µ)∗.
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Fusion rules argument

Theorem

Assume that Vk(g)(0) does not contain primitive vectors of weight νr ,
where r = 1, . . . ,m, then

Ṽ (g0) ∼= Vk(g0) = Vk(g)(0)

and Vk(g)(q) is a simple Vk(g0)–module so that Vk(g) is completely
reducible.
Moreover, if M+ = Ṽ (g0) · Vg0(µ), M− = Ṽ (g0) · Vg0(µ)∗,

Vk(g)(q) = M+ ·M+ · . . . ·M+︸ ︷︷ ︸
q times

if q > 0,

Vk(g)(q) = M− ·M− · . . . ·M−︸ ︷︷ ︸
|q| times

if q < 0.
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Numerical criterion

Let cν be the eigenvalue of (ωg0)0 on the highest weight vector of Lg0(ν).
Since

ωg = ωg0 ,

the hypothesis of the previous theorem holds whenever cνi 6∈ Z+ for all i .
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Example: g of type C (n + 1)

Here the numerical criterion suffices:

V1(C (n + 1)) = Mc(1)⊗ V−1/2(sp(2n))

⊕
∑

q∈Z\{0}

Mc(1, 2q)⊗ V−1/2(sp(2n))

⊕
∑
q∈Z

Mc(1, 2q + 1)⊗ Lsp(2n)(ω1)

First one uses the fusion rules argument to show that the action of Ṽ (g0̄)
is semisimple, then one uses the enhanced fusion rules argument and the
fact that the rules are known to compute the decomposition.
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Another example: g = sl(m|n)

The numerical criterion suffices except when m = n − 2 and the
decomposition is

V1(sl(m|n)) = Mc(1)⊗ V1(sl(m))⊗ V−1(sl(n))

⊕
∑

q∈Z\{0}

Mc(1,
√

n−m
nm qm)⊗ V1(sl(m))⊗ U

(n)
−qm

⊕
m−1∑
j=1

∑
q∈Z

Mc(1,
√

n−m
nm (qm + j))⊗ Lsl(m)(ωj)⊗ U

(n)
−qm−j

m 6= n, n − 2,m ≥ 2, n ≥ 3.

where U
(n)
r = Lsl(n)(rω1) if r > 0 and U

(n)
r = Lsl(n)(−rωn−1) if r < 0.
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m = n − 2

For m = n − 2 the numerical criterion fails but the decomposition still
holds.
Indeed, if one proves that the action of Ṽ (g0̄) is semisimple, the one can
use the enhanced fusion rules argument and compute the decomposition.
Semisimplicity follows from the free field realization of V1(sl(m|n)) of
Kac-Wakimoto.
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The case g = psl(m|m)

The free field realization implies that the action of Ṽ (g0̄) on V1(psl(m|m))
is semisimple so one can use fusion rules and obtain the decomposition for
m ≥ 3:

V1(psl(m|m)) =
m−1∑
j=0

∑
q∈Z

Lsl(m)(ωj)⊗ U
(m)
−qm−j .

For m = 2 it has been shown by T. Creutzig and D. Gaiotto that

V1(psl(2|2)) =
∞⊕
i=0

(
(2i + 1)V1(sl(2))⊗ U

(2)
2i

)
⊕
∞⊕
i=0

(
(2i + 2)Lsl(2)(ω1)⊗ U

(2)
2i+1

)
.
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