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k will denote a commutative ring. O(X ) are the functions on a space
X and O∗(X ) are the invertible functions.
This will be an elementary talk about distributions in the setting of
algebraic geometry. Inside the projective line P = P

1 the formal

neighborhood d = 0̂ of 0 and the affine line Am
def
= P− 0 interact on

their intersection which is the punctured formal disc d∗ = d ∩Am. This
roughly identifies functions on one with distributions on the other. We
will make this precise in the multiplicative setting and notice how this
mechanism appears in several examples.



Motivating example: the Witt ring.

Theorem. The formal power series 1 + Tk[[T ]] with leading
coefficient 1 has a natural structure of a ring. The addition operation is
the multiplication · of formal power series. The multiplication
operation ∗ is characterized by (for a, b ∈ k)

(1− aT ) ∗ (1− bT ) = 1− abT .

Remarks. This is called the Witt ring over k (or ring of big Witt
vectors). The usual proofs develop certain mastery of formulas. We
will present it as a natural structure “without formulas”.



1. Functions and distributions

1.1. Additive version The distributions are the dual of functions
DX = O(X )v. There is a map δ : X → DX where for a ∈ X , δa is the
evaluation of functions at a.
In reasonable settings δ : X → DX is the linearization of X , the
universal linear object that X maps to. We also call it the linear object
freely generated by X .
A small example in algebraic geometry. First, consider the affine
line AU over k, with coordinate U, so functions are O(U) = k[U]. The
functions on the formal disc d = 0̂⊆AU are the formal series k[[T ]].
Lemma. The functions on one of the spaces Am = AT−1 and d = 0̂
are distributions on the other:

Homk[O(0̂),k] = O(Am).



.

To make this precise we need to put some natural extra structures on
these vector spaces of functions. O(AU) = k[U] is an ind-system
k+ · · ·+ kUn of finite dimensional vector subspaces of polynomials of
degree ≤ n. O(d) = k[[T ]] is a pro-system of finite dimensional
quotient vector spaces k[T ]/T n.
Proof. The pairing of f ∈ k[[T ]] and g ∈ k[T−1] will be defined as

〈f (T ), g(T−1)〉
def
= Res0(fg

dT

T
).

Since 〈T i ,T−j 〉 = δij the pairing makes the above finite dimensional
subs and quotients dual. So, the pairing makes the two systems of
vector spaces dual.
Remark. This says that the vector space freely generated by the disc 0̂
is O(P1 − 0). (More naturally, it is the 1-forms Ω1(P1 − 0).)



1.2 Multiplicative distributions Now, for an ind-scheme X over k ,
instead of all functions O(X ) let us consider just the invertible
functions O∗(X ).
In order for these to behave well we will again need some extra
structure on these – we make them into objects of algebraic geometry.
So, we replace the group O∗(X ) with a commutative affine group
indscheme O∗(X ). This means that instead of one group we consider
the system of groups O∗(Xk′) for all maps of rings k → k

′, where Xk′

is the scheme over k′, obtained by extension of scalars from k to k
′.

On commutative affine group ind-schemes we have a replacement for
vector space duality, the Cartier duality

D(A)
def
= Hom(A,Gm).

Here Hom means the inner Hom in affine group indschemes, i.e.,
again the system of all groups of homomorphisms Hom(Ak′ ,Gmk′).
Examples (a) DGm = Z.
(b) For a vector space V in characteristic zero the dual DV is the
formal neighborhood 0̂V ∗ of 0 in the dual vector space V v.



Remark. The system O∗(X ) is also a ring – for a certain tensor

structure B⊗∗C
def
= D[Hom(B ,Hom(C ,Gm)] on commutative group

ind-schemes. So, it is a part of some new multiplicative algebraic
geometry. However, we will only be interested in the corresponding
multiplicative notion of distributions.

AX
def
= D[O∗(X )] = Hom[Map(X ,Gm),Gm].

Remark. We will now only consider spaces X such that B = O∗(X )
satisfies D2(B) = B , Then AX is the affine commutative group
ind-scheme freely generated by X .
1.3 Multiplicative distributions X 7→AX as homology The
Thom-Dold theorem in algebraic topology can be roughly interpreted as

homology H∗(X ,Z) of a topological space X is the
abelian group object freely generated by the space X .

[The formulation is actually more complicated because at the time
there was no adequate categorical setting.] The construction of
multiplicative distributions AX (when fully developed) will be a
homology theory that is completely in Algebraic Geometry.



1.2. Multiplicative duality of functions on d and Am Invertible
functions O∗(X , a) on a pointed space X ∋ a, are defined as as
invertible functions f : X → Gm that vanish at a, i.e., f (a) = 1. Then
O∗(X ) ∼= Gm×O∗(X , a).
Example. (1) On the formal disc O∗(d , 0) = 1 + k[[T ]]. The
corresponding group scheme O∗(d , 0) is called the congruence
subgroup K = KT . So, K (k′) = 1 + k

′[[T ]].

(2) On an affine line AU = Spec(k[U]), O∗(AU , 0) = 1 + UNk [U]
where Nk are the nilpotent elements in k.
[For a polynomial P ∈ k[U], the inverse of 1 + UP is again a
polynomial iff P is nilpotent, i.e., iff all its coefficients are nilpotent.]
These form an indscheme O∗(AU , 0) which we can call the “small”
congruence subgroup K s

U⊆K .
Lemma. Multiplicative distributions on one of the pointed spaces
(d , 0) = (0̂, 0) and (Am,∞) = (P1 − 0,∞) are invertible functions on
the other.
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Proof. On (Am,∞) we have a coordinate T−1 so an invertible function
g is of the form 1 + a1T

−1 + · · ·+ anT
−n. We rewrite it as

T−n(T n + a1T
n−1 + · · ·+ an) and the second factor is the equation of

some finite subscheme D of the T -line AT . Since all ai are nilpotent
this scheme D lies in the formal disc d⊆AT .
Now the pairing of f ∈ O∗(d , 0) with this g ∈ O∗(Am,∞) is the
integral of f over the finite scheme D

{f , g}
def
=

∫

D

f ∈ Gm.

This integral is usually called norm. If x1, ..., xn are roots of D it just
means

∏
f (xi ).

This pairing gives the natural isomorphism

O∗(Am,∞) ∼= Hom(O∗(d , 0),Gm) = O∗(d , 0).



Remarks. (0) This means that the affine commutative group
indschemes freely generated by the pointed disc and the pointed line are

Ad,0 = O∗(P1 − 0,∞) and AAm,∞ = O∗(d , 0).

(1) The multiplicative world is simpler we do not need the 1-forms or a
choice of a Haar measure for duality.
(2) In p-adic representation theory the above additive duality is a
standard tool. However, the multiplicative duality is wrong since for k
a field O∗(AU , 0) is the trivial group, i.e., k[[U]]∗ are just the
constants k∗. By passing to group indschemes we add the nilpotents
and this makes the group sufficiently large for duality.



2. Witt ring

2.1. Restatement of Witt ring construction algebrai geometry.
This uses the affine group indscheme K called the congruence
subgroup. It is defined over Z and its points over a commutative ring k

are K (k) = 1 + Tk[[T ]].
Theorem. The congruence subgroup K has a natural structure of a
ring in indschemes. The addition operation is the multiplication · of
formal power series. The multiplication operation ∗ is the unique
bilinear operation such that

(1− aT ) ∗ (1− bT ) = 1− abT for a, b ∈ k.

Remark. The ring structure on the indscheme K gives a ring structure
on the set K(k) of k-points.)
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Proof. We know that K = O∗(d , 0) is the group indscheme freely
generated by the pointed space (P1 − 0,∞). This makes it a group.
Moreover, (P1 − 0,∞) ∼= (A, 0) has a natural structure of a monoid
from the multiplication on the line A (0 is an ideal in A, hence (A1, 0)
is still a monoid.)
Therefore, K is the algebro geometric monoid algebra of the
commutative monoid (A, 0), hence it is a commutative ring in algebraic
geometry.
Finally, this isomorphism AA,0

∼= K restricts via A → AA,0 to a map
A → K by a 7→ 1− aT so the above relation is just the claim that ∗
comes from multiplication in A.



2.2 Combinatorics. The Witt ring has a huge number of structures
and applications (say, Borger’s definition of the field with one element).
For one thing it is the spectrum of the ring of symmetric functions in
infinitely many variables k[x1, ...]

S∞ which is the home for classical
combinatorics so it is an algebro geometric incarnation of
combinatorics.
Proof. One system of coordinates a1, a2, .. on the Witt ring K are the
coefficients of the series f = 1 + a1(f )T + · · ·. So, K is just an infinite
dimensional affine space A

∞.
However, K = is lim

← n→∞
K/K (n) for the nth congruence subgroup

K (n)
def
= 1 + T n

k[[T ]]). Then a1, ..., an are the coordinates on K/K (n)
which is just the space of monic polynomials of the form
f = 1+a1(f )T+· · ·+an(f )T

n = T n(T−n+a1(f )T
−(n−1)+· · ·+an(f )].

So, ai ’s are the elementary symmetric functions in roots of the
polynomial T−n + a1(f )T

−(n−1) + · · ·+ an(f ). Then
O(K/K (n)) = k[x1, ..., xn]

Sn and O(K ) is k[x1, ...]
S∞ .



2.3 Transfers Recall that AX is a version of homology. The ordinary
homology is characterized by having transfers for finite maps so we
expect them for multiplicative distributions.
Any finite map χ : X → Y defines the transfer map of groups

χtr : AY → AX , χtr (y)
def
=

∑

x∈φ−1y

x .

The endomorphisms of the monoid (A, ·) form a semiring
χ : (N,+, ·) ∼= End(A, ·) where χn(x) = xn. These are fine maps so we
have transfers χtr

n and

χtr
n (1− aT ) =

∏

αn=a

(1− αT ) = 1− aT n.

Notice that for a, b ∈ k,

aχtr
n (b) = χtr

n (a
nb) and χtr

n (a) · χ
tr
m(b) =

(
χ[n,m](a

[n,m]
n b

[n,m]
m )

)(n,m)
.
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Lemma. Any multiplicatively closed S⊆N defines an ideal KS⊆K
which is the subgroup generated by all images of χtr

n for n ∈ S .
Example. (1) If S = {n, n + 1, ...} then KS(k) = 1 + T n

k[[T ]] is an
ideal in W .
(2) If S is all numbers not divisible by a fixed prime p then K/KS is
the “ring of p-typical Witt vectors”.
Corollary. For any an ∈ k,

∑
n χtr

n (an) converges in AA,0. We call an’s
the system of Witt coordinates AN ∼= AA,0.
The multiplicative formulation in K says that the Witt coordinates of
an element α of K (k) = 1 + tk[[T ]] are given by the unique
factorization

α =
∏

n

(1− anT
n) for an ∈ k.



2.4 Factorization formula for Witt multiplication This coordinate
system allows us to write the product ∗ explicitly

∏

n>0

1−aT n ·
∏

m>0

1−bmT
m =

∏

m,n>0

(
1−a

[n,m]/n
n b

[n,m]/m
m T [n,m]

)(n,m)
.

Proof. This is just the formula for the product of transfers written
multiplicatively.



3. Geometric Class Field Theory

3.1. Uniform formulation local and clobal cases. This is closest to
Contou-Carrere.
For a smooth curve C over a ring k the Geometric Class Field Theory
says that

(∗) The commutative group indsceme AC freely generated by C
is the moduli BuncGm

(C ) of line bundles on C with compact support.

This follows from the Abel-Jacobi map

AJ : C → BuncGm
(C ), AJa

def
= OC (−a) = Ia.

Corollary. This gives a Cartier duality formulation of geometric CFT:

Map(C ,Gm) ∼= D[BuncGm
(C )].

Proof. The RHS is Hom[AC ,Gm) and this the same as Map(C ,Gm).
Remarks. (0) A compactly supported line bundle on C means a line
bundle on a compactification C endowed with a trivialization on the
formal neighborhood of the boundary C − C .



(1) For complete C this subtlety disappears but now BuncGm
(C ) is a

stack. We will only be interested in local curves.

3.2. Example C = d .
Here BuncGm

(d) is the space of line bundles on P
1 with a trivialization

on P
1 − 0.

This is the same as line bundles on d with a trivialization on
d ∩ (P1 − 0) = d∗. This is called the loop Grassmannian G(Gm) and
there is a simple formula Gm((z))/Gm[[z ]]. The duality statement is

D[O∗(d)] ∼= G(Gm)

which is the combination of D(Z) = Gm and D(K s
T−1) = K . The

second claim is what we have proved earlier. The Abel-Jacobi point of
view on this duality is really the same as what we have been doing.



3.3. Example C = d∗ Here BuncGm
(d∗) = Gm((z)). Here, the

boundary of d∗ in the compactification P
1 consists of P1 − 0 (as

before) and of formal neighborhood d of 0. The duality statement is

D[Gm((z))] ∼= Gm((z)).

The corresponding pairing {, } : Gm((z))×Gm((z)) → Gm is the
Contou Carrere refinement of the tame symbol in NT.
Remark. We can write f ∈ Gm((z)) as f = f0·T

ord(f ) · f+ · f− in
terms of the factorization

Gm((z)) ∼= Gm × TZ × KT × K s
T−1 .

Then the formula for the symbol is

{f , g} = (−1)ord(f )·ord(g) ·
g
ord(f )
0

f
ord(g)
0

· {f+, g−} · {g+, f−}
−1,

where the last two terms are the pairing of KT and K s
T−1 from above.

[The first two factors are simple algebraically but deep geometrically.]



3.4. Comparison of the symbol and the Witt multiplication
Lemma. [Beilinson-Bloch-Esnault] For f ∈ KT and g ∈ K s

T−1

{f (T ), g(T−1)} =
(
f (T ) ∗ g(T )

)
|T=1

and
[f (T ) ∗ g(T )](c) = {f (T ), g(cT−1)}.

Proof. This is now a formal consequence of both constructions using
the pairing of KT and K s

T−1 .



4. Vertex algebras/operators

The geometric theory of vertex algebras has been constructed by
Beilinson-Drinfeld as chiral algebras. I will only mention some
elementary relations to the above symbol pairing, i.e., the duality of
KT and K s

T−1 .
4.1. Heisenberg central extensions A split torus T is of the form
L⊗Gm for the lattice L = X∗(T ) of cocharacters of T . Then the loop
group T ((z)) is L⊗Gm((z)). A quadratic form κ : L×L → Z on the
lattice combines with the Contou-Carrere symbol to give a pairing

{, }κ : T ((z))×T ((z)) → Gm, {λ⊗f , µ⊗g}κ
def
= {f , g}κ(λ,µ).

A κ-Heisenberg extension is a central extension

0 → Gm → Tκ → T (((z)) → 0

such that the corresponding commutator pairing
T ((z))×T ((z)) → Gm is {, }κ. This Tκ is unique up to isomorphism
(which is not unique).



These correspond to a vertex lattice algebras V so that V is Morita
equivalent to the kernel of the pairing.
4.2 Vertex operators The notion of vertex operators is essentially
equivalent to vertex algebras. Vertex operators appear in various places
in math/physics. They are usually written by formulas as generating
series controlling the numerical invariants of some interesting
phenomena.
4.3 Differential geometry of vertex operators [Skirm]. It is in
terms of mapping spaces Map(S,T) of circles S,T. Here, S is thought
of as a geometric space and T as a group. So, Map(S,T) is a called
the loop group LT of the group T.
Now, a kink or blip at s ∈ S is a map φs : S → T which has constant
value 1 ∈ T outside s and at s it quickly runs once around the circle T

in the positive direction.
[This is actually a distributional map, a limit of approximations φε that
do the run on an interval of size ε around s.]



The vertex operator Ψs at s lies in the central extension T̂ of the loop
group LT which is defined by the symbol pairing.
(This is the Heisenberg extension Tκ where κ is the multiplication on
the lattice L = Z). Ψs is the normal ordering lift : φs : of the blip
φs ∈ Map(S,T) to the central extension
Precisely, Ψs is the normal ordering lift : φs : of the kink
φs ∈ Map(S,T) to the central extension. So, the map T̂ → LT takes
: Ψs : to the kink φs .



4.4.Calculation in a presence of a cohomology class
This happens frequently in physics (normal ordering, disorder operators,
...). The idea is that the relevant calculation ihappens on a space X
above X which is a geometric realization of the class c . The method is
to choose a trivialization of c over some open large U. This reduces
the calculation on the restriction X|U to a calculation on U, plus some
“rules” that deal with non-naturality of the trivialization and with its
singularity on the boundary X − U.
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4.5 Normal ordering lift Here the relevant cohomology class appears
as the extension Tκ of the loop group LT. The extension splits
canonically on the subgroups L± of positive and negative loops (in
polynomial loops these subgroups correspond to the above KT , K s

T−1).

So, we can regard L±T as subgroups of T̂.
The multiplication gives an isomorphism L+×L− ∼= L0T onto the
connected component of LT. So, one can write f ∈ L0T uniquely as
f = f+f− with f± ∈ L± and define the normal ordering lift of f as the
product

: f :
def
= f+·T̂f−

in the extension.
The “normal ordering” refers to the necessity to make a choice “+
before −”. This lack of naturality is accounted by the rule that f+·T̂f−
and f−·T̂f+ differ by the commutator which is the symbol {f+, f−}.
Remark. An analytic way to pass to a central extension is that to
normalization the blip φs to Ψs = φs/{(φs)+, (φs)−} where the
correction factor is again the symbol pairing.



4.6 Quasimaps One can see that when one translates this picture of a
kink into algebraic geometry one gets a quasimap from P

1 to P
1

z(z − 1)

z − 1
.

These quasimaps are Drinfeld’s compactification of maps Map(P1,P1)
to Map(P1,P1) where P1 is a stack compactification C

2/Gm of
P
1 = (C2 − 0)/Gm.

The above formula is of course symbolic – one can not cancel a factor.
The meaning is the limit in quasimaps of maps z(z − 1)/(z − λ).
Quasimaps are enormously useful in geometric representation theory
but I have not connected this with vertex operators.



5. My motivation

A lattice vertex algebra arises from a torus T , a quadratic form κ and
some infinitesimal geometry.
The Kac-Segal paper lifted this to an observation that affine Lie
algebras arise effectively (i.e., not just combinatorially) in the same way.
I expect to globalize this to

1 reductive groups G and their generalizations the Kac-Moody
groups corresponding to quivers;

2 to the cohomology moduli of such groups such as BunG (C ) and
G(G ).


