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Outline of this talk

If V is a good VOA, then an extension of V is alway good.

It sounds: if we are good, then anything we do to outside are good,?
How about a sub VOA of a good VOA?
The beauty from within is a little different. We need some manner.

...1 Motivation

...2 Setting for commutant subVOA and the statement of our theorem.

...3 Our strategy and V -internal operators

...4 Matrix equations AX = B and solutions X = A−1B.

...5 Functions and Rigidity

...6 Borcherds-like identity

...7 The case where V is generated by self-dual simple modules

...8 The minimal counterexample and orbifold theory
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Motivation

Powerful methods for construction (of infinite series) of SVOAs are
(1) Orbifold construction by finite automorphism group
(2) Commutant subVOA
(3) Homological construction, e.g. Kerρ/Imageρ for an endomorphism ρ
of some SVOA satisfying ρ2 = 0.

Today, I will talk about subVOAs (i.e. (1) and (2) ).

Usually, when we expect subVOA to have finiteness property, like regularity
we start with VOAs with finiteness properties. These are
(i) “C2-cofinite” i.e. Zhu’s Poisson algebra R2(V ) = V /C2(V ) has
finite-dim, where Cm(W ) = SpanC{v−mw | wt(v) > 0,w ∈ W } for m ≥ 1
and Rm(W ) = W /Cm(W ) for a V -mod W .
(ii) “rationality”= all N-gradable V -mods are direct sums of simple mods.

Many beautiful results (f.g. Verlinde formula) hold under two conditions.
So, it is important to check them.
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Advantage of the proof of C2-cofiniteness

The proofs for them are very different, unless we know all modules.

.
Theorem 1 (M13)
..

......

In the case V ∼= V ′. If ∃ simple N-graded V -mod W such that
W and W ′ (restricted dual) are C2-cof, then V is also C2-cof.

Namely, C2-cofiniteness is a local property.
On the other hand, Rationality is global, we need all N-grad. mods.

Moreover, if we once get C2-cof., then we can get global properties:
♯ of simple V -mods is finite,
Fusion products are well-defined,
modular invariance, etc.
These will help the proof for “Rationality”.
So, let’s start with the proof of C2-cofiniteness.
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SubVOA and Commutant subVOA 1

For the orbifold case (1), I have proved C2-cofiniteness of orbifold models.
.
Theorem 2 (M. arXiv:1812.00570, ver2)
..

......

If V is a simple VOA of CFT-type and V ′ ∼= V and G ⊆ Aut(V ) is finite.
If V is C2-cofinite, then so is V G .

I am not talking this today, but we will use it.
My talk is the second case (2), that is, a commutant subVOA.
.
Conj 1 (Fundamental)
..

......

V is C2-cof. VOA, U is C2-cof. subVOA, then Uc := {v ∈ V | ωU
0 v = 0}

is also C2-cofinite. More generally. If V is C2-cof., U is subVOA and V is
a finite direct sum of simple U-modules, then U is C2-cofinite?

We will give a partial answer to these conjectures. Most ideas from [M18].
Although, for a cyclic group auto, we use simple currents.
For a non-solvable group, we used a self-dual simple V G -mod.
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Commutant subVOA 2

e.g. If V and U are strongly regular and (Uc)c = U. In this setting, can
we prove that W = Uc is also strongly regular?

As expected, if W is also regular, then

V = ⊕i∈∆(U
i ⊗W i ),

where U i are simple U-mods, W i are simple W -mods. and
i ̸= j , then U i ̸∼= U j , W i ̸∼= W j , by [Lin 2017] etc.
Our result is that this is sufficient to prove that W is C2-cofinite,
.
Theorem 3
..

......

Let V be a C2-cofinite simple VOA of CFT-type and V ′ ∼= V .
Assume that U is C2-cofinite subVOA and V = ⊕i∈∆(U

i ⊗W i )
with distinct simple U-mods U i and distinct simple W -mods W i .
If U satisfies rigidity, then W is also C2-cofinite.

I will explain our ideas to prove this theorem.
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Our methods and V -internal fusion product

Since U is C2-cof., wt(U
i ) ∈ Q and so wt(W i ), say in Z/R.

We know nothing about general W -mods. How to treat W -mods?

Answer: Just treat W i and the inside of V = ⊕i∈∆(U
i ⊗W i ).

.
Our Strategy
..

......

As U-mods (W -mods), we treat only direct sums of U i ’s, (of W i ’s).
About intertwining op. we consider only intertwining ops. appeared in V .

.
Notation 1
..

......

Since V ∼= V ′, (U i )′ ∼= U j (∃j denote by ī)
Set W∆ = ⊕i∈∆W

i (also U∆ = ⊕i∈∆U
i )

Using u ∈ U∆, we define W -hom: Ωu : V → W∆ by

Ωu(
∑

j∈∆ uj ⊗ w j) =
∑

j⟨u, uj⟩w j ∈ W∆.

Similarly, we define U-homo Ωw : V → U∆ by

Ωw (
∑

j∈∆ uj ⊗ w j) =
∑

j⟨w ,w j⟩uj ∈ U∆.
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V -internal operators

.
Definition 1
..

......

Using u1 ∈ U i , u2 ∈ U j , u3 ∈ U k̄ , we define

Iu1,u2,u3(w1, z)w2⟩=Ωu3(Y (u1⊗w1, z)(u2⊗w3))zwtU(u1)+wtU(u2)−wtU(u3)

for w1 ∈ W i ,w2 ∈ W j .
Similarly, using w1 ∈ W i ,w2 ∈ W j ,w3 ∈ W k̄ , we define

J w1,w2,w3
(u1, z)u2=Ωw3(Y (u1⊗w1, z)(u2⊗w3))zwtW (w1)+wtW (w2)−wtW (w3).

.
Lemma 4
..

......I
w1,w2,w3 ∈ I

( Uk

U i U j

)
and J u1,u2,u3 ∈ I

( W k

W i W j

)
.

.
Definition 2
..

......

Set IVU
( Uk

U i ,U j

)
, IVW

( W k

W i ,W j

)
the subspaces of I

( Uk

U i ,U j

)
, I

( W k

W i ,W j

)
spanned by

the above intertwining operators.
We call elements in these subspaces ”V -internal operators”.
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V -internal operators

Since U is C2-cofinite, dim IVU
( Uk

U i ,U j

)
≤ dim I

( Uk

U i ,U j

)
< ∞.

Choose a basis {Is
i ,j ,k | s ∈ Bi ,j ,k} of IVU

( Uk

U i ,U j

)
.

.
Theorem 5
..

......

There are J s
i ,j ,k ∈ IVW

( W k

W i ,W j

)
such that

Y =
∑
i ,j ,k

∑
s∈Bi,j,k

Is
i ,j ,k ⊗ J s

i ,j ,k .

Furthermore, {J s
i ,j ,k | s ∈ Bi ,j ,k} is a basis of IVW

( W k

W i ,W j

)
.

In particular, dim IVU
( Uk

U i ,U j

)
= dim IVW

( W k

W i ,W j

)
Namely, if v1 = u1 ⊗ w1 ∈ U i ⊗W i , v2 = u2 ⊗ w2 ∈ U j ⊗W j and
πk : V → Uk ⊗W k a projection, then
πk(Y (v1, z)v2) =

∑
s∈Bi,j,k

Is
i ,j ,k(u

1, z)u2 ⊗ J s
i ,j ,k(w

1, z)w2

Masahiko Miyamoto C2-cofiniteness of commutant subVOA 9 / 17



V -internal operators

Since U is C2-cofinite, dim IVU
( Uk

U i ,U j

)
≤ dim I

( Uk

U i ,U j

)
< ∞.

Choose a basis {Is
i ,j ,k | s ∈ Bi ,j ,k} of IVU

( Uk

U i ,U j

)
.

.
Theorem 5
..

......

There are J s
i ,j ,k ∈ IVW

( W k

W i ,W j

)
such that

Y =
∑
i ,j ,k

∑
s∈Bi,j,k

Is
i ,j ,k ⊗ J s

i ,j ,k .

Furthermore, {J s
i ,j ,k | s ∈ Bi ,j ,k} is a basis of IVW

( W k

W i ,W j

)
.

In particular, dim IVU
( Uk

U i ,U j

)
= dim IVW

( W k

W i ,W j

)

Namely, if v1 = u1 ⊗ w1 ∈ U i ⊗W i , v2 = u2 ⊗ w2 ∈ U j ⊗W j and
πk : V → Uk ⊗W k a projection, then
πk(Y (v1, z)v2) =

∑
s∈Bi,j,k

Is
i ,j ,k(u

1, z)u2 ⊗ J s
i ,j ,k(w

1, z)w2

Masahiko Miyamoto C2-cofiniteness of commutant subVOA 9 / 17



V -internal operators

Since U is C2-cofinite, dim IVU
( Uk

U i ,U j

)
≤ dim I

( Uk

U i ,U j

)
< ∞.

Choose a basis {Is
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.
Theorem 5
..

......
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i ,j ,k

∑
s∈Bi,j,k

Is
i ,j ,k ⊗ J s

i ,j ,k .

Furthermore, {J s
i ,j ,k | s ∈ Bi ,j ,k} is a basis of IVW

( W k

W i ,W j

)
.

In particular, dim IVU
( Uk

U i ,U j

)
= dim IVW

( W k

W i ,W j

)
Namely, if v1 = u1 ⊗ w1 ∈ U i ⊗W i , v2 = u2 ⊗ w2 ∈ U j ⊗W j and
πk : V → Uk ⊗W k a projection, then
πk(Y (v1, z)v2) =

∑
s∈Bi,j,k

Is
i ,j ,k(u

1, z)u2 ⊗ J s
i ,j ,k(w

1, z)w2

Masahiko Miyamoto C2-cofiniteness of commutant subVOA 9 / 17



W =V /U , self-knowledge comes from knowing other men.

Our proof is: we get information on IVW
( W k

W i ,W j

)
from IVU

( Uk

U i ,U j

)
and Y .

Simply, write Y =
∑

a∈B Ia ⊗ J a. Then we have

⟨u4 ⊗ w4,Y (Y (u1 ⊗ w1, x − y)(u2 ⊗ w2), y)(u3 ⊗ w3)⟩
=

∑
a,b∈B⟨u4, Ia(Ib(u1, x − y)u2, y)u3⟩⟨w4,J a(J b(w1, x − y)w2, y)w3⟩.

We simply write Y (Y ()) =
∑

i∈D Iai (Ibi )⊗ J ai (J bi )

.
Theorem 6
..

......

⟨w4,J a(J b(w1, x − y)w2, y)w3⟩.
are absolutely convergent on 0 < |x − y | < |y | and analytically extended
to the multi-valued analytic functns whose poles are at most x , y , x − y.
We have the same statement for V -internal operators of U-modules.
We also have the similar statement for

⟨u4, Is(u1, x)It(u2, y)u3⟩ and ⟨w4,J s(w1, x)J t(w2, y)w3⟩.
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A proof.

The poles of LHS are at most x , y , x − y . View
⟨·, Iai (Ibi (·, x − y)·, y)·⟩i=1,...,S as a function on (⊕i∈∆U

i )⊕4 with values
in functions of x and y . Since {⟨·, Iai (Ibi (·, x − y)·, y)·⟩ | i = 1, ..., S} is
linearly independent, we may choose qualtets
(u11 , u

2
1 , u

3
1 , u

4
1), ..., (u

1
S , u

2
S , u

3
S , u

4
S) such that S × S-matrix

A := (⟨u4j , Iai (Ibi (u1j , x − y)u2j , y)u
3
j ⟩) has nonzero determinant.

Then

.
Equations on vectors over function fields
..

......

(⟨v4i ,Y (Y (v1i , x − y)v2i , y)v
3
i ⟩i=1,....,S

= A(⟨w4,J si (J ti (w1, x − y)w2, y)w3⟩j=1,...,s

as column vectors, where vai = uai ⊗ wa for a = 1, 2, 3, 4. So we have:
⟨w4,J si (J ti (w1, x − y)w2, y)w3⟩ = A−1⟨v4i ,Y (Y (v1i , x − y)v2i , y)v

3
i ⟩

Since RHS are all absolutely convergents, we have it for LHS.
If we assume that ⟨w4,J a(J b(w1, x − y)w2, y)w3⟩ has a pole at x − ry ,
then we can choose the above determinant is not zero at x − ry , then
solving the equation, we have a contradiction.
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Fusion product

Because we have IVW
( W k

W i ,W j

)
, we can naturally define

W i ⊠V
W W j := ⊕k(W

k)
dimIVW (

Wk

Wi ,Wj)

and surjective intertwining op. F ∈ IVW
(W i⊠V

WW j

W i ,W j

)
to define fusion product.

Similarly, we can define a fusion product of three modules.
Not only W , but we can also define the fusion products of U i ’s.
.
Remark 1
..

......

There is a natural def. of fusion products for V -internal ops, as a projective
limit of increasing series of surjective (linear combs. of) V -internal ops.
Our definition of the V -internal fusion products depends on the choice of

a basis {Is
i ,j ,k | s ∈ Bi ,j ,k} of IVU

( Uk

U i U j

)
, but the isomorphism class of

V -internal fusion product does not depend on the choice of bases and
coincides with the natural one.
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Rigidity, the relation between U i and W i are dual.

Moving to y = 0 according to a suitable path, we can expand
⟨w4,J aJ b(w1, x − y)w2, y)w3⟩ in the form∑

j

⟨w4, J̃ aj (w1, x)(J̃ bj (w2, y)w3⟩.

Using the previous arguments, we can prove that J̃ aj J̃ bj are replaced by
linear combinations of products of V -internal operators.

So, we have
⟨w4,J ai (J bi (w1, x − y)w2, y)w3⟩ =

∑
τi ,j⟨w4,Ysj (w1, x)J tj (w2, y)w3⟩.

Similarly, we have
⟨u4, Iai (Ibi (u1, x − y)u2, y)u3⟩ =

∑
κi ,j⟨u4, Isj (u1, x)Itj (u2, y)w3⟩.

.
Theorem 7
..

......

t(κi ,j)(τi ,j) = I . So, U j satisifies right (left) rigidity if and only if W j

satisfies left (right) rigidity.
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Borcherds’-like identity

We assume that P := W j is self-dual and W j generates V .
We want to show that V i = U i ⊗W i is C2-cofinite for some j .
Finiteness V j/C2(V

i ) is not information for small weights.
So, Ignore small weights.
.
Theorem 8 (Borcherds’ like identity)
..

......

Let π : V → U ⊗W a projection. For θ ∈ (C2(V
j))⊥ and v i ∈ U j ⊗W j

with wt(θ) > wt(v1) + wt(v2) + wt(v3) + 1, we have

⟨θ, π(v1n v2)mv3⟩
= λ⟨θ,

∑∞
i=0

(n
i

)
(−1)i{v1n−iπ(v

2
m+iw)− (−1)nv2n+m−iπ(v

1
i v

3)}⟩

In particular, by taking m ≤ −2, we have
.
Corollary 1
..

......

⟨θ,
∞∑
i=0

(
n

i

)
(−1)iv1n−iπ(v

2
i−2v

3)⟩ = ⟨θ,
∞∑
i=0

(
n

i

)
(−1)i+nv2n−2−iπ(v

1
i v

3)⟩
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The case V is generated by a self-dual simple module P

So we will consider the set Map(N,C) of all maps from Z to C satisfying
f (n) = 0 for n ∈ Z<0. Let F0 and F1 be the spaces of coefficients f (x) of
a(−x+M−1)b at α(−x−1)1 modulo K for a ∈ T , b ∈ P and a ∈ P, b ∈ T ,
that is,

F0 = SpanC
{
f ∈ Map(N,C) | ∃a ∈ T , ∃b ∈ P s.t.

⟨θ, a(−x+M−1)b⟩ = f (x) for x ∈ N
}
,

F1 = SpanC
{
f ∈ Map(N,C) | ∃a ∈ P, ∃b ∈ T s.t.

⟨θ, a(−x+M−1)b⟩ = f (x) for x ∈ N
}
.

As we did in the proof for cyclic automorphism group, we define

Sf (n) = (−1)n
∑n

k=0

(n
k

)
(−1)k f (n − k) for n ∈ N,

Tf (n) = (−1)nf (n) for n ∈ N.

and we can get a contradiction.
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Final Step

Consider all counterexamples (V ,H,U ⊗W ), where V and U are
C2-cofinite, U ⊗W ⊆ H are not C2-cofinite and V and H are direct sums
of distinct simple U ⊗W -modules. In particular, V = ⊕H i with simple
H-modules H i . Choose (V ,H,U ⊗W ) with minimal number of simple
sub H-modules. By the theorem, we may assume H i ̸∼= H ī for H i ̸∼= H.

.
Perm. tensor product V⊗2 and orbifold model
..

......

Consider orbifold (V ⊗ V )σ with σ = (1, 2).
Then we can check that ((V ⊗ V )σ, (H ⊗ H)σ, (U ⊗ U)σ ⊗ (W ⊗W )σ)
satisfies the assumption of Theorem.

Then H i ⊗ H ī + H ī ⊗ H i is self-dual simple (H ⊗ H)σ-module. Let K :=
subVOA generated by self-dual (H ⊗ H)σ-submods, then since (V ,H) is
minimal counterexample, i.e. ≥ ((V ⊗ V )σ,K ,U ⊗W ), we can get that
finite G ⊆ Aut((V ⊗ V )σ) s.t. K = ((V ⊗ V )σ)G . By the orbifold theory,
K is C2-cof. Since K is generated by self-dual simple modules, H is
C2-cof. Thus, we have a contradiction.
This completes the proof of the main theorem.
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minimal counterexample, i.e. ≥ ((V ⊗ V )σ,K ,U ⊗W ), we can get that
finite G ⊆ Aut((V ⊗ V )σ) s.t. K = ((V ⊗ V )σ)G . By the orbifold theory,
K is C2-cof. Since K is generated by self-dual simple modules, H is
C2-cof. Thus, we have a contradiction.
This completes the proof of the main theorem.
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Thank you for listening !!
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