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The associated with (e, h, f) is the affine space
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is a transverse slice to O at the point f. It is called a

~s The local geometry of @ at f € O is therefore encoded in /o ¢.
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0\ 0 = Sing 0.

» When O =N and f = fupreg is subregular, it is well-known S5 1, has
a simple surface singularity at f of the same type as g, provided g is

simply laced (Brieskorn-Slodowy).

» Kraft and Procesi (1981-1982) determined the generic singularities (that
is, the isomorphism type of .%o ¢ for G.f a minimal degeneration) in the
classical types.

» More recently, Fu-Juteau-Levy-Sommers (2017) determined the generic
singularities in the exceptional types.
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Applications and motivations coming from physics.
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It is well-known that V/*(g) has a natural vertex algebra structure.
Definition
The vertex algebra V*(g) is the universal affine vertex algebra associated

with g at level k.

~ It plays an important role in the representation theory of g :
a V¥*(g)-module = a smooth g-representation of level k.
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It is a simple vertex algebra. As a g-module, Li(g) =2 L(kAo), where L(kAo) is
the simple h.w. representation with h.w. kAo.

Let f € N be a nilpotent element of g, and W*(g, f) the W-algebra associated
with g, f at the level k obtained the quantized Drinfeld-Sokolov reduction :

W (g, f) = Hps (V¥ (g)).

» WX(g, f) is a quantization of C[Jwo.77], where Joo. % = f + g°[[t]].
» WX(g, ) is an affinization of the finite W-algebra U(g, f) associated with
g, f (De Sole-Kac, Arakawa).
Let Wi(g, f) be the unique simple quotient of Wi(g, f).
Conjecturally (Kac-Wakimoto),
Wi(g, f) = Hps,¢(Li(g)),
provided that Hgs,f(Lk(g)) #0.
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Wilg, ) = Ly (8°).

For example, if Wi(g, f) = C, then k is collapsing.
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» (AKMPP, 2018) There is a full classification of collapsing levels for
Wi(g, fmin), including simple affine Lie superalgebras : cf. Paolo’s talk.

Furthermore, there is a full classification of pairs (g, k) such that
Wi(g, fmin) = C (Arakawa-M. 2018, AKMPP for the super case).

» However, little or almost nothing is known for collapsing levels for non
minimal nilpotent elements.

The main reason is that for an arbitrary nilpotent element f, the commutation
relations in Wi(g, f) are unknown.

Idea to find appropriate candidates for f and k7 To any vertex algebra V/, one
can attach a certain Poisson variety Xy, called the associated variety.

If k is collapsing, then
Xwi(a.r) = Xi, (a5)

and this is a very restrictive condition on (k, ) as we will see now...
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distinguished vector |0) € V, an endomorphism T € End(V) and a linear map,
V. — (EndV)[[z7},7]]
a — a(z):=Y,amz ",
satisfying a number of axioms.

Set Ry 1= V/(G(V), where G(V) :=span{a(_,)b|a,be V}.

Then Ry is naturally a Poisson algebra by :

1=0), a-b= a(_l)b7 {§7b}:a(0)b7 a,beV.

Definition
The associated variety of V is Xy = (Spec Rv)red-

The vertex algebra V is called /isse if dim Xy = {0}.

» The lisse condition implies for instance that V' has only finitely many
simple modules (Zhu 1996, Abe-Buhl-Dong 2004).
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So Ry, (g) is a quotient of C[g”] and, hence, X, (q) is a G-invariant, closed cone
of g* = g.

~ X, (g) is very difficult to compute in general.
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integrable <= k € Z>o.

{integrable g-repr.} & {admissible §-repr.} C {modular inv. repr.}.

conj. =
Ex : if g is simply laced, then Li(g) is admissible iff k = —h" + p/q,
(pq)=1,p=>h".

(Arakawa, 2015) If k is admissible, i.e., Lc(g) is, then X, () = O, for
some nilpotent orbit Oy of g.

(Arakawa-M., 2016) If g belongs to the Deligne exceptional series and

k = —hv/6 — 1+ n, with n € Z>o such that k € Z>o, then XLk(g) = Omin.

» L(g) is non admissible for g = D, Eg, E7, Es.

In all the above cases, the associated variety of Li(g) behaves like the
associated variety of primitive ideals in the enveloping algebra.
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Let k€ Cand f € N.

o (De Sole-Kac) We have Ry, sy = C[#7] and s0 Xy sy = 77, with
Poisson structure coming from g* by Hamiltonian reduction.
* (Arakawa) We have Ry (1, (5)) = Ri,(e) ®cter) C[#7] and so

XH%s A(Li(e)) — Xip(g) N5
In particular, Hps ¢(L(g)) # 0 iff £ € Xy, (g)

Examples :
e if k is admissible, then XWk (8,F) =0 N = S0, for any
f € Ox.
~» In this way, nilpotent Slodowy slices appear as associated
varieties of simple VV-algebras at admissible levels.
Moreover, if f € Ok, then Wi(g, f) is lisse.
o If g€ DES, k=—hY/6 —1+n, n € Z>o, then Wi(g, fmin) is

lisse.
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Assume that g = sly and k is admissible, i.e., k = —n+ g (pyg) =1, p=n.

{nilpotent orbits in sl,} +— {partitions of n}, O +— A
Then X, (s1,) = Qg1 n=ql +r, 0 < r <q. Pick f € Qgm1s), 0 < m< /.

By the “erasing common rows" rule of Kraft-Procesi, we have that
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2_
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Idea of the proofs

Assume that k is (principal) admissible, and that V is Lk(g) or Hps ¢(L«(g)).
Then (Kac-Wakimoto, 1989) :

xv(7) ~ /\ve%w", as 7.0,

where xv(7) = try(e?™(L0=</24)) is the normalized character of v, 7 € HL.

Here, Ay and wy are the and the , respectively.

Proposition (Arakawa-M., 2019)

Assume that k and k® are (principal) admissible, that f € X, (4), and that

Xt (@) (T) ™~ Xi @0y (7),  as T L0

0
DS,f

Then Wi(g, f) 2 Hps ¢(Lk(g)), and Wi(g, f) = L,z (g%), i.e., k is collapsing.

~ It suffices to check that the amplitude and the asymptotic growth coincide.

(s*-1)/2 _ A,

Ex: Aw_,, a(stnf) = Ceps/qlsls)s

q
1 2
WW,nJrn/q(ﬁln,F) = (1 - a) (5 - 1) = wL—ers/q(ﬂS)'
ii5)
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V7 € {4d N =2 SCFT's}, Higgs(7) = Xo(z)-

Ex : for 7 s.t. ®(.7) = Lk(g) as above, Higgs(.7) = Omin = Xy (q)-

Physical intuitions suggest that Higgs(.7") has finitely many symplectic leaves.
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e The Argyres-Douglas theory. Some of such a 4d A/ =2 SCFT are
labelled by :
g (type ADE), feN, b,necZso.
The corresponding vertex algebra is W—hV+bL(g’ ) (Xie-Yan, 2019).
+n

It may happen that a given theory have several realizations
~+ the corresponding vertex algebras must be isomorphic.

When one of them is an affine simple vertex algebra, it corresponds to a
collapsing level.
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Other conjectures

One can also consider isomorphisms between non-trivial W-algebras.

Ex : g =sl7. Pick f € O3 22) C sl7, and let f e O(22) C sla.

]
XW77+p/3(sl7<F) = n I

[ l n XW74+p//3(§[4'f/)

The following conjecture is predicted by physicist :
Conjecture (Arakawa-M. 2019)

W_z47/3(8l7, £) 2 W_g14/3(sls, f').

(Evidences : the same central charge, amplitude, and asymptotic growth.)

Other conjectures (non admissible levels) :

W_o(Es,2A2) = L_3(G2), W-_12(E7, A2+ 2A1) 2 L_»(G2)
]/\}_24(E37 Eﬁ(a3)) = L_Q(GQ), W_ﬁ(F4, AQ) = L_Q(GQ), .
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