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Nilpotent Slodowy slices

Let N be the nilptotent cone of a complex simple Lie algebra g with adjoint

group G ,

let O = G .x be a nilpotent orbit.

The local geometry of O at f ∈ O is determined by the intersection of O with a

transverse slice in g at f . Such a transverse slice always exists.

By the Jacobson-Morosov theorem, f belongs to an sl2-triple (e, h, f ).

The Slodowy slice associated with (e, h, f ) is the affine space

Sf := f + ge , ge : centralizer of e in g.

It is transverse to the orbit G .f at the point f in g.

The intersection

SO,f := O ∩Sf

is a transverse slice to O at the point f . It is called a nilpotent Slodowy slice.

 The local geometry of O at f ∈ O is therefore encoded in SO,f .
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The geometry of SO,f has been mainly studied in the case where G .f is a

minimal degeneration of O, that is, G .f is a maximal orbit in the boundary

O \O

= SingO.

I When O = N and f = fsubreg is subregular, it is well-known SO,fsubreg has

a simple surface singularity at f of the same type as g, provided g is

simply laced (Brieskorn-Slodowy).

I Kraft and Procesi (1981-1982) determined the generic singularities (that

is, the isomorphism type of SO,f for G .f a minimal degeneration) in the

classical types.

I More recently, Fu-Juteau-Levy-Sommers (2017) determined the generic

singularities in the exceptional types.
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Nilpotent Slodowy slices appear in various areas

Nilpotent Slodowy slices

Theory of symplec-

tic singularities

Associated varieties

of simple W -algebras

Higgs branches of

some 4d N=2 SCFT’s

(Argyres-Douglas theory)

Higgs branch conj.
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1. Collapsing levels for W -algebras



Let ĝ := g[t, t−1]⊕ CK be the affine Kac-Moody algebra with Lie bracket :

[K , ĝ] = 0, [xtm, ytn] = [x , y ]tm+n + m(x |y)δm,−nK , x , y ∈ g, m, n ∈ Z,

where ( | ) = 1
2h∨Killing form.

Let k ∈ C and set

V k(g) := U(ĝ)⊗U(g[t]⊕CK) Ck

PBW∼= U(t−1g[t−1]),

where Ck is a 1-dimensional representation of g[t]⊕ CK on which g[t] acts

trivially and K acts as k id.

It is well-known that V k(g) has a natural vertex algebra structure.

Definition

The vertex algebra V k(g) is the universal affine vertex algebra associated

with g at level k.

 It plays an important role in the representation theory of ĝ :

a V k(g)-module = a smooth ĝ-representation of level k.
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a V k(g)-module = a smooth ĝ-representation of level k.
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a V k(g)-module = a smooth ĝ-representation of level k.

4



Let Lk(g) be the unique simple quotient of V k(g).

It is a simple vertex algebra. As a ĝ-module, Lk(g) ∼= L(kΛ0), where L(kΛ0) is

the simple h.w. representation with h.w. kΛ0.

Let f ∈ N be a nilpotent element of g, and Wk(g, f ) the W -algebra associated

with g , f at the level k obtained the quantized Drinfeld-Sokolov reduction :

Wk(g, f ) = H0
DS,f (V k(g)).

I Wk(g, f ) is a quantization of C[J∞Sf ], where J∞Sf = f + ge [[t]].

I Wk(g, f ) is an affinization of the finite W -algebra U(g, f ) associated with

g, f (De Sole-Kac, Arakawa).

Let Wk(g, f ) be the unique simple quotient of Wk(g, f ).

Conjecturally (Kac-Wakimoto),

Wk(g, f ) ∼= H0
DS,f (Lk(g)),

provided that H0
DS,f (Lk(g)) 6= 0.
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Let g\ be the centralizer of the sl2-triple (e, h, f ).

It is a reductive algebra :

g\ = g\0 ⊕

(
s⊕

i=1

g\i

)
, g0 := z(g\), g\i simple factors of [g\, g\].

By Kac-Wakimoto (2004), there is an embedding
s⊗

i=0

V k
\
i (g\i ) =:V k\(g\) ↪→Wk(g, f ),

where the k\i ’s are some complex numbers determined by g, f , k.

Definition (Adamović-Kac-Möseneder-Papi-Peřse, 2018)

We say that k is collapsing for Wk(g, f ) if the image of the composition map

V k\(g\) ↪→Wk(g, f )�Wk(g, f )

is surjective, that is, if Wk(g, f )g
\[t] ∼= C, or else if

Wk(g, f ) ∼= Lk\(g\).

For example, if Wk(g, f ) ∼= C, then k is collapsing.
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Motivations

I If k is collapsing, the vertex algebra homomorphism

Wk(g, f )�Wk(g, f ) ∼= Lk\(g\) induces an algebra homomorphism,

Zhu(Wk(g, f)) ∼= U(g, f) −→ Zhu(Lk\(g\)) ∼= U(g\)/I.

I (AKMPP) Semisimplicity of some categories of Lk(g)-modules for f = fmin :

cf. Paolo Papi’s talk.

I Hope of obtaining new lisse W -algebras.

Conjecture (Arakawa-M.)

If Wk(g, f )g
\[t] is lisse (e.g. if k is collapsing), then Wk+n(g, f )g

\[t] is lisse for

all n ∈ Z>0.

Main example : if g belongs to the Deligne exceptional series,

A1 ⊂ A2 ⊂ G2 ⊂ D4 ⊂ F4 ⊂ E6 ⊂ E7 ⊂ E8,

and k = −h∨/6− 1, then Wk(g, fmin) ∼= C (Arakawa-M., 2018). Moreover,

from Kawasetsu’s computations, Wk+1(g, fmin)g
\[t] is lisse (and rational).

I Collapsing levels are important in the Argyres-Douglas theory.
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What is known about collapsing levels ?

I (AKMPP, 2018) There is a full classification of collapsing levels for

Wk(g, fmin), including simple affine Lie superalgebras : cf. Paolo’s talk.

Furthermore, there is a full classification of pairs (g, k) such that

Wk(g, fmin) ∼= C (Arakawa-M. 2018, AKMPP for the super case).

I However, little or almost nothing is known for collapsing levels for non

minimal nilpotent elements.

The main reason is that for an arbitrary nilpotent element f , the commutation

relations in Wk(g, f ) are unknown.

Idea to find appropriate candidates for f and k ? To any vertex algebra V , one

can attach a certain Poisson variety XV , called the associated variety.

If k is collapsing, then

XWk (g,f )
∼= XL

k\
(g\),

and this is a very restrictive condition on (k, f ) as we will see now...
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2. Associated varieties of vertex

algebras



Recall that a vertex algebra is a complex vector space V equipped with a

distinguished vector |0〉 ∈ V ,

an endomorphism T ∈ End(V) and a linear map,

V −→ (End V)[[z−1, z]]

a 7−→ a(z) :=
∑

n∈Z a(n)z
−n−1,

satisfying a number of axioms.

Set RV := V /C2(V ), where C2(V ) := span{a(−2)b | a, b ∈ V }.

Then RV is naturally a Poisson algebra by :

1 = |0〉, a · b = a(−1)b, {a, b} = a(0)b, a, b ∈ V .

Definition

The associated variety of V is XV = (Spec RV)red.

The vertex algebra V is called lisse if dimXV = {0}.

I The lisse condition implies for instance that V has only finitely many

simple modules (Zhu 1996, Abe-Buhl-Dong 2004).
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Associated varieties of affine vertex algebras

• We have RV k (g) = C[g∗], equipped with the Kirillov-Kostant-Souriau Poisson

structure.

Indeed, there is a Poisson algebra isomorphism,

RV k (g) = V k(g)/t−2g[t−1]V k(g)
∼←− S(g) ∼= C[g∗]

(x1t
−1) . . . (xr t

−1)|0〉+ t−2g[t−1]V k(g) 7−→ x1 . . . xr .

Hence XV k (g) = g∗.

• What about XLk (g) ? We have

RLk (g) = Lk(g)/t−2g[t−1]Lk(g) � S(g) ∼= C[g∗]

(x1t−1) . . . (xr t−1)|0〉+ t−2g[t−1]Lk(g) 7−→ x1 . . . xr .

So RLk (g) is a quotient of C[g∗] and, hence, XLk (g) is a G -invariant, closed cone

of g∗ ∼= g.

 XLk (g) is very difficult to compute in general.
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• (Dong-Mason, 2006) XLk (g) = {0}, i.e., Lk(g) is lisse ⇐⇒ Lk(g) is

integrable ⇐⇒ k ∈ Z>0.

{integrable ĝ-repr.} $ {admissible ĝ-repr.} ⊆
conj. =

{modular inv. repr.}.

Ex : if g is simply laced, then Lk(g) is admissible iff k = −h∨ + p/q,

(p, q) = 1, p > h∨.

• (Arakawa, 2015) If k is admissible, i.e., Lk(g) is, then XLk (g) = Ok , for

some nilpotent orbit Ok of g.

• (Arakawa-M., 2016) If g belongs to the Deligne exceptional series and

k = −h∨/6− 1 + n, with n ∈ Z>0 such that k 6∈ Z>0, then XLk (g) = Omin.

I Lk(g) is non admissible for g = D4,E6,E7,E8.

In all the above cases, the associated variety of Lk(g) behaves like the

associated variety of primitive ideals in the enveloping algebra.
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⊆
conj. =

{modular inv. repr.}.

Ex : if g is simply laced, then Lk(g) is admissible iff k = −h∨ + p/q,

(p, q) = 1, p > h∨.

• (Arakawa, 2015) If k is admissible, i.e., Lk(g) is, then XLk (g) = Ok , for

some nilpotent orbit Ok of g.

• (Arakawa-M., 2016) If g belongs to the Deligne exceptional series and

k = −h∨/6− 1 + n, with n ∈ Z>0 such that k 6∈ Z>0, then XLk (g) = Omin.

I Lk(g) is non admissible for g = D4,E6,E7,E8.

In all the above cases, the associated variety of Lk(g) behaves like the

associated variety of primitive ideals in the enveloping algebra.

11



• (Dong-Mason, 2006) XLk (g) = {0}, i.e., Lk(g) is lisse ⇐⇒ Lk(g) is

integrable ⇐⇒ k ∈ Z>0.
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Associated varieties of W -algebras

Let k ∈ C and f ∈ N .

• (De Sole-Kac) We have RWk (g,f ) = C[Sf ] and so XWk (g,f ) = Sf , with

Poisson structure coming from g∗ by Hamiltonian reduction.

• (Arakawa) We have RH0
DS,f

(Lk (g)) = RLk (g) ⊗C[g∗] C[Sf ] and so

XH0
DS,f

(Lk (g)) = XLk (g) ∩Sf .

In particular, H0
DS,f (Lk(g)) 6= 0 iff f ∈ XLk (g).

Examples :

• if k is admissible, then XWk (g,f ) = Ok ∩Sf = SOk ,f for any

f ∈ Ok .

 In this way, nilpotent Slodowy slices appear as associated

varieties of simple W-algebras at admissible levels.

Moreover, if f ∈ Ok , then Wk(g, f ) is lisse.

• If g ∈ DES, k = −h∨/6− 1 + n, n ∈ Z>0, then Wk(g, fmin) is

lisse.
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Moreover, if f ∈ Ok , then Wk(g, f ) is lisse.

• If g ∈ DES, k = −h∨/6− 1 + n, n ∈ Z>0, then Wk(g, fmin) is

lisse.
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3. Main results



Main illustrating example

Assume that g = slN and k is admissible, i.e., k = −n +
p

q
, (p, q) = 1, p > n.

{nilpotent orbits in sln} ←→ {partitions of n}, Oλ 7−→λ

Then XLk (sln) = O(ql ,r), n = ql + r , 0 6 r < q. Pick f ∈ O(qm,1s ), 0 6 m 6 l .

By the “erasing common rows” rule of Kraft-Procesi, we have that

O(ql ,r) ∩Sf

G\−var.∼= O(ql−m,r) .
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Theorem (Arakawa-M., 2019)

Assume that g = sln. Pick f ∈ O(qm,1s ) so that n = qm + s.

1. If s 6= 0 and (q, s) = 1, then W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

2. If s = 0, then n = qm and, W−n+(n+1)/q(sln, f ) ∼= L1(slm).

I We have similar results for son and spn.

I Many examples in the exceptional types :

OE6(a3) ∩SA5
∼= OA1

min : W−12+13/6(E6,A5) ∼= L−2+2/3(A1),

OE6(a3) ∩SD4
∼= NA2 : W−12+13/6(E6,D4) ∼= L−2+4/3(A2),

W−12+12/7(E6,D4) ∼= L−3+3/7(A2), W−12+12/5(E6,A4) ∼= L−2+2/5(A1), . . .

W−18+19/12(E7,E6) ∼= L−2+3/4(A1), W−18+18/13(E7,E6) ∼= L−2+2/13(A1),

W−18+18/7(E7, (A5)′′) ∼= L−4+4/7(G2), W−18+19/6(E7,D6(a2)) ∼= L−2+2/3(A1), . . .

W−30+31/18(E8,E7) ∼= L−2+2/9(A1),

W−30+30/19(E8,E7) ∼= L−2+3/38(A1)⊕ L−2+3/38(A1;$1), . . .

W−9+9/7(F4,B3) ∼= L−2+2/7(A1), W−9+9/7(F4,C3) ∼= L−2+2/7(A1), . . .

14



Theorem (Arakawa-M., 2019)

Assume that g = sln.

Pick f ∈ O(qm,1s ) so that n = qm + s.

1. If s 6= 0 and (q, s) = 1, then W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

2. If s = 0, then n = qm and, W−n+(n+1)/q(sln, f ) ∼= L1(slm).

I We have similar results for son and spn.

I Many examples in the exceptional types :

OE6(a3) ∩SA5
∼= OA1

min : W−12+13/6(E6,A5) ∼= L−2+2/3(A1),

OE6(a3) ∩SD4
∼= NA2 : W−12+13/6(E6,D4) ∼= L−2+4/3(A2),

W−12+12/7(E6,D4) ∼= L−3+3/7(A2), W−12+12/5(E6,A4) ∼= L−2+2/5(A1), . . .

W−18+19/12(E7,E6) ∼= L−2+3/4(A1), W−18+18/13(E7,E6) ∼= L−2+2/13(A1),

W−18+18/7(E7, (A5)′′) ∼= L−4+4/7(G2), W−18+19/6(E7,D6(a2)) ∼= L−2+2/3(A1), . . .

W−30+31/18(E8,E7) ∼= L−2+2/9(A1),

W−30+30/19(E8,E7) ∼= L−2+3/38(A1)⊕ L−2+3/38(A1;$1), . . .

W−9+9/7(F4,B3) ∼= L−2+2/7(A1), W−9+9/7(F4,C3) ∼= L−2+2/7(A1), . . .

14



Theorem (Arakawa-M., 2019)

Assume that g = sln. Pick f ∈ O(qm,1s ) so that n = qm + s.

1. If s 6= 0 and (q, s) = 1, then W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

2. If s = 0, then n = qm and, W−n+(n+1)/q(sln, f ) ∼= L1(slm).

I We have similar results for son and spn.

I Many examples in the exceptional types :

OE6(a3) ∩SA5
∼= OA1

min : W−12+13/6(E6,A5) ∼= L−2+2/3(A1),

OE6(a3) ∩SD4
∼= NA2 : W−12+13/6(E6,D4) ∼= L−2+4/3(A2),

W−12+12/7(E6,D4) ∼= L−3+3/7(A2), W−12+12/5(E6,A4) ∼= L−2+2/5(A1), . . .

W−18+19/12(E7,E6) ∼= L−2+3/4(A1), W−18+18/13(E7,E6) ∼= L−2+2/13(A1),

W−18+18/7(E7, (A5)′′) ∼= L−4+4/7(G2), W−18+19/6(E7,D6(a2)) ∼= L−2+2/3(A1), . . .

W−30+31/18(E8,E7) ∼= L−2+2/9(A1),

W−30+30/19(E8,E7) ∼= L−2+3/38(A1)⊕ L−2+3/38(A1;$1), . . .

W−9+9/7(F4,B3) ∼= L−2+2/7(A1), W−9+9/7(F4,C3) ∼= L−2+2/7(A1), . . .

14



Theorem (Arakawa-M., 2019)

Assume that g = sln. Pick f ∈ O(qm,1s ) so that n = qm + s.

1. If s 6= 0 and (q, s) = 1, then W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

2. If s = 0, then n = qm and, W−n+(n+1)/q(sln, f ) ∼= L1(slm).

I We have similar results for son and spn.

I Many examples in the exceptional types :

OE6(a3) ∩SA5
∼= OA1

min : W−12+13/6(E6,A5) ∼= L−2+2/3(A1),

OE6(a3) ∩SD4
∼= NA2 : W−12+13/6(E6,D4) ∼= L−2+4/3(A2),

W−12+12/7(E6,D4) ∼= L−3+3/7(A2), W−12+12/5(E6,A4) ∼= L−2+2/5(A1), . . .

W−18+19/12(E7,E6) ∼= L−2+3/4(A1), W−18+18/13(E7,E6) ∼= L−2+2/13(A1),

W−18+18/7(E7, (A5)′′) ∼= L−4+4/7(G2), W−18+19/6(E7,D6(a2)) ∼= L−2+2/3(A1), . . .

W−30+31/18(E8,E7) ∼= L−2+2/9(A1),

W−30+30/19(E8,E7) ∼= L−2+3/38(A1)⊕ L−2+3/38(A1;$1), . . .

W−9+9/7(F4,B3) ∼= L−2+2/7(A1), W−9+9/7(F4,C3) ∼= L−2+2/7(A1), . . .

14



Theorem (Arakawa-M., 2019)

Assume that g = sln. Pick f ∈ O(qm,1s ) so that n = qm + s.

1. If s 6= 0 and (q, s) = 1, then W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

2. If s = 0, then n = qm and, W−n+(n+1)/q(sln, f ) ∼= L1(slm).

I We have similar results for son and spn.

I Many examples in the exceptional types :

OE6(a3) ∩SA5
∼= OA1

min : W−12+13/6(E6,A5) ∼= L−2+2/3(A1),

OE6(a3) ∩SD4
∼= NA2 : W−12+13/6(E6,D4) ∼= L−2+4/3(A2),

W−12+12/7(E6,D4) ∼= L−3+3/7(A2), W−12+12/5(E6,A4) ∼= L−2+2/5(A1), . . .

W−18+19/12(E7,E6) ∼= L−2+3/4(A1), W−18+18/13(E7,E6) ∼= L−2+2/13(A1),

W−18+18/7(E7, (A5)′′) ∼= L−4+4/7(G2), W−18+19/6(E7,D6(a2)) ∼= L−2+2/3(A1), . . .

W−30+31/18(E8,E7) ∼= L−2+2/9(A1),

W−30+30/19(E8,E7) ∼= L−2+3/38(A1)⊕ L−2+3/38(A1;$1), . . .

W−9+9/7(F4,B3) ∼= L−2+2/7(A1), W−9+9/7(F4,C3) ∼= L−2+2/7(A1), . . .

14



Theorem (Arakawa-M., 2019)

Assume that g = sln. Pick f ∈ O(qm,1s ) so that n = qm + s.

1. If s 6= 0 and (q, s) = 1, then W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

2. If s = 0, then n = qm and, W−n+(n+1)/q(sln, f ) ∼= L1(slm).

I We have similar results for son and spn.

I Many examples in the exceptional types :

OE6(a3) ∩SA5
∼= OA1

min : W−12+13/6(E6,A5) ∼= L−2+2/3(A1),

OE6(a3) ∩SD4
∼= NA2 : W−12+13/6(E6,D4) ∼= L−2+4/3(A2),

W−12+12/7(E6,D4) ∼= L−3+3/7(A2), W−12+12/5(E6,A4) ∼= L−2+2/5(A1), . . .

W−18+19/12(E7,E6) ∼= L−2+3/4(A1), W−18+18/13(E7,E6) ∼= L−2+2/13(A1),

W−18+18/7(E7, (A5)′′) ∼= L−4+4/7(G2), W−18+19/6(E7,D6(a2)) ∼= L−2+2/3(A1), . . .

W−30+31/18(E8,E7) ∼= L−2+2/9(A1),

W−30+30/19(E8,E7) ∼= L−2+3/38(A1)⊕ L−2+3/38(A1;$1), . . .

W−9+9/7(F4,B3) ∼= L−2+2/7(A1), W−9+9/7(F4,C3) ∼= L−2+2/7(A1), . . .

14



Theorem (Arakawa-M., 2019)

Assume that g = sln. Pick f ∈ O(qm,1s ) so that n = qm + s.

1. If s 6= 0 and (q, s) = 1, then W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

2. If s = 0, then n = qm and, W−n+(n+1)/q(sln, f ) ∼= L1(slm).

I We have similar results for son and spn.

I Many examples in the exceptional types :

OE6(a3) ∩SA5
∼= OA1

min : W−12+13/6(E6,A5) ∼= L−2+2/3(A1),

OE6(a3) ∩SD4
∼= NA2 : W−12+13/6(E6,D4) ∼= L−2+4/3(A2),

W−12+12/7(E6,D4) ∼= L−3+3/7(A2), W−12+12/5(E6,A4) ∼= L−2+2/5(A1), . . .

W−18+19/12(E7,E6) ∼= L−2+3/4(A1), W−18+18/13(E7,E6) ∼= L−2+2/13(A1),

W−18+18/7(E7, (A5)′′) ∼= L−4+4/7(G2), W−18+19/6(E7,D6(a2)) ∼= L−2+2/3(A1), . . .

W−30+31/18(E8,E7) ∼= L−2+2/9(A1),

W−30+30/19(E8,E7) ∼= L−2+3/38(A1)⊕ L−2+3/38(A1;$1), . . .

W−9+9/7(F4,B3) ∼= L−2+2/7(A1), W−9+9/7(F4,C3) ∼= L−2+2/7(A1), . . .

14



Theorem (Arakawa-M., 2019)

Assume that g = sln. Pick f ∈ O(qm,1s ) so that n = qm + s.

1. If s 6= 0 and (q, s) = 1, then W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

2. If s = 0, then n = qm and, W−n+(n+1)/q(sln, f ) ∼= L1(slm).

I We have similar results for son and spn.

I Many examples in the exceptional types :

OE6(a3) ∩SA5
∼= OA1

min :

W−12+13/6(E6,A5) ∼= L−2+2/3(A1),

OE6(a3) ∩SD4
∼= NA2 : W−12+13/6(E6,D4) ∼= L−2+4/3(A2),

W−12+12/7(E6,D4) ∼= L−3+3/7(A2), W−12+12/5(E6,A4) ∼= L−2+2/5(A1), . . .

W−18+19/12(E7,E6) ∼= L−2+3/4(A1), W−18+18/13(E7,E6) ∼= L−2+2/13(A1),

W−18+18/7(E7, (A5)′′) ∼= L−4+4/7(G2), W−18+19/6(E7,D6(a2)) ∼= L−2+2/3(A1), . . .

W−30+31/18(E8,E7) ∼= L−2+2/9(A1),

W−30+30/19(E8,E7) ∼= L−2+3/38(A1)⊕ L−2+3/38(A1;$1), . . .

W−9+9/7(F4,B3) ∼= L−2+2/7(A1), W−9+9/7(F4,C3) ∼= L−2+2/7(A1), . . .

14



Theorem (Arakawa-M., 2019)

Assume that g = sln. Pick f ∈ O(qm,1s ) so that n = qm + s.

1. If s 6= 0 and (q, s) = 1, then W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

2. If s = 0, then n = qm and, W−n+(n+1)/q(sln, f ) ∼= L1(slm).

I We have similar results for son and spn.

I Many examples in the exceptional types :

OE6(a3) ∩SA5
∼= OA1

min : W−12+13/6(E6,A5) ∼= L−2+2/3(A1),

OE6(a3) ∩SD4
∼= NA2 : W−12+13/6(E6,D4) ∼= L−2+4/3(A2),

W−12+12/7(E6,D4) ∼= L−3+3/7(A2), W−12+12/5(E6,A4) ∼= L−2+2/5(A1), . . .

W−18+19/12(E7,E6) ∼= L−2+3/4(A1), W−18+18/13(E7,E6) ∼= L−2+2/13(A1),

W−18+18/7(E7, (A5)′′) ∼= L−4+4/7(G2), W−18+19/6(E7,D6(a2)) ∼= L−2+2/3(A1), . . .

W−30+31/18(E8,E7) ∼= L−2+2/9(A1),

W−30+30/19(E8,E7) ∼= L−2+3/38(A1)⊕ L−2+3/38(A1;$1), . . .

W−9+9/7(F4,B3) ∼= L−2+2/7(A1), W−9+9/7(F4,C3) ∼= L−2+2/7(A1), . . .

14



Theorem (Arakawa-M., 2019)

Assume that g = sln. Pick f ∈ O(qm,1s ) so that n = qm + s.

1. If s 6= 0 and (q, s) = 1, then W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

2. If s = 0, then n = qm and, W−n+(n+1)/q(sln, f ) ∼= L1(slm).

I We have similar results for son and spn.

I Many examples in the exceptional types :

OE6(a3) ∩SA5
∼= OA1

min : W−12+13/6(E6,A5) ∼= L−2+2/3(A1),

OE6(a3) ∩SD4
∼= NA2 :

W−12+13/6(E6,D4) ∼= L−2+4/3(A2),

W−12+12/7(E6,D4) ∼= L−3+3/7(A2), W−12+12/5(E6,A4) ∼= L−2+2/5(A1), . . .

W−18+19/12(E7,E6) ∼= L−2+3/4(A1), W−18+18/13(E7,E6) ∼= L−2+2/13(A1),

W−18+18/7(E7, (A5)′′) ∼= L−4+4/7(G2), W−18+19/6(E7,D6(a2)) ∼= L−2+2/3(A1), . . .

W−30+31/18(E8,E7) ∼= L−2+2/9(A1),

W−30+30/19(E8,E7) ∼= L−2+3/38(A1)⊕ L−2+3/38(A1;$1), . . .

W−9+9/7(F4,B3) ∼= L−2+2/7(A1), W−9+9/7(F4,C3) ∼= L−2+2/7(A1), . . .

14



Theorem (Arakawa-M., 2019)

Assume that g = sln. Pick f ∈ O(qm,1s ) so that n = qm + s.

1. If s 6= 0 and (q, s) = 1, then W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

2. If s = 0, then n = qm and, W−n+(n+1)/q(sln, f ) ∼= L1(slm).

I We have similar results for son and spn.

I Many examples in the exceptional types :

OE6(a3) ∩SA5
∼= OA1

min : W−12+13/6(E6,A5) ∼= L−2+2/3(A1),

OE6(a3) ∩SD4
∼= NA2 : W−12+13/6(E6,D4) ∼= L−2+4/3(A2),

W−12+12/7(E6,D4) ∼= L−3+3/7(A2), W−12+12/5(E6,A4) ∼= L−2+2/5(A1), . . .

W−18+19/12(E7,E6) ∼= L−2+3/4(A1), W−18+18/13(E7,E6) ∼= L−2+2/13(A1),

W−18+18/7(E7, (A5)′′) ∼= L−4+4/7(G2), W−18+19/6(E7,D6(a2)) ∼= L−2+2/3(A1), . . .

W−30+31/18(E8,E7) ∼= L−2+2/9(A1),

W−30+30/19(E8,E7) ∼= L−2+3/38(A1)⊕ L−2+3/38(A1;$1), . . .

W−9+9/7(F4,B3) ∼= L−2+2/7(A1), W−9+9/7(F4,C3) ∼= L−2+2/7(A1), . . .

14



Theorem (Arakawa-M., 2019)

Assume that g = sln. Pick f ∈ O(qm,1s ) so that n = qm + s.

1. If s 6= 0 and (q, s) = 1, then W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

2. If s = 0, then n = qm and, W−n+(n+1)/q(sln, f ) ∼= L1(slm).

I We have similar results for son and spn.

I Many examples in the exceptional types :

OE6(a3) ∩SA5
∼= OA1

min : W−12+13/6(E6,A5) ∼= L−2+2/3(A1),

OE6(a3) ∩SD4
∼= NA2 : W−12+13/6(E6,D4) ∼= L−2+4/3(A2),

W−12+12/7(E6,D4) ∼= L−3+3/7(A2), W−12+12/5(E6,A4) ∼= L−2+2/5(A1), . . .

W−18+19/12(E7,E6) ∼= L−2+3/4(A1), W−18+18/13(E7,E6) ∼= L−2+2/13(A1),

W−18+18/7(E7, (A5)′′) ∼= L−4+4/7(G2), W−18+19/6(E7,D6(a2)) ∼= L−2+2/3(A1), . . .

W−30+31/18(E8,E7) ∼= L−2+2/9(A1),

W−30+30/19(E8,E7) ∼= L−2+3/38(A1)⊕ L−2+3/38(A1;$1), . . .

W−9+9/7(F4,B3) ∼= L−2+2/7(A1), W−9+9/7(F4,C3) ∼= L−2+2/7(A1), . . .

14



Theorem (Arakawa-M., 2019)

Assume that g = sln. Pick f ∈ O(qm,1s ) so that n = qm + s.

1. If s 6= 0 and (q, s) = 1, then W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

2. If s = 0, then n = qm and, W−n+(n+1)/q(sln, f ) ∼= L1(slm).

I We have similar results for son and spn.

I Many examples in the exceptional types :

OE6(a3) ∩SA5
∼= OA1

min : W−12+13/6(E6,A5) ∼= L−2+2/3(A1),

OE6(a3) ∩SD4
∼= NA2 : W−12+13/6(E6,D4) ∼= L−2+4/3(A2),

W−12+12/7(E6,D4) ∼= L−3+3/7(A2), W−12+12/5(E6,A4) ∼= L−2+2/5(A1), . . .

W−18+19/12(E7,E6) ∼= L−2+3/4(A1), W−18+18/13(E7,E6) ∼= L−2+2/13(A1),

W−18+18/7(E7, (A5)′′) ∼= L−4+4/7(G2), W−18+19/6(E7,D6(a2)) ∼= L−2+2/3(A1), . . .

W−30+31/18(E8,E7) ∼= L−2+2/9(A1),

W−30+30/19(E8,E7) ∼= L−2+3/38(A1)⊕ L−2+3/38(A1;$1), . . .

W−9+9/7(F4,B3) ∼= L−2+2/7(A1), W−9+9/7(F4,C3) ∼= L−2+2/7(A1), . . .

14



Theorem (Arakawa-M., 2019)

Assume that g = sln. Pick f ∈ O(qm,1s ) so that n = qm + s.

1. If s 6= 0 and (q, s) = 1, then W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

2. If s = 0, then n = qm and, W−n+(n+1)/q(sln, f ) ∼= L1(slm).

I We have similar results for son and spn.

I Many examples in the exceptional types :

OE6(a3) ∩SA5
∼= OA1

min : W−12+13/6(E6,A5) ∼= L−2+2/3(A1),

OE6(a3) ∩SD4
∼= NA2 : W−12+13/6(E6,D4) ∼= L−2+4/3(A2),

W−12+12/7(E6,D4) ∼= L−3+3/7(A2), W−12+12/5(E6,A4) ∼= L−2+2/5(A1), . . .

W−18+19/12(E7,E6) ∼= L−2+3/4(A1), W−18+18/13(E7,E6) ∼= L−2+2/13(A1),

W−18+18/7(E7, (A5)′′) ∼= L−4+4/7(G2), W−18+19/6(E7,D6(a2)) ∼= L−2+2/3(A1), . . .

W−30+31/18(E8,E7) ∼= L−2+2/9(A1),

W−30+30/19(E8,E7) ∼= L−2+3/38(A1)⊕ L−2+3/38(A1;$1), . . .

W−9+9/7(F4,B3) ∼= L−2+2/7(A1), W−9+9/7(F4,C3) ∼= L−2+2/7(A1), . . .

14



Theorem (Arakawa-M., 2019)

Assume that g = sln. Pick f ∈ O(qm,1s ) so that n = qm + s.

1. If s 6= 0 and (q, s) = 1, then W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

2. If s = 0, then n = qm and, W−n+(n+1)/q(sln, f ) ∼= L1(slm).

I We have similar results for son and spn.

I Many examples in the exceptional types :

OE6(a3) ∩SA5
∼= OA1

min : W−12+13/6(E6,A5) ∼= L−2+2/3(A1),

OE6(a3) ∩SD4
∼= NA2 : W−12+13/6(E6,D4) ∼= L−2+4/3(A2),

W−12+12/7(E6,D4) ∼= L−3+3/7(A2), W−12+12/5(E6,A4) ∼= L−2+2/5(A1), . . .

W−18+19/12(E7,E6) ∼= L−2+3/4(A1), W−18+18/13(E7,E6) ∼= L−2+2/13(A1),

W−18+18/7(E7, (A5)′′) ∼= L−4+4/7(G2), W−18+19/6(E7,D6(a2)) ∼= L−2+2/3(A1), . . .

W−30+31/18(E8,E7) ∼= L−2+2/9(A1),

W−30+30/19(E8,E7) ∼= L−2+3/38(A1)⊕ L−2+3/38(A1;$1), . . .

W−9+9/7(F4,B3) ∼= L−2+2/7(A1), W−9+9/7(F4,C3) ∼= L−2+2/7(A1), . . .

14



Theorem (Arakawa-M., 2019)

Assume that g = sln. Pick f ∈ O(qm,1s ) so that n = qm + s.

1. If s 6= 0 and (q, s) = 1, then W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

2. If s = 0, then n = qm and, W−n+(n+1)/q(sln, f ) ∼= L1(slm).

I We have similar results for son and spn.

I Many examples in the exceptional types :

OE6(a3) ∩SA5
∼= OA1

min : W−12+13/6(E6,A5) ∼= L−2+2/3(A1),

OE6(a3) ∩SD4
∼= NA2 : W−12+13/6(E6,D4) ∼= L−2+4/3(A2),

W−12+12/7(E6,D4) ∼= L−3+3/7(A2), W−12+12/5(E6,A4) ∼= L−2+2/5(A1), . . .

W−18+19/12(E7,E6) ∼= L−2+3/4(A1), W−18+18/13(E7,E6) ∼= L−2+2/13(A1),

W−18+18/7(E7, (A5)′′) ∼= L−4+4/7(G2), W−18+19/6(E7,D6(a2)) ∼= L−2+2/3(A1), . . .

W−30+31/18(E8,E7) ∼= L−2+2/9(A1),

W−30+30/19(E8,E7) ∼= L−2+3/38(A1)⊕ L−2+3/38(A1;$1), . . .

W−9+9/7(F4,B3) ∼= L−2+2/7(A1), W−9+9/7(F4,C3) ∼= L−2+2/7(A1), . . .

14



Idea of the proofs

Assume that k is (principal) admissible, and that V is Lk(g) or H0
DS,f (Lk(g)).

Then (Kac-Wakimoto, 1989) :

χV (τ) ∼ ΛV e
πi

12τ
ωV , as τ ↓ 0,

where χV (τ) = trV (e2iπτ(L0−c/24)) is the normalized character of v , τ ∈ H.

Here, ΛV and ωV are the amplitude and the asymptotic growth, respectively.

Proposition (Arakawa-M., 2019)

Assume that k and k\ are (principal) admissible, that f ∈ XLk (g), and that

χH0
DS,f

(Lk (g))(τ) ∼ χL
k\

(g\)(τ), as τ ↓ 0.

Then Wk(g, f ) ∼= H0
DS,f (Lk(g)), and Wk(g, f ) ∼= Lk\(g\), i.e., k is collapsing.

 It suffices to check that the amplitude and the asymptotic growth coincide.

Ex : ΛW−n+n/q(sln,f ) = q(s2−1)/2 = ΛL−s+s/q(sls ),

ωW−n+n/q(sln,f ) =
(

1− 1
q

)
(s2 − 1) = ωL−s+s/q(sls ).

15
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4. Applications and motivations

coming from physics



Recently, a group of physicists (Beem, Lemos, Liendo, Peelaers, Rastelli, van

Rees) constructed a remarkable map :

Φ: {4d N = 2 SCFT’s} −→ {2d CFTs} = {vertex alg.}

which enjoys some nice properties, e.g., the Schur index of a 4d N = 2 SCFT

T coincides with the normalized character of Φ(T ).

I Vertex algebras appearing in this correspondence are quite exotic...

Main examples : Lk(g) = Φ(T ) pour T ∈ {4d N = 2 SCFTs’}, where

g = D4,E6,E7,E8 et k = −2,−3,−4,−6.

The Higgs branch associated with T ∈ {4d N = 2 SCFT’s} is a certain

(possibly singular) symplectic variety.

Conjecture (Beem-Rastelli, 2016)

∀T ∈ {4d N = 2 SCFT’s}, Higgs(T ) = XΦ(T ).

Ex : for T s.t. Φ(T ) = Lk(g) as above, Higgs(T ) = Omin = XLk (g).

Physical intuitions suggest that Higgs(T ) has finitely many symplectic leaves.

 vertex algebras appearing in this 4d/2d duality are quasi-lisse.
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There are some distinguished 4d N = 2 SCFT’s :

• The class S theory. For such a 4d N = 2 SCFT the Higgs branch has

been defined mathematically by Braverman-Finkelberg-Nakajima 2017

(Moore-Tachikawa’s conjecture).

Beem-Rastelli conjecture was proved by Arakawa, 2018.

• The Argyres-Douglas theory. Some of such a 4d N = 2 SCFT are

labelled by :

g (type A,D,E), f ∈ N , b, n ∈ Z>0.

The corresponding vertex algebra is W−h∨+ b
b+n

(g, f ) (Xie-Yan, 2019).

It may happen that a given theory have several realizations

 the corresponding vertex algebras must be isomorphic.

When one of them is an affine simple vertex algebra, it corresponds to a

collapsing level.

Ex : W−n+n/q(sln, f ) ∼= L−s+s/q(sls), W−12+12/5(E6,A4) ∼= L−2+2/5(A1),

W−12+12/7(E6,D4) ∼= L−3+3/7(A2), etc. were predicted by physicists.
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Other conjectures

One can also consider isomorphisms between non-trivial W -algebras.
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