Cosets of the large N = 4 superconformal algebra and the diagonal coset of \mathfrak{sl}_2

Andrew Linshaw

University of Denver

Joint work with Thomas Creutzig and Boris Feigin

Ex: Affine vertex algebra $V^k(D(2, 1; \alpha))$ and its orbifolds, quotients, Hamiltonian reductions.

This includes the large N= 4 superconformal vertex algebra $V^{k,lpha}_{N=4}.$

It is the minimal W-algebra of $D(2, 1; \alpha)$ (Kac, Wakimoto, 2004).

Ex: Diagonal cosets.

Ex: Universal \mathcal{W}_{∞} -algebras of types $\mathcal{W}(2,3,4,\dots)$ and $\mathcal{W}(2,4,6,\dots)$

Ex: More exotic universal algebras. One example has type $\mathcal{W}(2,3,4^2,5^2,6^4,7^4,8^7,\ldots)$, and at least 3 parameters.

Ex: Affine vertex algebra $V^k(D(2, 1; \alpha))$ and its orbifolds, quotients, Hamiltonian reductions.

This includes the large N = 4 superconformal vertex algebra $V_{N=4}^{k,\alpha}$.

It is the minimal W-algebra of $D(2, 1; \alpha)$ (Kac, Wakimoto, 2004).

Ex: Diagonal cosets.

Ex: Universal \mathcal{W}_{∞} -algebras of types $\mathcal{W}(2,3,4,\dots)$ and $\mathcal{W}(2,4,6,\dots)$

Ex: More exotic universal algebras. One example has type $\mathcal{W}(2,3,4^2,5^2,6^4,7^4,8^7,\ldots)$, and at least 3 parameters.

(日) (同) (三) (三) (三) (○) (○)

Ex: Affine vertex algebra $V^k(D(2, 1; \alpha))$ and its orbifolds, quotients, Hamiltonian reductions.

This includes the large N = 4 superconformal vertex algebra $V_{N=4}^{k,\alpha}$.

It is the minimal W-algebra of $D(2,1;\alpha)$ (Kac, Wakimoto, 2004).

Ex: Diagonal cosets.

Ex: Universal \mathcal{W}_{∞} -algebras of types $\mathcal{W}(2,3,4,\dots)$ and $\mathcal{W}(2,4,6,\dots)$

Ex: More exotic universal algebras. One example has type $\mathcal{W}(2,3,4^2,5^2,6^4,7^4,8^7,\ldots)$, and at least 3 parameters.

Ex: Affine vertex algebra $V^k(D(2,1;\alpha))$ and its orbifolds, quotients, Hamiltonian reductions.

This includes the large N = 4 superconformal vertex algebra $V_{N=4}^{k,\alpha}$.

It is the minimal W-algebra of $D(2, 1; \alpha)$ (Kac, Wakimoto, 2004).

Ex: Diagonal cosets.

Ex: Universal \mathcal{W}_{∞} -algebras of types $\mathcal{W}(2,3,4,\dots)$ and $\mathcal{W}(2,4,6,\dots)$

Ex: More exotic universal algebras. One example has type $\mathcal{W}(2,3,4^2,5^2,6^4,7^4,8^7,\ldots)$, and at least 3 parameters.

Ex: Affine vertex algebra $V^k(D(2, 1; \alpha))$ and its orbifolds, quotients, Hamiltonian reductions.

This includes the large N = 4 superconformal vertex algebra $V_{N=4}^{k,\alpha}$.

It is the minimal W-algebra of $D(2, 1; \alpha)$ (Kac, Wakimoto, 2004).

Ex: Diagonal cosets.

Ex: Universal $\mathcal{W}_\infty\text{-algebras}$ of types $\mathcal{W}(2,3,4,\dots)$ and $\mathcal{W}(2,4,6,\dots)$

Ex: More exotic universal algebras. One example has type $\mathcal{W}(2,3,4^2,5^2,6^4,7^4,8^7,\ldots)$, and at least 3 parameters.

Ex: Affine vertex algebra $V^k(D(2, 1; \alpha))$ and its orbifolds, quotients, Hamiltonian reductions.

This includes the large N = 4 superconformal vertex algebra $V_{N=4}^{k,\alpha}$.

It is the minimal W-algebra of $D(2, 1; \alpha)$ (Kac, Wakimoto, 2004).

Ex: Diagonal cosets.

Ex: Universal \mathcal{W}_{∞} -algebras of types $\mathcal{W}(2,3,4,\dots)$ and $\mathcal{W}(2,4,6,\dots)$

Ex: More exotic universal algebras. One example has type $\mathcal{W}(2,3,4^2,5^2,6^4,7^4,8^7,\ldots)$, and at least 3 parameters.

${\mathfrak g}$ a simple, finite-dimensional Lie algebra over ${\mathbb C}.$

 $V^k(\mathfrak{g})$ universal affine vertex algebra at level k.

Regard k as a **formal parameter**, so $V^k(\mathfrak{g})$ is defined over the ring $\mathbb{C}[k]$.

Given formal parameters k_1, k_2 , we have diagonal embedding

 $V^{k_1+k_2}(\mathfrak{g}) \hookrightarrow V^{k_1}(\mathfrak{g}) \otimes V^{k_2}(\mathfrak{g}), \qquad \mathsf{a}(z) \mapsto \mathsf{a}(z) \otimes 1 + 1 \otimes \mathsf{a}(z).$

Diagonal coset

$$\mathcal{C}^{k_1,k_2}(\mathfrak{g}) = \operatorname{Com}(V^{k_1+k_2}(\mathfrak{g}), V^{k_1}(\mathfrak{g}) \otimes V^{k_2}(\mathfrak{g}))$$

is a two-parameter vertex algebra.

${\mathfrak g}$ a simple, finite-dimensional Lie algebra over ${\mathbb C}.$

 $V^k(\mathfrak{g})$ universal affine vertex algebra at level k.

Regard k as a **formal parameter**, so $V^k(\mathfrak{g})$ is defined over the ring $\mathbb{C}[k]$.

Given formal parameters k_1, k_2 , we have diagonal embedding

 $V^{k_1+k_2}(\mathfrak{g}) \hookrightarrow V^{k_1}(\mathfrak{g}) \otimes V^{k_2}(\mathfrak{g}), \qquad \mathsf{a}(z) \mapsto \mathsf{a}(z) \otimes 1 + 1 \otimes \mathsf{a}(z).$

Diagonal coset

$$\mathcal{C}^{k_1,k_2}(\mathfrak{g}) = \operatorname{Com}(V^{k_1+k_2}(\mathfrak{g}), V^{k_1}(\mathfrak{g}) \otimes V^{k_2}(\mathfrak{g}))$$

is a two-parameter vertex algebra.

 ${\mathfrak g}$ a simple, finite-dimensional Lie algebra over ${\mathbb C}.$

 $V^k(\mathfrak{g})$ universal affine vertex algebra at level k.

Regard k as a **formal parameter**, so $V^k(\mathfrak{g})$ is defined over the ring $\mathbb{C}[k]$.

Given formal parameters k_1, k_2 , we have diagonal embedding

 $V^{k_1+k_2}(\mathfrak{g}) \hookrightarrow V^{k_1}(\mathfrak{g}) \otimes V^{k_2}(\mathfrak{g}), \qquad \mathsf{a}(z) \mapsto \mathsf{a}(z) \otimes 1 + 1 \otimes \mathsf{a}(z).$

Diagonal coset

$$\mathcal{C}^{k_1,k_2}(\mathfrak{g}) = \operatorname{Com}(V^{k_1+k_2}(\mathfrak{g}), V^{k_1}(\mathfrak{g}) \otimes V^{k_2}(\mathfrak{g}))$$

is a two-parameter vertex algebra.

 ${\mathfrak g}$ a simple, finite-dimensional Lie algebra over ${\mathbb C}.$

 $V^k(\mathfrak{g})$ universal affine vertex algebra at level k.

Regard k as a **formal parameter**, so $V^{k}(\mathfrak{g})$ is defined over the ring $\mathbb{C}[k]$.

Given formal parameters k_1, k_2 , we have diagonal embedding

$$V^{k_1+k_2}(\mathfrak{g}) \hookrightarrow V^{k_1}(\mathfrak{g}) \otimes V^{k_2}(\mathfrak{g}), \qquad \mathsf{a}(z) \mapsto \mathsf{a}(z) \otimes 1 + 1 \otimes \mathsf{a}(z).$$

Diagonal coset

$$\mathcal{C}^{k_1,k_2}(\mathfrak{g}) = \operatorname{Com}(V^{k_1+k_2}(\mathfrak{g}), V^{k_1}(\mathfrak{g}) \otimes V^{k_2}(\mathfrak{g}))$$

is a two-parameter vertex algebra.

 ${\mathfrak g}$ a simple, finite-dimensional Lie algebra over ${\mathbb C}.$

 $V^k(\mathfrak{g})$ universal affine vertex algebra at level k.

Regard k as a **formal parameter**, so $V^k(\mathfrak{g})$ is defined over the ring $\mathbb{C}[k]$.

Given formal parameters k_1, k_2 , we have diagonal embedding

$$V^{k_1+k_2}(\mathfrak{g}) \hookrightarrow V^{k_1}(\mathfrak{g}) \otimes V^{k_2}(\mathfrak{g}), \qquad \mathsf{a}(z) \mapsto \mathsf{a}(z) \otimes 1 + 1 \otimes \mathsf{a}(z).$$

Diagonal coset

$$\mathcal{C}^{k_1,k_2}(\mathfrak{g}) = \mathsf{Com}(V^{k_1+k_2}(\mathfrak{g}), \ V^{k_1}(\mathfrak{g}) \otimes V^{k_2}(\mathfrak{g}))$$

is a two-parameter vertex algebra.

 ${\mathfrak g}$ a simple, finite-dimensional Lie algebra over ${\mathbb C}.$

 $V^k(\mathfrak{g})$ universal affine vertex algebra at level k.

Regard k as a **formal parameter**, so $V^k(\mathfrak{g})$ is defined over the ring $\mathbb{C}[k]$.

Given formal parameters k_1, k_2 , we have diagonal embedding

$$V^{k_1+k_2}(\mathfrak{g}) \hookrightarrow V^{k_1}(\mathfrak{g}) \otimes V^{k_2}(\mathfrak{g}), \qquad \mathsf{a}(z) \mapsto \mathsf{a}(z) \otimes 1 + 1 \otimes \mathsf{a}(z).$$

Diagonal coset

$$\mathcal{C}^{k_1,k_2}(\mathfrak{g})=\mathsf{Com}(V^{k_1+k_2}(\mathfrak{g}),\ V^{k_1}(\mathfrak{g})\otimes V^{k_2}(\mathfrak{g}))$$

is a two-parameter vertex algebra.

Thm: As a two-parameter VOA, $C^{k_1,k_2} = C^{k_1,k_2}(\mathfrak{sl}_2)$ is of type $\mathcal{W}(2,4,6,6,8,8,9,10,10,12)$. Equivalently this holds for generic values of k_1, k_2 .

First stated without proof by Blumenhagen, Eholzer, Honecker, Hornfeck, Hübel, 1995.

Step 1: For k_1 fixed, rescaling generators of $V^{k_2}(\mathfrak{sl}_2)$ by $\frac{1}{\sqrt{k_2}}$, $\lim_{k_1,k_2} C^{k_1,k_2} \simeq V^{k_1}(\mathfrak{sl}_2)^{SL_2}$

 $\lim_{k_2\to\infty}C^{k_1,k_2}\cong V^{k_1}(\mathfrak{sl}_2)^{\mathsf{SL}_2}.$

A strong generating set for $V^{k_1}(\mathfrak{sl}_2)^{SL_2}$ will give rise to a strong generating set for C^{k_1,k_2} for generic k_2 (Creutzig, L., 2014).

Step 2: Rescaling the generators of $V^{k_1}(\mathfrak{sl}_2)$ by $\frac{1}{\sqrt{k_1}}$, we have $\lim_{k_1 \to \infty} V^{k_1}(\mathfrak{sl}_2)^{\mathsf{SL}_2} \cong \mathcal{H}(3)^{\mathsf{SL}_2},$

Thm: As a two-parameter VOA, $C^{k_1,k_2} = C^{k_1,k_2}(\mathfrak{sl}_2)$ is of type $\mathcal{W}(2,4,6,6,8,8,9,10,10,12)$. Equivalently this holds for generic values of k_1, k_2 .

First stated without proof by Blumenhagen, Eholzer, Honecker, Hornfeck, Hübel, 1995.

Step 1: For k_1 fixed, rescaling generators of $V^{k_2}(\mathfrak{sl}_2)$ by $\frac{1}{\sqrt{k_2}}$, $\lim_{k_2 \to \infty} C^{k_1,k_2} \cong V^{k_1}(\mathfrak{sl}_2)^{\mathsf{SL}_2}.$

A strong generating set for $V^{k_1}(\mathfrak{sl}_2)^{SL_2}$ will give rise to a strong generating set for C^{k_1,k_2} for generic k_2 (Creutzig, L., 2014).

Step 2: Rescaling the generators of $V^{k_1}(\mathfrak{sl}_2)$ by $\frac{1}{\sqrt{k_1}}$, we have $\lim_{k_1 \to \infty} V^{k_1}(\mathfrak{sl}_2)^{\mathsf{SL}_2} \cong \mathcal{H}(3)^{\mathsf{SL}_2},$

Thm: As a two-parameter VOA, $C^{k_1,k_2} = C^{k_1,k_2}(\mathfrak{sl}_2)$ is of type $\mathcal{W}(2,4,6,6,8,8,9,10,10,12)$. Equivalently this holds for generic values of k_1, k_2 .

First stated without proof by Blumenhagen, Eholzer, Honecker, Hornfeck, Hübel, 1995.

Step 1: For k_1 fixed, rescaling generators of $V^{k_2}(\mathfrak{sl}_2)$ by $\frac{1}{\sqrt{k_2}}$, $\lim_{k_2 \to \infty} C^{k_1,k_2} \cong V^{k_1}(\mathfrak{sl}_2)^{\mathsf{SL}_2}.$

A strong generating set for $V^{k_1}(\mathfrak{sl}_2)^{SL_2}$ will give rise to a strong generating set for C^{k_1,k_2} for generic k_2 (Creutzig, L., 2014).

Step 2: Rescaling the generators of $V^{k_1}(\mathfrak{sl}_2)$ by $\frac{1}{\sqrt{k_1}}$, we have $\lim_{k_1 \to \infty} V^{k_1}(\mathfrak{sl}_2)^{\mathsf{SL}_2} \cong \mathcal{H}(3)^{\mathsf{SL}_2},$

Thm: As a two-parameter VOA, $C^{k_1,k_2} = C^{k_1,k_2}(\mathfrak{sl}_2)$ is of type $\mathcal{W}(2,4,6,6,8,8,9,10,10,12)$. Equivalently this holds for generic values of k_1, k_2 .

First stated without proof by Blumenhagen, Eholzer, Honecker, Hornfeck, Hübel, 1995.

Step 1: For k_1 fixed, rescaling generators of $V^{k_2}(\mathfrak{sl}_2)$ by $\frac{1}{\sqrt{k_2}}$, $\lim_{k_2 \to \infty} C^{k_1,k_2} \cong V^{k_1}(\mathfrak{sl}_2)^{\mathsf{SL}_2}.$

A strong generating set for $V^{k_1}(\mathfrak{sl}_2)^{SL_2}$ will give rise to a strong generating set for C^{k_1,k_2} for generic k_2 (Creutzig, L., 2014).

Step 2: Rescaling the generators of $V^{k_1}(\mathfrak{sl}_2)$ by $\frac{1}{\sqrt{k_1}}$, we have $\lim_{k_1 \to \infty} V^{k_1}(\mathfrak{sl}_2)^{\mathsf{SL}_2} \cong \mathcal{H}(3)^{\mathsf{SL}_2},$

where H(3) is the rank 3 Heisenberg algebra. ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥

Thm: As a two-parameter VOA, $C^{k_1,k_2} = C^{k_1,k_2}(\mathfrak{sl}_2)$ is of type $\mathcal{W}(2,4,6,6,8,8,9,10,10,12)$. Equivalently this holds for generic values of k_1, k_2 .

First stated without proof by Blumenhagen, Eholzer, Honecker, Hornfeck, Hübel, 1995.

Step 1: For k_1 fixed, rescaling generators of $V^{k_2}(\mathfrak{sl}_2)$ by $\frac{1}{\sqrt{k_2}}$, $\lim_{k_2 \to \infty} C^{k_1,k_2} \cong V^{k_1}(\mathfrak{sl}_2)^{\mathsf{SL}_2}.$

A strong generating set for $V^{k_1}(\mathfrak{sl}_2)^{\mathsf{SL}_2}$ will give rise to a strong generating set for C^{k_1,k_2} for generic k_2 (Creutzig, L., 2014).

Step 2: Rescaling the generators of $V^{k_1}(\mathfrak{sl}_2)$ by $\frac{1}{\sqrt{k_1}}$, we have $\lim_{k_1 \to \infty} V^{k_1}(\mathfrak{sl}_2)^{\mathsf{SL}_2} \cong \mathcal{H}(3)^{\mathsf{SL}_2},$

where $\mathcal{H}(3)$ is the rank 3 Heisenberg algebra. $\square \to \square \square \square \square \square \square$

Note: Adjoint representation of SL_2 is the same as standard representation of SO_3 .

So we can replace $\mathcal{H}(3)^{SL_2}$ with $\mathcal{H}(3)^{SO_3}$.

Strong generating set for $\mathcal{H}(3)^{SO_3}$ give rise to strong generators for $V^{k_1}(\mathfrak{sl}_2)^{SL_2}$ for generic values of k_1 (Creutzig, L., 2014).

Need to show that $\mathcal{H}(3)^{SO_3}$ is of type $\mathcal{W}(2, 4, 6, 6, 8, 8, 9, 10, 10, 12)$.

Note: Adjoint representation of SL_2 is the same as standard representation of SO_3 .

So we can replace $\mathcal{H}(3)^{SL_2}$ with $\mathcal{H}(3)^{SO_3}$.

Strong generating set for $\mathcal{H}(3)^{SO_3}$ give rise to strong generators for $V^{k_1}(\mathfrak{sl}_2)^{SL_2}$ for generic values of k_1 (Creutzig, L., 2014).

Need to show that $\mathcal{H}(3)^{SO_3}$ is of type $\mathcal{W}(2, 4, 6, 6, 8, 8, 9, 10, 10, 12)$.

Note: Adjoint representation of SL_2 is the same as standard representation of SO_3 .

So we can replace $\mathcal{H}(3)^{SL_2}$ with $\mathcal{H}(3)^{SO_3}$.

Strong generating set for $\mathcal{H}(3)^{SO_3}$ give rise to strong generators for $V^{k_1}(\mathfrak{sl}_2)^{SL_2}$ for generic values of k_1 (Creutzig, L., 2014).

Need to show that $\mathcal{H}(3)^{\mathrm{SO}_3}$ is of type $\mathcal{W}(2,4,6,6,8,8,8,9,10,10,12).$

Note: Adjoint representation of SL_2 is the same as standard representation of SO_3 .

So we can replace $\mathcal{H}(3)^{SL_2}$ with $\mathcal{H}(3)^{SO_3}$.

Strong generating set for $\mathcal{H}(3)^{SO_3}$ give rise to strong generators for $V^{k_1}(\mathfrak{sl}_2)^{SL_2}$ for generic values of k_1 (Creutzig, L., 2014).

Need to show that $\mathcal{H}(3)^{SO_3}$ is of type $\mathcal{W}(2, 4, 6, 6, 8, 8, 9, 10, 10, 12)$.

Note: Adjoint representation of SL_2 is the same as standard representation of SO_3 .

So we can replace $\mathcal{H}(3)^{SL_2}$ with $\mathcal{H}(3)^{SO_3}$.

Strong generating set for $\mathcal{H}(3)^{SO_3}$ give rise to strong generators for $V^{k_1}(\mathfrak{sl}_2)^{SL_2}$ for generic values of k_1 (Creutzig, L., 2014).

Need to show that $\mathcal{H}(3)^{SO_3}$ is of type $\mathcal{W}(2, 4, 6, 6, 8, 8, 9, 10, 10, 12)$.

Thm: (Weyl) For $n \ge 0$, let V_n be a copy of the standard representation \mathbb{C}^3 of SO₃, with orthonormal basis $\{a_n^1, a_n^2, a_n^3\}$.

Then $(\text{Sym} \bigoplus_{n=0}^{\infty} V_n)^{\text{SO}_3}$ is generated by

$$q_{ij} = a_i^1 a_j^1 + a_i^2 a_j^2 + a_i^3 a_k^3, \qquad i, j \ge 0,$$
(1)
$$c_{klm} = \begin{vmatrix} a_k^1 & a_k^2 & a_k^2 \\ a_l^1 & a_l^2 & a_l^3 \\ a_m^1 & a_m^2 & a_m^3 \end{vmatrix}, \qquad 0 \le k < l < m.$$
(2)

The ideal of relations among the variables *q_{ij}* and *c_{klm}* is generated by polynomials of the following two types:

Thm: (Weyl) For $n \ge 0$, let V_n be a copy of the standard representation \mathbb{C}^3 of SO₃, with orthonormal basis $\{a_n^1, a_n^2, a_n^3\}$.

Then $(\text{Sym} \bigoplus_{n=0}^{\infty} V_n)^{SO_3}$ is generated by

$$q_{ij} = a_i^1 a_j^1 + a_i^2 a_j^2 + a_i^3 a_k^3, \qquad i, j \ge 0, \tag{1}$$

$$c_{klm} = \begin{vmatrix} a_k^1 & a_k^2 & a_k^2 \\ a_l^1 & a_l^2 & a_l^3 \\ a_m^1 & a_m^2 & a_m^3 \end{vmatrix}, \qquad 0 \le k < l < m.$$
(2)

The ideal of relations among the variables q_{ij} and c_{klm} is generated by polynomials of the following two types:

$$\begin{array}{c|c} q_{ij}c_{klm} - q_{kj}c_{ilm} + q_{lj}c_{kim} - q_{mj}c_{kli}, & (3) \\ c_{ijk}c_{lmn} - \begin{vmatrix} q_{il} & q_{im} & q_{in} \\ q_{jl} & q_{jm} & q_{jn} \\ q_{kl} & q_{km} & q_{kn} \end{vmatrix} . \quad (4)$$

- >

Step 3: We have linear isomorphisms $\mathcal{H}(3)^{SO_3} \cong \operatorname{gr}(\mathcal{H}(3)^{SO_3}) \cong \operatorname{gr}(\mathcal{H}(3))^{SO_3} \cong (\operatorname{Sym} \bigoplus_{j \ge 0} V_j)^{SO_3},$

and isomorphisms of differential graded rings

$$\operatorname{gr}(\mathcal{H}(3)^{\operatorname{SO}_3}) \cong (\operatorname{Sym} \bigoplus_{j \ge 0} V_j)^{\operatorname{SO}_3}$$

Generating set $\{q_{ij}, c_{klm}\}$ for $(\text{Sym} \bigoplus_{j \ge 0} V_j)^{\text{SO}_3}$ corresponds to a strong generating set $\{Q_{ij}, C_{klm}\}$ for $\mathcal{H}(3)^{\text{SO}_3}$, where

 $Q_{i,j} = :\partial^{i}\alpha^{1}\partial^{j}\alpha^{1} + :\partial^{i}\alpha^{2}\partial^{j}\alpha^{2} : + :\partial^{i}\alpha^{3}\partial^{j}\alpha^{3} :,$ $C_{klm} = :\partial^{k}\alpha^{1}\partial^{\prime}\alpha^{2}\partial^{m}\alpha^{3} : - :\partial^{k}\alpha^{1}\partial^{m}\alpha^{2}\partial^{\prime}\alpha^{3} : - :\partial^{\prime}\alpha^{1}\partial^{k}\alpha^{2}\partial^{m}\alpha^{3} :$ $+ :\partial^{\ell}\alpha^{1}\partial^{m}\alpha^{2}\partial^{k}\alpha^{3} : + :\partial^{m}\alpha^{1}\partial^{k}\alpha^{2}\partial^{\prime}\alpha^{3} : - :\partial^{m}\alpha^{1}\partial^{\prime}\alpha^{2}\partial^{k}\alpha^{3} :.$

Step 3: We have linear isomorphisms $\mathcal{H}(3)^{SO_3} \cong \operatorname{gr}(\mathcal{H}(3)^{SO_3}) \cong \operatorname{gr}(\mathcal{H}(3))^{SO_3} \cong (\operatorname{Sym} \bigoplus_{j \ge 0} V_j)^{SO_3},$

and isomorphisms of differential graded rings

$$\operatorname{\mathsf{gr}}(\mathcal{H}(3)^{\operatorname{\mathsf{SO}}_3})\cong (\operatorname{\mathsf{Sym}}\bigoplus_{j\geq 0}V_j)^{\operatorname{\mathsf{SO}}_3}$$

Generating set $\{q_{ij}, c_{klm}\}$ for $(\text{Sym} \bigoplus_{j \ge 0} V_j)^{\text{SO}_3}$ corresponds to a strong generating set $\{Q_{ij}, C_{klm}\}$ for $\mathcal{H}(3)^{\text{SO}_3}$, where

$$\begin{aligned} Q_{i,j} &=: \partial^{i} \alpha^{1} \partial^{j} \alpha^{1} + : \partial^{i} \alpha^{2} \partial^{j} \alpha^{2} : + : \partial^{i} \alpha^{3} \partial^{j} \alpha^{3} :, \\ C_{klm} &=: \partial^{k} \alpha^{1} \partial^{l} \alpha^{2} \partial^{m} \alpha^{3} : - : \partial^{k} \alpha^{1} \partial^{m} \alpha^{2} \partial^{l} \alpha^{3} : - : \partial^{l} \alpha^{1} \partial^{k} \alpha^{2} \partial^{m} \alpha^{3} : \\ &+: \partial^{l} \alpha^{1} \partial^{m} \alpha^{2} \partial^{k} \alpha^{3} : + : \partial^{m} \alpha^{1} \partial^{k} \alpha^{2} \partial^{l} \alpha^{3} : - : \partial^{m} \alpha^{1} \partial^{l} \alpha^{2} \partial^{k} \alpha^{3} :. \end{aligned}$$

Step 3: We have linear isomorphisms $\mathcal{H}(3)^{SO_3} \cong \operatorname{gr}(\mathcal{H}(3)^{SO_3}) \cong \operatorname{gr}(\mathcal{H}(3))^{SO_3} \cong (\operatorname{Sym} \bigoplus_{j \ge 0} V_j)^{SO_3},$

and isomorphisms of differential graded rings

$$\operatorname{\mathsf{gr}}(\mathcal{H}(3)^{\operatorname{\mathsf{SO}}_3})\cong (\operatorname{\mathsf{Sym}}\bigoplus_{j\geq 0}V_j)^{\operatorname{\mathsf{SO}}_3}$$

Generating set $\{q_{ij}, c_{klm}\}$ for $(\text{Sym} \bigoplus_{j \ge 0} V_j)^{\text{SO}_3}$ corresponds to a strong generating set $\{Q_{ij}, C_{klm}\}$ for $\mathcal{H}(3)^{\text{SO}_3}$, where

$$\begin{aligned} Q_{i,j} &=: \partial^{i} \alpha^{1} \partial^{j} \alpha^{1} + : \partial^{i} \alpha^{2} \partial^{j} \alpha^{2} : + : \partial^{i} \alpha^{3} \partial^{j} \alpha^{3} :, \\ C_{klm} &=: \partial^{k} \alpha^{1} \partial^{l} \alpha^{2} \partial^{m} \alpha^{3} : - : \partial^{k} \alpha^{1} \partial^{m} \alpha^{2} \partial^{l} \alpha^{3} : - : \partial^{l} \alpha^{1} \partial^{k} \alpha^{2} \partial^{m} \alpha^{3} : \\ &+: \partial^{l} \alpha^{1} \partial^{m} \alpha^{2} \partial^{k} \alpha^{3} : + : \partial^{m} \alpha^{1} \partial^{k} \alpha^{2} \partial^{l} \alpha^{3} : - : \partial^{m} \alpha^{1} \partial^{l} \alpha^{2} \partial^{k} \alpha^{3} :. \end{aligned}$$

Note: Q_{ij} has weight i + j + 2 and C_{klm} has weight k + l + m + 3.

As a $\mathcal{H}(3)^{O_3}$ -module, $\mathcal{H}(3)^{SO_3} \cong M_0 \oplus M_1$, where M_0, M_1 are irreducible $\mathcal{H}(3)^{O_3}$ -modules (Dong, Li, Mason, 1998)

 $M_0 \cong \mathcal{H}(3)^{O_3}$, which has lowest-weight vector 1.

 M_1 has lowest-weight vector C_{012} and contains all cubics C_{klm} .

 $\mathcal{H}(3)^{O_3}$ generated by $Q_{0,2}$, so $\mathcal{H}(3)^{SO_3}$ generated by $\{Q_{0,2}, C_{012}\}$.

One checks that the following set closes under OPE:

$$\{C_{01j} | j = 2, 4, 5, 6, 8\} \cup \{Q_{0,2k} | k = 0, 1, 2, 3, 4\}.$$

It follows that this set strongly generates $\mathcal{H}(3)^{\mathrm{SO}_3}$.

Note: Q_{ij} has weight i + j + 2 and C_{klm} has weight k + l + m + 3.

As a $\mathcal{H}(3)^{O_3}$ -module, $\mathcal{H}(3)^{SO_3} \cong M_0 \oplus M_1$, where M_0, M_1 are irreducible $\mathcal{H}(3)^{O_3}$ -modules (Dong, Li, Mason, 1998)

 $M_0 \cong \mathcal{H}(3)^{O_3}$, which has lowest-weight vector 1.

 M_1 has lowest-weight vector C_{012} and contains all cubics C_{klm} .

 $\mathcal{H}(3)^{O_3}$ generated by $Q_{0,2}$, so $\mathcal{H}(3)^{SO_3}$ generated by $\{Q_{0,2}, C_{012}\}$.

One checks that the following set closes under OPE:

$$\{C_{01j} | j = 2, 4, 5, 6, 8\} \cup \{Q_{0,2k} | k = 0, 1, 2, 3, 4\}.$$

It follows that this set strongly generates $\mathcal{H}(3)^{\mathrm{SO}_3}$.

Note: Q_{ij} has weight i + j + 2 and C_{klm} has weight k + l + m + 3.

As a $\mathcal{H}(3)^{O_3}$ -module, $\mathcal{H}(3)^{SO_3} \cong M_0 \oplus M_1$, where M_0, M_1 are irreducible $\mathcal{H}(3)^{O_3}$ -modules (Dong, Li, Mason, 1998)

 $M_0 \cong \mathcal{H}(3)^{O_3}$, which has lowest-weight vector 1.

 M_1 has lowest-weight vector C_{012} and contains all cubics C_{klm} . $\mathcal{H}(3)^{O_3}$ generated by $Q_{0,2}$, so $\mathcal{H}(3)^{SO_3}$ generated by $\{Q_{0,2}, C_{012}\}$.

One checks that the following set closes under OPE:

$$\{C_{01j} | j = 2, 4, 5, 6, 8\} \cup \{Q_{0,2k} | k = 0, 1, 2, 3, 4\}.$$

It follows that this set strongly generates $\mathcal{H}(3)^{\mathrm{SO}_3}$.

Note: Q_{ij} has weight i + j + 2 and C_{klm} has weight k + l + m + 3.

As a $\mathcal{H}(3)^{O_3}$ -module, $\mathcal{H}(3)^{SO_3} \cong M_0 \oplus M_1$, where M_0, M_1 are irreducible $\mathcal{H}(3)^{O_3}$ -modules (Dong, Li, Mason, 1998)

 $M_0 \cong \mathcal{H}(3)^{O_3}$, which has lowest-weight vector 1.

 M_1 has lowest-weight vector C_{012} and contains all cubics C_{klm} . $\mathcal{H}(3)^{O_3}$ generated by $Q_{0,2}$, so $\mathcal{H}(3)^{SO_3}$ generated by $\{Q_{0,2}, C_{012}\}$.

 $\{C_{01j} | j = 2, 4, 5, 6, 8\} \cup \{Q_{0,2k} | k = 0, 1, 2, 3, 4\}.$

It follows that this set strongly generates $\mathcal{H}(3)^{\mathsf{SO}_3}.$

Note: Q_{ij} has weight i + j + 2 and C_{klm} has weight k + l + m + 3.

As a $\mathcal{H}(3)^{O_3}$ -module, $\mathcal{H}(3)^{SO_3} \cong M_0 \oplus M_1$, where M_0, M_1 are irreducible $\mathcal{H}(3)^{O_3}$ -modules (Dong, Li, Mason, 1998)

 $M_0 \cong \mathcal{H}(3)^{O_3}$, which has lowest-weight vector 1.

 M_1 has lowest-weight vector C_{012} and contains all cubics C_{klm} .

 $\mathcal{H}(3)^{O_3}$ generated by $Q_{0,2}$, so $\mathcal{H}(3)^{SO_3}$ generated by $\{Q_{0,2}, C_{012}\}$.

One checks that the following set closes under OPE:

$$\{C_{01j} | j = 2, 4, 5, 6, 8\} \cup \{Q_{0,2k} | k = 0, 1, 2, 3, 4\}.$$

It follows that this set strongly generates $\mathcal{H}(3)^{\mathrm{SO}_3}$.

Note: Q_{ij} has weight i + j + 2 and C_{klm} has weight k + l + m + 3.

As a $\mathcal{H}(3)^{O_3}$ -module, $\mathcal{H}(3)^{SO_3} \cong M_0 \oplus M_1$, where M_0, M_1 are irreducible $\mathcal{H}(3)^{O_3}$ -modules (Dong, Li, Mason, 1998)

 $M_0 \cong \mathcal{H}(3)^{O_3}$, which has lowest-weight vector 1.

 M_1 has lowest-weight vector C_{012} and contains all cubics C_{klm} .

 $\mathcal{H}(3)^{O_3}$ generated by $Q_{0,2}$, so $\mathcal{H}(3)^{SO_3}$ generated by $\{Q_{0,2}, C_{012}\}$.

One checks that the following set closes under OPE:

$$\{C_{01j} | j = 2, 4, 5, 6, 8\} \cup \{Q_{0,2k} | k = 0, 1, 2, 3, 4\}.$$

It follows that this set strongly generates $\mathcal{H}(3)^{SO_3}$.

Note: Q_{ij} has weight i + j + 2 and C_{klm} has weight k + l + m + 3.

As a $\mathcal{H}(3)^{O_3}$ -module, $\mathcal{H}(3)^{SO_3} \cong M_0 \oplus M_1$, where M_0, M_1 are irreducible $\mathcal{H}(3)^{O_3}$ -modules (Dong, Li, Mason, 1998)

 $M_0 \cong \mathcal{H}(3)^{O_3}$, which has lowest-weight vector 1.

 M_1 has lowest-weight vector C_{012} and contains all cubics C_{klm} .

 $\mathcal{H}(3)^{O_3}$ generated by $Q_{0,2}$, so $\mathcal{H}(3)^{SO_3}$ generated by $\{Q_{0,2}, C_{012}\}$.

One checks that the following set closes under OPE:

$$\{C_{01j} | j = 2, 4, 5, 6, 8\} \cup \{Q_{0,2k} | k = 0, 1, 2, 3, 4\}.$$

It follows that this set strongly generates $\mathcal{H}(3)^{SO_3}$.

Minimality follows from Weyl's second fundamental theorem . . .

8. Large N = 4 superconformal algebra $V_{N=4}^{k,\alpha}$

Weight 1: $\{e, f, h, e', f', h'\}$ generate $V^{\ell}(\mathfrak{sl}_2) \otimes V^{\ell'}(\mathfrak{sl}_2)$ where $\ell = -\frac{\alpha+1}{\alpha}k - 1$ and $\ell' = -(\alpha+1)k - 1$, where $\alpha \neq 0, -1$.

Weight 2: Virasoro field L of central charge c = -6k - 3.

Weight $\frac{3}{2}$: Odd fields $G^{\pm\pm}$ which transform as $\mathbb{C}^2 \otimes \mathbb{C}^2$ under $\mathfrak{sl}_2 \oplus \mathfrak{sl}_2$, and satisfy complicated OPE relations. For example,

$$G^{++}(z)G^{--}(w) \sim -2\left(k(k+1) + \frac{\alpha}{(\alpha+1)^2}\right)(z-w)^{-3} \\ + \left(\frac{\alpha+k+\alpha k}{(1+a)^2}h' + \frac{\alpha(1+k+\alpha k)}{(1+\alpha)^2}h\right)(w)(z-w)^{-2} \\ + \left(kL + \frac{\alpha}{4(1+\alpha)^2}:h'h': + \frac{\alpha}{4(1+\alpha)^2}:hh: -\frac{\alpha}{2(1+\alpha)^2}:hh': + \frac{\alpha}{(1+\alpha)^2}:ef: + \frac{\alpha k}{2(1+\alpha)}\partial h \\ + \frac{k}{2(1+\alpha)}\partial h'\right)(w)(z-w)^{-1}.$$

8. Large N = 4 superconformal algebra $V_{N=4}^{k,\alpha}$

Weight 1:
$$\{e, f, h, e', f', h'\}$$
 generate $V^{\ell}(\mathfrak{sl}_2) \otimes V^{\ell'}(\mathfrak{sl}_2)$ where $\ell = -\frac{\alpha+1}{\alpha}k - 1$ and $\ell' = -(\alpha+1)k - 1$, where $\alpha \neq 0, -1$.

Weight 2: Virasoro field *L* of central charge c = -6k - 3.

Weight $\frac{3}{2}$: Odd fields $G^{\pm\pm}$ which transform as $\mathbb{C}^2 \otimes \mathbb{C}^2$ under $\mathfrak{sl}_2 \oplus \mathfrak{sl}_2$, and satisfy complicated OPE relations. For example,

$$G^{++}(z)G^{--}(w) \sim -2\left(k(k+1) + \frac{\alpha}{(\alpha+1)^2}\right)(z-w)^{-3} \\ + \left(\frac{\alpha+k+\alpha k}{(1+a)^2}h' + \frac{\alpha(1+k+\alpha k)}{(1+\alpha)^2}h\right)(w)(z-w)^{-2} \\ + \left(kL + \frac{\alpha}{4(1+\alpha)^2}:h'h': + \frac{\alpha}{4(1+\alpha)^2}:hh: -\frac{\alpha}{2(1+\alpha)^2}:hh': + \frac{\alpha}{(1+\alpha)^2}:e'f': + \frac{\alpha}{(1+\alpha)^2}:ef: + \frac{\alpha k}{2(1+\alpha)}\partial h \\ + \frac{k}{2(1+\alpha)}\partial h'\right)(w)(z-w)^{-1}.$$

8. Large N = 4 superconformal algebra $V_{N=4}^{k,\alpha}$

Weight 1: $\{e, f, h, e', f', h'\}$ generate $V^{\ell}(\mathfrak{sl}_2) \otimes V^{\ell'}(\mathfrak{sl}_2)$ where $\ell = -\frac{\alpha+1}{\alpha}k - 1$ and $\ell' = -(\alpha+1)k - 1$, where $\alpha \neq 0, -1$.

Weight 2: Virasoro field L of central charge c = -6k - 3.

Weight $\frac{3}{2}$: Odd fields $G^{\pm\pm}$ which transform as $\mathbb{C}^2 \otimes \mathbb{C}^2$ under $\mathfrak{sl}_2 \oplus \mathfrak{sl}_2$, and satisfy complicated OPE relations. For example,

$$G^{++}(z)G^{--}(w) \sim -2\left(k(k+1) + \frac{\alpha}{(\alpha+1)^2}\right)(z-w)^{-3} \\ + \left(\frac{\alpha+k+\alpha k}{(1+\alpha)^2}h' + \frac{\alpha(1+k+\alpha k)}{(1+\alpha)^2}h\right)(w)(z-w)^{-2} \\ + \left(kL + \frac{\alpha}{4(1+\alpha)^2}:h'h': + \frac{\alpha}{4(1+\alpha)^2}:hh: -\frac{\alpha}{2(1+\alpha)^2}:hh': + \frac{\alpha}{(1+\alpha)^2}:ef: + \frac{\alpha k}{2(1+\alpha)}\partial h \\ + \frac{k}{2(1+\alpha)}\partial h'\right)(w)(z-w)^{-1}.$$

Let $D^{k,\alpha} = \operatorname{Com}(V^{\ell}(\mathfrak{sl}_2) \otimes V^{\ell'}(\mathfrak{sl}_2), V^{k,\alpha}_{N=4}).$

Thm: For generic values of k and α , $D^{k,\alpha}$ is of type $\mathcal{W}(2,4,6,6,8,8,9,10,10,12)$.

Step 1: Rescale x, y, h, x', y', h', L by $\frac{1}{\sqrt{k}}$ and rescale $G^{\pm\pm}$ by $\frac{1}{k}$.

Then $V^{k, \alpha}$ admits a well defined limit $k \to \infty$ limit

$$\lim_{k\to\infty} V^{k,\alpha} \cong \mathcal{H}(6)\otimes \mathcal{T}\otimes \mathcal{G}_{\mathsf{odd}}(4).$$

 $\mathcal{H}(6) = \lim_{k \to \infty} V^{\ell}(\mathfrak{sl}_2) \otimes V^{\ell'}(\mathfrak{sl}_2)$ a rank 6 Heisenberg algebra.

 ${\mathcal T}$ has even generator L satisfying $L(z)L(w)\sim (z-w)^{-4}.$

 $\mathcal{G}_{
m odd}(4)$ has odd generators $\phi^i,~i=1,2,3,4,$ satisfying $\phi^i(z)\phi^j(w)\sim \delta_{i,j}(z-w)^{-3}.$

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

Let
$$D^{k,\alpha} = \operatorname{Com}(V^{\ell}(\mathfrak{sl}_2) \otimes V^{\ell'}(\mathfrak{sl}_2), V^{k,\alpha}_{N=4}).$$

Thm: For generic values of *k* and α , $D^{k,\alpha}$ is of type W(2, 4, 6, 6, 8, 8, 9, 10, 10, 12).

Step 1: Rescale x, y, h, x', y', h', L by $\frac{1}{\sqrt{k}}$ and rescale $G^{\pm\pm}$ by $\frac{1}{k}$.

Then $V^{k, \alpha}$ admits a well defined limit $k \to \infty$ limit

$$\lim_{k\to\infty} V^{k,\alpha} \cong \mathcal{H}(6)\otimes \mathcal{T}\otimes \mathcal{G}_{\mathsf{odd}}(4).$$

 $\mathcal{H}(6) = \lim_{k \to \infty} V^{\ell}(\mathfrak{sl}_2) \otimes V^{\ell'}(\mathfrak{sl}_2)$ a rank 6 Heisenberg algebra.

 ${\mathcal T}$ has even generator L satisfying $L(z)L(w)\sim (z-w)^{-4}.$

 $\mathcal{G}_{
m odd}(4)$ has odd generators $\phi^i,~i=1,2,3,4,$ satisfying $\phi^i(z)\phi^j(w)\sim \delta_{i,j}(z-w)^{-3}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Let
$$D^{k,\alpha} = \operatorname{Com}(V^{\ell}(\mathfrak{sl}_2) \otimes V^{\ell'}(\mathfrak{sl}_2), V^{k,\alpha}_{N=4}).$$

Thm: For generic values of k and α , $D^{k,\alpha}$ is of type $\mathcal{W}(2, 4, 6, 6, 8, 8, 9, 10, 10, 12)$.

Step 1: Rescale x, y, h, x', y', h', L by $\frac{1}{\sqrt{k}}$ and rescale $G^{\pm\pm}$ by $\frac{1}{k}$.

Then $V^{k,\alpha}$ admits a well defined limit $k \to \infty$ limit $\lim_{k \to \infty} V^{k,\alpha} \cong \mathcal{H}(6) \otimes \mathcal{T} \otimes \mathcal{G}_{\mathsf{odd}}(4).$

 $\mathcal{H}(6) = \lim_{k \to \infty} V^{\ell}(\mathfrak{sl}_2) \otimes V^{\ell'}(\mathfrak{sl}_2)$ a rank 6 Heisenberg algebra.

 ${\mathcal T}$ has even generator L satisfying $L(z)L(w)\sim (z-w)^{-4}.$

 $\mathcal{G}_{
m odd}(4)$ has odd generators $\phi^i,~i=1,2,3,4,$ satisfying $\phi^i(z)\phi^j(w)\sim \delta_{i,j}(z-w)^{-3}.$

・ロト・西ト・ヨト・ヨー シック

Let
$$D^{k,\alpha} = \operatorname{Com}(V^{\ell}(\mathfrak{sl}_2) \otimes V^{\ell'}(\mathfrak{sl}_2), V^{k,\alpha}_{N=4}).$$

Thm: For generic values of k and α , $D^{k,\alpha}$ is of type $\mathcal{W}(2, 4, 6, 6, 8, 8, 9, 10, 10, 12)$.

Step 1: Rescale x, y, h, x', y', h', L by $\frac{1}{\sqrt{k}}$ and rescale $G^{\pm\pm}$ by $\frac{1}{k}$.

Then $V^{k,\alpha}$ admits a well defined limit $k \to \infty$ limit

$$\lim_{k\to\infty} V^{k,\alpha}\cong \mathcal{H}(6)\otimes \mathcal{T}\otimes \mathcal{G}_{\mathsf{odd}}(4).$$

 $\mathcal{H}(6) = \lim_{k \to \infty} V^{\ell}(\mathfrak{sl}_2) \otimes V^{\ell'}(\mathfrak{sl}_2)$ a rank 6 Heisenberg algebra.

 ${\mathcal T}$ has even generator L satisfying $L(z)L(w)\sim (z-w)^{-4}.$

 $\mathcal{G}_{odd}(4)$ has odd generators ϕ^i , i = 1, 2, 3, 4, satisfying $\phi^i(z)\phi^j(w) \sim \delta_i i (z - w)^{-3}$.

・ロト・西ト・ヨト・ヨト ウヘぐ

Let
$$D^{k,\alpha} = \operatorname{Com}(V^{\ell}(\mathfrak{sl}_2) \otimes V^{\ell'}(\mathfrak{sl}_2), V^{k,\alpha}_{N=4}).$$

Thm: For generic values of k and α , $D^{k,\alpha}$ is of type $\mathcal{W}(2, 4, 6, 6, 8, 8, 9, 10, 10, 12)$.

Step 1: Rescale x, y, h, x', y', h', L by $\frac{1}{\sqrt{k}}$ and rescale $G^{\pm\pm}$ by $\frac{1}{k}$.

Then $V^{k,\alpha}$ admits a well defined limit $k \to \infty$ limit

$$\lim_{k\to\infty} V^{k,\alpha} \cong \mathcal{H}(6)\otimes \mathcal{T}\otimes \mathcal{G}_{\mathsf{odd}}(4).$$

 $\mathcal{H}(6) = \lim_{k \to \infty} V^{\ell}(\mathfrak{sl}_2) \otimes V^{\ell'}(\mathfrak{sl}_2)$ a rank 6 Heisenberg algebra.

 $\mathcal T$ has even generator L satisfying $L(z)L(w) \sim (z-w)^{-4}$.

 $\mathcal{G}_{\sf odd}(4)$ has odd generators $\phi^i,~i=1,2,3,4,$ satisfying $\phi^i(z)\phi^j(w)\sim \delta_{i,j}(z-w)^{-3}.$

・ロト・西ト・ヨト・ヨト ウヘぐ

Let
$$D^{k,\alpha} = \operatorname{Com}(V^{\ell}(\mathfrak{sl}_2) \otimes V^{\ell'}(\mathfrak{sl}_2), V^{k,\alpha}_{N=4}).$$

Thm: For generic values of k and α , $D^{k,\alpha}$ is of type $\mathcal{W}(2, 4, 6, 6, 8, 8, 9, 10, 10, 12)$.

Step 1: Rescale x, y, h, x', y', h', L by $\frac{1}{\sqrt{k}}$ and rescale $G^{\pm\pm}$ by $\frac{1}{k}$.

Then $V^{k,\alpha}$ admits a well defined limit $k \to \infty$ limit

$$\lim_{k\to\infty} V^{k,\alpha} \cong \mathcal{H}(6)\otimes \mathcal{T}\otimes \mathcal{G}_{\mathsf{odd}}(4).$$

 $\mathcal{H}(6) = \lim_{k \to \infty} V^{\ell}(\mathfrak{sl}_2) \otimes V^{\ell'}(\mathfrak{sl}_2)$ a rank 6 Heisenberg algebra.

 ${\mathcal T}$ has even generator L satisfying $L(z)L(w)\sim (z-w)^{-4}.$

 ${\cal G}_{
m odd}(4)$ has odd generators $\phi^i,~i=1,2,3,4,$ satisfying $\phi^i(z)\phi^j(w)\sim \delta_{i,j}(z-w)^{-3}.$

Let
$$D^{k,\alpha} = \operatorname{Com}(V^{\ell}(\mathfrak{sl}_2) \otimes V^{\ell'}(\mathfrak{sl}_2), V^{k,\alpha}_{N=4}).$$

Thm: For generic values of k and α , $D^{k,\alpha}$ is of type $\mathcal{W}(2, 4, 6, 6, 8, 8, 9, 10, 10, 12)$.

Step 1: Rescale x, y, h, x', y', h', L by $\frac{1}{\sqrt{k}}$ and rescale $G^{\pm\pm}$ by $\frac{1}{k}$.

Then $V^{k,\alpha}$ admits a well defined limit $k \to \infty$ limit

$$\lim_{k\to\infty} V^{k,\alpha} \cong \mathcal{H}(6)\otimes \mathcal{T}\otimes \mathcal{G}_{\mathsf{odd}}(4).$$

 $\mathcal{H}(6) = \lim_{k \to \infty} V^{\ell}(\mathfrak{sl}_2) \otimes V^{\ell'}(\mathfrak{sl}_2)$ a rank 6 Heisenberg algebra.

 ${\mathcal T}$ has even generator L satisfying $L(z)L(w)\sim (z-w)^{-4}.$

 $\mathcal{G}_{\sf odd}(4)$ has odd generators ϕ^i , i=1,2,3,4, satisfying $\phi^i(z)\phi^j(w)\sim \delta_{i,j}(z-w)^{-3}.$

Step 2: By a general result of Arakawa, Creutzig, L., Kawasetsu (2017), $\lim_{k \to \infty} D^{k,\alpha} \cong \mathcal{T} \otimes (\mathcal{G}_{odd}(4))^{SL_2 \times SL_2}.$

Action of $SL_2 \times SL_2$ on $\mathbb{C}^2 \otimes \mathbb{C}^2$ is the same as the action of SO₄ on its standard module \mathbb{C}^4 .

We can replace $(\mathcal{G}_{odd}(4))^{SL_2 \times SL_2}$ with $(\mathcal{G}_{odd}(4))^{SO_4}$.

Generator of \mathcal{T} has weight 2 and corresponds to the Virasoro field.

Suffices to prove that $(\mathcal{G}_{odd}(4))^{SO_4}$ is of type $\mathcal{W}(4, 6, 6, 8, 8, 9, 10, 10, 12)$.

Step 2: By a general result of Arakawa, Creutzig, L., Kawasetsu (2017),

$$\lim_{k\to\infty} D^{k,\alpha} \cong \mathcal{T} \otimes (\mathcal{G}_{\mathsf{odd}}(4))^{SL_2 \times SL_2}$$

Action of $SL_2 \times SL_2$ on $\mathbb{C}^2 \otimes \mathbb{C}^2$ is the same as the action of SO₄ on its standard module \mathbb{C}^4 .

We can replace $(\mathcal{G}_{odd}(4))^{SL_2 \times SL_2}$ with $(\mathcal{G}_{odd}(4))^{SO_4}$.

Generator of $\mathcal T$ has weight 2 and corresponds to the Virasoro field.

Suffices to prove that $(\mathcal{G}_{odd}(4))^{SO_4}$ is of type $\mathcal{W}(4, 6, 6, 8, 8, 9, 10, 10, 12)$.

Step 2: By a general result of Arakawa, Creutzig, L., Kawasetsu (2017),

$$\lim_{k\to\infty} D^{k,\alpha} \cong \mathcal{T} \otimes (\mathcal{G}_{\mathsf{odd}}(4))^{\mathsf{SL}_2 \times \mathsf{SL}_2}$$

Action of $SL_2 \times SL_2$ on $\mathbb{C}^2 \otimes \mathbb{C}^2$ is the same as the action of SO₄ on its standard module \mathbb{C}^4 .

We can replace $(\mathcal{G}_{odd}(4))^{SL_2 \times SL_2}$ with $(\mathcal{G}_{odd}(4))^{SO_4}$.

Generator of $\mathcal T$ has weight 2 and corresponds to the Virasoro field.

Suffices to prove that $(\mathcal{G}_{odd}(4))^{SO_4}$ is of type $\mathcal{W}(4, 6, 6, 8, 8, 9, 10, 10, 12)$.

Step 2: By a general result of Arakawa, Creutzig, L., Kawasetsu (2017),

$$\lim_{k\to\infty} D^{k,\alpha}\cong \mathcal{T}\otimes \big(\mathcal{G}_{\mathsf{odd}}(4)\big)^{\mathit{SL}_2\times \mathit{SL}_2}.$$

Action of $SL_2 \times SL_2$ on $\mathbb{C}^2 \otimes \mathbb{C}^2$ is the same as the action of SO₄ on its standard module \mathbb{C}^4 .

We can replace $(\mathcal{G}_{odd}(4))^{SL_2 \times SL_2}$ with $(\mathcal{G}_{odd}(4))^{SO_4}$.

Generator of \mathcal{T} has weight 2 and corresponds to the Virasoro field.

Suffices to prove that $(\mathcal{G}_{odd}(4))^{SO_4}$ is of type $\mathcal{W}(4, 6, 6, 8, 8, 9, 10, 10, 12)$.

Step 2: By a general result of Arakawa, Creutzig, L., Kawasetsu (2017),

$$\lim_{k\to\infty} D^{k,\alpha} \cong \mathcal{T} \otimes (\mathcal{G}_{\mathsf{odd}}(4))^{\mathsf{SL}_2 \times \mathsf{SL}_2}$$

Action of $SL_2 \times SL_2$ on $\mathbb{C}^2 \otimes \mathbb{C}^2$ is the same as the action of SO₄ on its standard module \mathbb{C}^4 .

We can replace $(\mathcal{G}_{odd}(4))^{SL_2 \times SL_2}$ with $(\mathcal{G}_{odd}(4))^{SO_4}$.

Generator of $\mathcal T$ has weight 2 and corresponds to the Virasoro field.

Suffices to prove that $(\mathcal{G}_{odd}(4))^{SO_4}$ is of type $\mathcal{W}(4, 6, 6, 8, 8, 9, 10, 10, 12)$.

Step 2: By a general result of Arakawa, Creutzig, L., Kawasetsu (2017),

$$\lim_{k\to\infty} D^{k,\alpha} \cong \mathcal{T} \otimes (\mathcal{G}_{\mathsf{odd}}(4))^{\mathsf{SL}_2 \times \mathsf{SL}_2}$$

Action of $SL_2 \times SL_2$ on $\mathbb{C}^2 \otimes \mathbb{C}^2$ is the same as the action of SO₄ on its standard module \mathbb{C}^4 .

We can replace $(\mathcal{G}_{odd}(4))^{SL_2 \times SL_2}$ with $(\mathcal{G}_{odd}(4))^{SO_4}$.

Generator of \mathcal{T} has weight 2 and corresponds to the Virasoro field.

Suffices to prove that $(\mathcal{G}_{odd}(4))^{SO_4}$ is of type $\mathcal{W}(4, 6, 6, 8, 8, 9, 10, 10, 12)$.

Step 3: This is a formal consequence of Weyl's first and second fundamental theorems of invariant theory of SO_4 .

Thm: We have an isomorphism of two-parameter vertex algebras $C^{k_1,k_2} \cong D^{k,\alpha}.$

Parameters are related by

$$k_1 = -\frac{1+k+\alpha k}{(1+\alpha)k}, \qquad k_2 = -\frac{\alpha+k+\alpha k}{(1+\alpha)k}.$$

Note: symmetry $k_1 \leftrightarrow k_2$ corresponds to symmetry $\alpha \leftrightarrow \frac{1}{\alpha}$.

Idea of proof: Both algebras are generated by the weight 4 primary field, which is unique up to scaling.

It follows from VOA axioms that the full OPE algebra is determined by a small set of structure constants.

Thm: We have an isomorphism of two-parameter vertex algebras $C^{k_1,k_2} \cong D^{k,\alpha}.$

Parameters are related by

$$k_1 = -rac{1+k+lpha k}{(1+lpha)k}, \qquad k_2 = -rac{lpha+k+lpha k}{(1+lpha)k}.$$

Note: symmetry $k_1 \leftrightarrow k_2$ corresponds to symmetry $\alpha \leftrightarrow \frac{1}{\alpha}$.

Idea of proof: Both algebras are generated by the weight 4 primary field, which is unique up to scaling.

It follows from VOA axioms that the full OPE algebra is determined by a small set of structure constants.

Thm: We have an isomorphism of two-parameter vertex algebras $C^{k_1,k_2} \cong D^{k,\alpha}.$

Parameters are related by

$$k_1 = -rac{1+k+lpha k}{(1+lpha)k}, \qquad k_2 = -rac{lpha+k+lpha k}{(1+lpha)k}.$$

Note: symmetry $k_1 \leftrightarrow k_2$ corresponds to symmetry $\alpha \leftrightarrow \frac{1}{\alpha}$.

Idea of proof: Both algebras are generated by the weight 4 primary field, which is unique up to scaling.

It follows from VOA axioms that the full OPE algebra is determined by a small set of structure constants.

Thm: We have an isomorphism of two-parameter vertex algebras $C^{k_1,k_2} \cong D^{k,\alpha}.$

Parameters are related by

$$k_1 = -rac{1+k+lpha k}{(1+lpha)k}, \qquad k_2 = -rac{lpha+k+lpha k}{(1+lpha)k}.$$

Note: symmetry $k_1 \leftrightarrow k_2$ corresponds to symmetry $\alpha \leftrightarrow \frac{1}{\alpha}$.

Idea of proof: Both algebras are generated by the weight 4 primary field, which is unique up to scaling.

It follows from VOA axioms that the full OPE algebra is determined by a small set of structure constants.

Thm: We have an isomorphism of two-parameter vertex algebras $C^{k_1,k_2} \cong D^{k,\alpha}.$

Parameters are related by

$$k_1 = -rac{1+k+lpha k}{(1+lpha)k}, \qquad k_2 = -rac{lpha+k+lpha k}{(1+lpha)k}.$$

Note: symmetry $k_1 \leftrightarrow k_2$ corresponds to symmetry $\alpha \leftrightarrow \frac{1}{\alpha}$.

Idea of proof: Both algebras are generated by the weight 4 primary field, which is unique up to scaling.

It follows from VOA axioms that the full OPE algebra is determined by a small set of structure constants.

Thm: We have an isomorphism of two-parameter vertex algebras $C^{k_1,k_2} \cong D^{k,\alpha}.$

Parameters are related by

$$k_1 = -rac{1+k+lpha k}{(1+lpha)k}, \qquad k_2 = -rac{lpha+k+lpha k}{(1+lpha)k}.$$

Note: symmetry $k_1 \leftrightarrow k_2$ corresponds to symmetry $\alpha \leftrightarrow \frac{1}{\alpha}$.

Idea of proof: Both algebras are generated by the weight 4 primary field, which is unique up to scaling.

It follows from VOA axioms that the full OPE algebra is determined by a small set of structure constants.

 C^{k_1,k_2} is **simple** as a VOA over $\mathbb{C}[k_1,k_2]$: for every proper graded ideal $\mathcal{I} \subseteq C^{k_1,k_2}$, $\mathcal{I}[0] \neq \{0\}$.

Equivalently, C^{k_1,k_2} is simple for generic k_1, k_2 .

There exist curves in the parameter space \mathbb{C}^2 given by polynomials $p(k_1, k_2) = 0$, where C^{k_1, k_2} degenerates.

Ex: $p(k_1, k_2) = k_2 - 1$. Then $C^{k_1,1}$ has singular vector in weight 4.

Simple quotient $C_1^{k_1}$ coincides with

 $\operatorname{Com}(V^{k_1+1}(\mathfrak{sl}_2), V^{k_1}(\mathfrak{sl}_2) \otimes L_1(\mathfrak{sl}_2)).$

This is well-known to be just the Virasoro algebra.

Ex: $p(k_1, k_2) = k_2 - n$, where $n \ge 1$ is a positive integer.

Again, $C^{k_1,n}$ is not simple. Simple quotient $C_n^{k_1}$ coincides with $\operatorname{Com}(V^{k_1+n}(\mathfrak{sl}_2), V^{k_1}(\mathfrak{sl}_2) \otimes L_n(\mathfrak{sl}_2)).$

 C^{k_1,k_2} is **simple** as a VOA over $\mathbb{C}[k_1, k_2]$: for every proper graded ideal $\mathcal{I} \subseteq C^{k_1,k_2}$, $\mathcal{I}[0] \neq \{0\}$.

Equivalently, C^{k_1,k_2} is simple for generic k_1, k_2 .

There exist curves in the parameter space \mathbb{C}^2 given by polynomials $p(k_1, k_2) = 0$, where C^{k_1, k_2} degenerates.

Ex: $p(k_1, k_2) = k_2 - 1$. Then $C^{k_1,1}$ has singular vector in weight 4.

Simple quotient $C_1^{k_1}$ coincides with

 $\operatorname{Com}(V^{k_1+1}(\mathfrak{sl}_2), V^{k_1}(\mathfrak{sl}_2) \otimes L_1(\mathfrak{sl}_2)).$

This is well-known to be just the Virasoro algebra.

Ex: $p(k_1, k_2) = k_2 - n$, where $n \ge 1$ is a positive integer.

Again, $C^{k_1,n}$ is not simple. Simple quotient $C_n^{k_1}$ coincides with $\operatorname{Com}(V^{k_1+n}(\mathfrak{sl}_2), V^{k_1}(\mathfrak{sl}_2) \otimes L_n(\mathfrak{sl}_2)).$

 C^{k_1,k_2} is **simple** as a VOA over $\mathbb{C}[k_1, k_2]$: for every proper graded ideal $\mathcal{I} \subseteq C^{k_1,k_2}$, $\mathcal{I}[0] \neq \{0\}$.

Equivalently, C^{k_1,k_2} is simple for generic k_1, k_2 .

There exist curves in the parameter space \mathbb{C}^2 given by polynomials $p(k_1, k_2) = 0$, where C^{k_1, k_2} degenerates.

Ex: $p(k_1, k_2) = k_2 - 1$. Then $C^{k_1,1}$ has singular vector in weight 4. **Ex**: $p(k_1, k_2) = k_2 - n$, where $n \ge 1$ is a positive integer.

 C^{k_1,k_2} is **simple** as a VOA over $\mathbb{C}[k_1, k_2]$: for every proper graded ideal $\mathcal{I} \subseteq C^{k_1,k_2}$, $\mathcal{I}[0] \neq \{0\}$.

Equivalently, C^{k_1,k_2} is simple for generic k_1, k_2 .

There exist curves in the parameter space \mathbb{C}^2 given by polynomials $p(k_1, k_2) = 0$, where C^{k_1, k_2} degenerates.

Ex: $p(k_1, k_2) = k_2 - 1$. Then $C^{k_1, 1}$ has singular vector in weight 4.

Simple quotient $C_1^{k_1}$ coincides with Com $(V^{k_1+1}(\mathfrak{sl}_2), V^{k_1}(\mathfrak{sl}_2) \otimes L_1(\mathfrak{sl}_2)).$

This is well-known to be just the Virasoro algebra.

Ex: $p(k_1, k_2) = k_2 - n$, where $n \ge 1$ is a positive integer.

Again, $C^{k_1,n}$ is not simple. Simple quotient $C_n^{k_1}$ coincides with $\operatorname{Com}(V^{k_1+n}(\mathfrak{sl}_2), V^{k_1}(\mathfrak{sl}_2) \otimes L_n(\mathfrak{sl}_2)).$

 C^{k_1,k_2} is **simple** as a VOA over $\mathbb{C}[k_1, k_2]$: for every proper graded ideal $\mathcal{I} \subseteq C^{k_1,k_2}$, $\mathcal{I}[0] \neq \{0\}$.

Equivalently, C^{k_1,k_2} is simple for generic k_1, k_2 .

There exist curves in the parameter space \mathbb{C}^2 given by polynomials $p(k_1, k_2) = 0$, where C^{k_1, k_2} degenerates.

Ex: $p(k_1, k_2) = k_2 - 1$. Then $C^{k_1, 1}$ has singular vector in weight 4. Simple quotient $C_1^{k_1}$ coincides with $\operatorname{Com}(V^{k_1+1}(\mathfrak{sl}_2), V^{k_1}(\mathfrak{sl}_2) \otimes L_1(\mathfrak{sl}_2)).$

This is well-known to be just the Virasoro algebra.

Ex: $p(k_1, k_2) = k_2 - n$, where $n \ge 1$ is a positive integer. Again, $C^{k_1,n}$ is not simple. Simple quotient $C_n^{k_1}$ coincides with $\operatorname{Com}(V^{k_1+n}(\mathfrak{sl}_2), V^{k_1}(\mathfrak{sl}_2) \otimes L_n(\mathfrak{sl}_2)).$

 C^{k_1,k_2} is **simple** as a VOA over $\mathbb{C}[k_1, k_2]$: for every proper graded ideal $\mathcal{I} \subseteq C^{k_1,k_2}$, $\mathcal{I}[0] \neq \{0\}$.

Equivalently, C^{k_1,k_2} is simple for generic k_1, k_2 .

There exist curves in the parameter space \mathbb{C}^2 given by polynomials $p(k_1, k_2) = 0$, where C^{k_1, k_2} degenerates.

Ex: $p(k_1, k_2) = k_2 - 1$. Then $C^{k_1,1}$ has singular vector in weight 4. Simple quotient $C_1^{k_1}$ coincides with $\operatorname{Com}(V^{k_1+1}(\mathfrak{sl}_2), V^{k_1}(\mathfrak{sl}_2) \otimes L_1(\mathfrak{sl}_2)).$

This is well-known to be just the Virasoro algebra.

Ex: $p(k_1, k_2) = k_2 - n$, where $n \ge 1$ is a positive integer.

Again, $C^{k_1,n}$ is not simple. Simple quotient $C_n^{k_1}$ coincides with $\operatorname{Com}(V^{k_1+n}(\mathfrak{sl}_2), V^{k_1}(\mathfrak{sl}_2) \otimes L_n(\mathfrak{sl}_2)).$

 C^{k_1,k_2} is **simple** as a VOA over $\mathbb{C}[k_1, k_2]$: for every proper graded ideal $\mathcal{I} \subseteq C^{k_1,k_2}$, $\mathcal{I}[0] \neq \{0\}$.

Equivalently, C^{k_1,k_2} is simple for generic k_1, k_2 .

There exist curves in the parameter space \mathbb{C}^2 given by polynomials $p(k_1, k_2) = 0$, where C^{k_1, k_2} degenerates.

Ex: $p(k_1, k_2) = k_2 - 1$. Then $C^{k_1, 1}$ has singular vector in weight 4. Simple quotient $C_1^{k_1}$ coincides with $\operatorname{Com}(V^{k_1+1}(\mathfrak{sl}_2), V^{k_1}(\mathfrak{sl}_2) \otimes L_1(\mathfrak{sl}_2)).$

This is well-known to be just the Virasoro algebra.

Ex: $p(k_1, k_2) = k_2 - n$, where $n \ge 1$ is a positive integer.

Again, $C^{k_1,n}$ is not simple. Simple quotient $C_n^{k_1}$ coincides with $\operatorname{Com}(V^{k_1+n}(\mathfrak{sl}_2), V^{k_1}(\mathfrak{sl}_2) \otimes L_n(\mathfrak{sl}_2)).$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへぐ

Thm: In the case n = 2, $C_2^{k_1}$ is of type $\mathcal{W}(2, 4, 6)$.

 $C_2^{\kappa_1}$ is isomorphic as a simple, one-parameter vertex algebra to the \mathbb{Z}_2 -orbifold of the N = 1 superconformal vertex algebras.

Previously stated without proof in Blumenhagen et al (1995).

Thm: In the case $n = -\frac{1}{2}$, $C_{-1/2}^{k_1}$ is of type $\mathcal{W}(2,4,6)$, but not generically isomorphic to $C_2^{k_1}$.

Thm: In the case $n = -\frac{4}{3}$, $C_{-4/3}^{k_1}$ is of type $\mathcal{W}(2, 6, 8, 10, 12)$.

(日) (同) (三) (三) (三) (○) (○)

Thm: In the case n = 2, $C_2^{k_1}$ is of type $\mathcal{W}(2, 4, 6)$.

 $C_2^{k_1}$ is isomorphic as a simple, one-parameter vertex algebra to the \mathbb{Z}_2 -orbifold of the N = 1 superconformal vertex algebras.

Previously stated without proof in Blumenhagen et al (1995).

Thm: In the case $n = -\frac{1}{2}$, $C_{-1/2}^{k_1}$ is of type $\mathcal{W}(2,4,6)$, but not generically isomorphic to $C_2^{k_1}$.

Thm: In the case $n = -\frac{4}{3}$, $C_{-4/3}^{k_1}$ is of type $\mathcal{W}(2, 6, 8, 10, 12)$.

(日) (同) (三) (三) (三) (○) (○)

Thm: In the case n = 2, $C_2^{k_1}$ is of type $\mathcal{W}(2, 4, 6)$.

 $C_2^{k_1}$ is isomorphic as a simple, one-parameter vertex algebra to the \mathbb{Z}_2 -orbifold of the N = 1 superconformal vertex algebras.

Previously stated without proof in Blumenhagen et al (1995).

Thm: In the case $n = -\frac{1}{2}$, $C_{-1/2}^{k_1}$ is of type $\mathcal{W}(2, 4, 6)$, but not generically isomorphic to $C_2^{k_1}$.

Thm: In the case $n = -\frac{4}{3}$, $C_{-4/3}^{k_1}$ is of type $\mathcal{W}(2, 6, 8, 10, 12)$.

Thm: In the case n = 2, $C_2^{k_1}$ is of type $\mathcal{W}(2, 4, 6)$.

 $C_2^{k_1}$ is isomorphic as a simple, one-parameter vertex algebra to the \mathbb{Z}_2 -orbifold of the N = 1 superconformal vertex algebras.

Previously stated without proof in Blumenhagen et al (1995).

Thm: In the case $n = -\frac{1}{2}$, $C_{-1/2}^{k_1}$ is of type $\mathcal{W}(2,4,6)$, but not generically isomorphic to $C_2^{k_1}$.

Thm: In the case $n = -\frac{4}{3}$, $C_{-4/3}^{k_1}$ is of type $\mathcal{W}(2, 6, 8, 10, 12)$.

Thm: In the case n = 2, $C_2^{k_1}$ is of type $\mathcal{W}(2, 4, 6)$.

 $C_2^{k_1}$ is isomorphic as a simple, one-parameter vertex algebra to the \mathbb{Z}_2 -orbifold of the N = 1 superconformal vertex algebras.

Previously stated without proof in Blumenhagen et al (1995).

Thm: In the case $n = -\frac{1}{2}$, $C_{-1/2}^{k_1}$ is of type $\mathcal{W}(2,4,6)$, but not generically isomorphic to $C_2^{k_1}$.

Thm: In the case $n = -\frac{4}{3}$, $C_{-4/3}^{k_1}$ is of type $\mathcal{W}(2, 6, 8, 10, 12)$.

くしゃ (雪) (雪) (雪) (雪) (雪) (雪) (

Thm: In the case n = 2, $C_2^{k_1}$ is of type $\mathcal{W}(2, 4, 6)$.

 $C_2^{k_1}$ is isomorphic as a simple, one-parameter vertex algebra to the \mathbb{Z}_2 -orbifold of the N = 1 superconformal vertex algebras.

Previously stated without proof in Blumenhagen et al (1995).

Thm: In the case $n = -\frac{1}{2}$, $C_{-1/2}^{k_1}$ is of type $\mathcal{W}(2,4,6)$, but not generically isomorphic to $C_2^{k_1}$.

Thm: In the case $n = -\frac{4}{3}$, $C_{-4/3}^{k_1}$ is of type $\mathcal{W}(2, 6, 8, 10, 12)$.

くしゃ (雪) (雪) (雪) (雪) (雪) (雪) (

14. Simple zero-parameter quotients

Let k be **admissible**: $k = -2 + \frac{p}{q}$ where (p, q) = 1 and $p \ge 2$.

Thm:

1. The diagonal homomorphism $V^{k+2}(\mathfrak{sl}_2) \to L_k(\mathfrak{sl}_2) \otimes L_2(\mathfrak{sl}_2)$ descends to a map

 $L_{k+2}(\mathfrak{sl}_2) \hookrightarrow L_k(\mathfrak{sl}_2) \otimes L_2(\mathfrak{sl}_2).$

- 2. The simple quotient $C_{k,2}$ of C_2^k coincides with the coset $\operatorname{Com}(L_{k+2}(\mathfrak{sl}_2), L_k(\mathfrak{sl}_2) \otimes L_2(\mathfrak{sl}_2)).$
- 3. $C_{k,2}$ is lisse and rational.

Statements (1) and (2) hold if 2 is replaced with an arbitrary positive integer *n*.

We expect (3) to hold as well, but we are unable to prove it , $z \rightarrow \infty$

14. Simple zero-parameter quotients

Let k be **admissible**: $k = -2 + \frac{p}{q}$ where (p, q) = 1 and $p \ge 2$.

Thm:

1. The diagonal homomorphism $V^{k+2}(\mathfrak{sl}_2) \to L_k(\mathfrak{sl}_2) \otimes L_2(\mathfrak{sl}_2)$ descends to a map

$$L_{k+2}(\mathfrak{sl}_2) \hookrightarrow L_k(\mathfrak{sl}_2) \otimes L_2(\mathfrak{sl}_2).$$

2. The simple quotient $C_{k,2}$ of C_2^k coincides with the coset

$$\operatorname{Com}(L_{k+2}(\mathfrak{sl}_2), L_k(\mathfrak{sl}_2) \otimes L_2(\mathfrak{sl}_2)).$$

3. $C_{k,2}$ is lisse and rational.

Statements (1) and (2) hold if 2 is replaced with an arbitrary positive integer *n*.

We expect (3) to hold as well, but we are unable to prove it z_{1} , $z_{2} \sim 200$

14. Simple zero-parameter quotients

Let k be **admissible**: $k = -2 + \frac{p}{q}$ where (p, q) = 1 and $p \ge 2$.

Thm:

1. The diagonal homomorphism $V^{k+2}(\mathfrak{sl}_2) \to L_k(\mathfrak{sl}_2) \otimes L_2(\mathfrak{sl}_2)$ descends to a map

$$L_{k+2}(\mathfrak{sl}_2) \hookrightarrow L_k(\mathfrak{sl}_2) \otimes L_2(\mathfrak{sl}_2).$$

2. The simple quotient $C_{k,2}$ of C_2^k coincides with the coset

$$\operatorname{Com}(L_{k+2}(\mathfrak{sl}_2), L_k(\mathfrak{sl}_2) \otimes L_2(\mathfrak{sl}_2)).$$

3. $C_{k,2}$ is lisse and rational.

Statements (1) and (2) hold if 2 is replaced with an arbitrary positive integer n.

We expect (3) to hold as well, but we are unable to prove it z_{1} , $z_{2} \sim 200$

14. Simple zero-parameter quotients

Let k be **admissible**: $k = -2 + \frac{p}{q}$ where (p, q) = 1 and $p \ge 2$.

Thm:

1. The diagonal homomorphism $V^{k+2}(\mathfrak{sl}_2) \to L_k(\mathfrak{sl}_2) \otimes L_2(\mathfrak{sl}_2)$ descends to a map

$$L_{k+2}(\mathfrak{sl}_2) \hookrightarrow L_k(\mathfrak{sl}_2) \otimes L_2(\mathfrak{sl}_2).$$

2. The simple quotient $C_{k,2}$ of C_2^k coincides with the coset

$$\operatorname{Com}(L_{k+2}(\mathfrak{sl}_2), \ L_k(\mathfrak{sl}_2) \otimes L_2(\mathfrak{sl}_2)).$$

3. $C_{k,2}$ is lisse and rational.

Statements (1) and (2) hold if 2 is replaced with an arbitrary positive integer n.

We expect (3) to hold as well, but we are unable to prove it.

Proof of (3): Let F(4) be the algebra of 4 free fermions.

Regarding F(4) as $F(2) \otimes F(2)$, it is a simple current extension of $L_1(\mathfrak{sl}_2) \otimes L_1(\mathfrak{sl}_2)$.

Regarding F(4) as $F(3) \otimes F(1)$, it is a simple current extension of $L_2(\mathfrak{sl}_2) \otimes F(1)$.

Then $\text{Com}(L_{k+2}(\mathfrak{sl}_2), L_k(\mathfrak{sl}_2) \otimes F(4))$ is both a simple current extension of $C_{k,1} \otimes C_{k+1,1}$, and a simple current extension of $C_{k,2} \otimes F(1)$.

Rationality of $C_{k,2}$ follows from rationality of $C_{k,1} \otimes C_{k+1,1}$.

Proof of (3): Let F(4) be the algebra of 4 free fermions.

Regarding F(4) as $F(2) \otimes F(2)$, it is a simple current extension of $L_1(\mathfrak{sl}_2) \otimes L_1(\mathfrak{sl}_2)$.

Regarding F(4) as $F(3) \otimes F(1)$, it is a simple current extension of $L_2(\mathfrak{sl}_2) \otimes F(1)$.

Then $\text{Com}(L_{k+2}(\mathfrak{sl}_2), L_k(\mathfrak{sl}_2) \otimes F(4))$ is both a simple current extension of $C_{k,1} \otimes C_{k+1,1}$, and a simple current extension of $C_{k,2} \otimes F(1)$.

Rationality of $C_{k,2}$ follows from rationality of $C_{k,1} \otimes C_{k+1,1}$.

Proof of (3): Let F(4) be the algebra of 4 free fermions.

Regarding F(4) as $F(2) \otimes F(2)$, it is a simple current extension of $L_1(\mathfrak{sl}_2) \otimes L_1(\mathfrak{sl}_2)$.

Regarding F(4) as $F(3) \otimes F(1)$, it is a simple current extension of $L_2(\mathfrak{sl}_2) \otimes F(1)$.

Then $\text{Com}(L_{k+2}(\mathfrak{sl}_2), L_k(\mathfrak{sl}_2) \otimes F(4))$ is both a simple current extension of $C_{k,1} \otimes C_{k+1,1}$, and a simple current extension of $C_{k,2} \otimes F(1)$.

Rationality of $C_{k,2}$ follows from rationality of $C_{k,1} \otimes C_{k+1,1}$.

Proof of (3): Let F(4) be the algebra of 4 free fermions.

Regarding F(4) as $F(2) \otimes F(2)$, it is a simple current extension of $L_1(\mathfrak{sl}_2) \otimes L_1(\mathfrak{sl}_2)$.

Regarding F(4) as $F(3) \otimes F(1)$, it is a simple current extension of $L_2(\mathfrak{sl}_2) \otimes F(1)$.

Then $\text{Com}(L_{k+2}(\mathfrak{sl}_2), L_k(\mathfrak{sl}_2) \otimes F(4))$ is both a simple current extension of $C_{k,1} \otimes C_{k+1,1}$, and a simple current extension of $C_{k,2} \otimes F(1)$.

Rationality of $C_{k,2}$ follows from rationality of $C_{k,1} \otimes C_{k+1,1}$.

Proof of (3): Let F(4) be the algebra of 4 free fermions.

Regarding F(4) as $F(2) \otimes F(2)$, it is a simple current extension of $L_1(\mathfrak{sl}_2) \otimes L_1(\mathfrak{sl}_2)$.

Regarding F(4) as $F(3) \otimes F(1)$, it is a simple current extension of $L_2(\mathfrak{sl}_2) \otimes F(1)$.

Then $\text{Com}(L_{k+2}(\mathfrak{sl}_2), L_k(\mathfrak{sl}_2) \otimes F(4))$ is both a simple current extension of $C_{k,1} \otimes C_{k+1,1}$, and a simple current extension of $C_{k,2} \otimes F(1)$.

Rationality of $C_{k,2}$ follows from rationality of $C_{k,1} \otimes C_{k+1,1}$.

Thm: We have the following isomorphisms $C_{k,2} \cong W_{\ell}(\mathfrak{sp}_{2n}, f_{\text{prin}})$ for $n \ge 2$.

1.
$$k = -\frac{4n}{1+2n}$$
, $\ell = -(n+1) + \frac{1+2n}{4(1+n)}$,
2. $k = \frac{3-2n}{n}$, $\ell = -(n+1) + \frac{3+2n}{4n}$,
3. $k = 4n-6$, $\ell = -(n+1) + \frac{2n-1}{4(n-1)}$.

Rem: In cases (1) and (2), the levels ℓ are nondegenerate admissible, so the rationality of $W_{\ell}(\mathfrak{sp}_{2n}, f_{prin})$ is already known (Arakawa, Annals of Math. 2015).

In case (3), the level ℓ is **degenerate admissible**.

Since $C_{k,2}$ is rational and lisse, we obtain new examples of rational and lisse principal W-algebras.

Thm: We have the following isomorphisms $C_{k,2} \cong W_{\ell}(\mathfrak{sp}_{2n}, f_{prin})$ for $n \ge 2$.

1.
$$k = -\frac{4n}{1+2n}$$
, $\ell = -(n+1) + \frac{1+2n}{4(1+n)}$,
2. $k = \frac{3-2n}{n}$, $\ell = -(n+1) + \frac{3+2n}{4n}$,
3. $k = 4n-6$, $\ell = -(n+1) + \frac{2n-1}{4(n-1)}$.

Rem: In cases (1) and (2), the levels ℓ are nondegenerate admissible, so the rationality of $W_{\ell}(\mathfrak{sp}_{2n}, f_{prin})$ is already known (Arakawa, Annals of Math. 2015).

In case (3), the level ℓ is degenerate admissible.

Since $C_{k,2}$ is rational and lisse, we obtain new examples of rational and lisse principal W-algebras.

Thm: We have the following isomorphisms $C_{k,2} \cong W_{\ell}(\mathfrak{sp}_{2n}, f_{prin})$ for $n \ge 2$.

1.
$$k = -\frac{4n}{1+2n}$$
, $\ell = -(n+1) + \frac{1+2n}{4(1+n)}$,
2. $k = \frac{3-2n}{n}$, $\ell = -(n+1) + \frac{3+2n}{4n}$,
3. $k = 4n-6$, $\ell = -(n+1) + \frac{2n-1}{4(n-1)}$.

Rem: In cases (1) and (2), the levels ℓ are nondegenerate admissible, so the rationality of $W_{\ell}(\mathfrak{sp}_{2n}, f_{prin})$ is already known (Arakawa, Annals of Math. 2015).

In case (3), the level ℓ is degenerate admissible.

Since $C_{k,2}$ is rational and lisse, we obtain new examples of rational and lisse principal W-algebras.

Thm: We have the following isomorphisms $C_{k,2} \cong W_{\ell}(\mathfrak{sp}_{2n}, f_{prin})$ for $n \ge 2$.

1.
$$k = -\frac{4n}{1+2n}$$
, $\ell = -(n+1) + \frac{1+2n}{4(1+n)}$,
2. $k = \frac{3-2n}{n}$, $\ell = -(n+1) + \frac{3+2n}{4n}$,
3. $k = 4n-6$, $\ell = -(n+1) + \frac{2n-1}{4(n-1)}$.

Rem: In cases (1) and (2), the levels ℓ are nondegenerate admissible, so the rationality of $W_{\ell}(\mathfrak{sp}_{2n}, f_{prin})$ is already known (Arakawa, Annals of Math. 2015).

In case (3), the level ℓ is degenerate admissible.

Since $C_{k,2}$ is rational and lisse, we obtain new examples of rational and lisse principal W-algebras.

17. Universal even spin $\mathcal{W}_\infty\text{-algebra}$

The following was conjectured by physicists Candu, Gaberdiel, Kelm, Vollenweider (2013).

There exists a universal 2-parameter VOA $W^{ev}(c, \lambda)$ of type W(2, 4, ...) with following properties:

- Generated by Virasoro field L and weight 4 primary field W^4 .
- Freely generated of type $\mathcal{W}(2, 4, 6, \dots)$.
- ► All VOAs of type W(2, 4, ..., 2N) for some N satisfying some mild hypotheses, arise as quotients.
- ► This includes principal *W*-algebras of types *B* and *C*, as well as Z₂-orbifold of type *D* principal *W*-algebras.

This was recently established in my joint paper with S. Kanade.

17. Universal even spin \mathcal{W}_{∞} -algebra

The following was conjectured by physicists Candu, Gaberdiel, Kelm, Vollenweider (2013).

There exists a universal 2-parameter VOA $W^{ev}(c, \lambda)$ of type W(2, 4, ...) with following properties:

- Generated by Virasoro field L and weight 4 primary field W^4 .
- Freely generated of type $\mathcal{W}(2, 4, 6, \dots)$.
- ► All VOAs of type W(2, 4, ..., 2N) for some N satisfying some mild hypotheses, arise as quotients.
- ► This includes principal *W*-algebras of types *B* and *C*, as well as Z₂-orbifold of type *D* principal *W*-algebras.

This was recently established in my joint paper with S. Kanade.

17. Universal even spin \mathcal{W}_{∞} -algebra

The following was conjectured by physicists Candu, Gaberdiel, Kelm, Vollenweider (2013).

There exists a universal 2-parameter VOA $W^{ev}(c, \lambda)$ of type W(2, 4, ...) with following properties:

- ▶ Generated by Virasoro field *L* and weight 4 primary field *W*⁴.
- Freely generated of type $\mathcal{W}(2, 4, 6, \dots)$.
- ► All VOAs of type W(2, 4, ..., 2N) for some N satisfying some mild hypotheses, arise as quotients.
- ► This includes principal *W*-algebras of types *B* and *C*, as well as Z₂-orbifold of type *D* principal *W*-algebras.

This was recently established in my joint paper with S. Kanade.

For fields a, b, c in any VOA, and $r, s \ge 0$, we have identity

$$a_{(r)}(b_{(s)}c) = (-1)^{|a||b|}b_{(s)}(a_{(r)}c) + \sum_{i=0}^{r} {r \choose i} (a_{(i)}b)_{(r+s-i)}c.$$

These are called **Jacobi relations** of type (a, b, c).

Imposing relations of type (W^{2i}, W^{2j}, W^{2k}) for $2i + 2j + 2k \le 2n + 2$ uniquely determines OPEs $W^{2a}(z)W^{2b}(w)$ for $a + b \le 2n$.

We obtain a nonlinear Lie conformal algebra over ring $\mathbb{C}[c, \lambda]$.

 $\mathcal{W}^{\mathsf{ev}}(c,\lambda)$ is the universal enveloping VOA (de Sole, Kac, 2005).

・ロット 4回ッ 4回ッ 4回ッ 4日ッ

For fields a, b, c in any VOA, and $r, s \ge 0$, we have identity

$$a_{(r)}(b_{(s)}c) = (-1)^{|a||b|}b_{(s)}(a_{(r)}c) + \sum_{i=0}^{r} {r \choose i} (a_{(i)}b)_{(r+s-i)}c.$$

These are called **Jacobi relations** of type (a, b, c).

Imposing relations of type (W^{2i}, W^{2j}, W^{2k}) for $2i + 2j + 2k \le 2n + 2$ uniquely determines OPEs $W^{2a}(z)W^{2b}(w)$ for $a + b \le 2n$.

We obtain a nonlinear Lie conformal algebra over ring $\mathbb{C}[c, \lambda]$.

 $\mathcal{W}^{\mathsf{ev}}(c,\lambda)$ is the universal enveloping VOA (de Sole, Kac, 2005).

・ロト ・四ト ・ヨト ・ヨー うへぐ

For fields a, b, c in any VOA, and $r, s \ge 0$, we have identity

$$a_{(r)}(b_{(s)}c) = (-1)^{|a||b|}b_{(s)}(a_{(r)}c) + \sum_{i=0}^{r} {r \choose i} (a_{(i)}b)_{(r+s-i)}c.$$

These are called **Jacobi relations** of type (a, b, c).

Imposing relations of type (W^{2i}, W^{2j}, W^{2k}) for $2i + 2j + 2k \le 2n + 2$ uniquely determines OPEs $W^{2a}(z)W^{2b}(w)$ for $a + b \le 2n$.

We obtain a nonlinear Lie conformal algebra over ring $\mathbb{C}[c, \lambda]$.

 $\mathcal{W}^{ev}(c,\lambda)$ is the universal enveloping VOA (de Sole, Kac, 2005).

For fields a, b, c in any VOA, and $r, s \ge 0$, we have identity

$$a_{(r)}(b_{(s)}c) = (-1)^{|a||b|}b_{(s)}(a_{(r)}c) + \sum_{i=0}^{r} {r \choose i} (a_{(i)}b)_{(r+s-i)}c.$$

These are called **Jacobi relations** of type (a, b, c).

Imposing relations of type (W^{2i}, W^{2j}, W^{2k}) for $2i + 2j + 2k \le 2n + 2$ uniquely determines OPEs $W^{2a}(z)W^{2b}(w)$ for $a + b \le 2n$.

We obtain a nonlinear Lie conformal algebra over ring $\mathbb{C}[c, \lambda]$.

 $\mathcal{W}^{ev}(c,\lambda)$ is the universal enveloping VOA (de Sole, Kac, 2005).

Each weight space of $\mathcal{W}^{\mathsf{ev}}(c,\lambda)$ is a free module over $\mathbb{C}[c,\lambda]$.

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal and let $I \cdot \mathcal{W}^{ev}(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}^{\mathsf{ev},l}(c,\lambda) = \mathcal{W}^{\mathsf{ev}}(c,\lambda)/(l \cdot \mathcal{W}^{\mathsf{ev}}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

Weight spaces are free R-modules, same rank as before.

 $\mathcal{W}^{\text{ev},l}(c,\lambda)$ is simple for a generic ideal *I*. But for certain discrete families of ideals *I*, $\mathcal{W}^{\text{ev},l}(c,\lambda)$ is not simple.

Let $\mathcal{W}_{I}^{ev}(c,\lambda)$ be simple graded quotient of $\mathcal{W}^{ev,I}(c,\lambda)$.

Each weight space of $\mathcal{W}^{ev}(c,\lambda)$ is a free module over $\mathbb{C}[c,\lambda]$.

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal and let $I \cdot \mathcal{W}^{ev}(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}^{\mathrm{ev},l}(c,\lambda) = \mathcal{W}^{\mathrm{ev}}(c,\lambda)/(l\cdot\mathcal{W}^{\mathrm{ev}}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

Weight spaces are free R-modules, same rank as before.

 $\mathcal{W}^{\text{ev},l}(c,\lambda)$ is simple for a generic ideal *I*. But for certain discrete families of ideals *I*, $\mathcal{W}^{\text{ev},l}(c,\lambda)$ is not simple.

Let $\mathcal{W}_{I}^{ev}(c,\lambda)$ be simple graded quotient of $\mathcal{W}^{ev,I}(c,\lambda)$.

Each weight space of $\mathcal{W}^{ev}(c,\lambda)$ is a free module over $\mathbb{C}[c,\lambda]$.

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal and let $I \cdot \mathcal{W}^{ev}(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}^{\mathrm{ev}, l}(\boldsymbol{c}, \lambda) = \mathcal{W}^{\mathrm{ev}}(\boldsymbol{c}, \lambda) / (l \cdot \mathcal{W}^{\mathrm{ev}}(\boldsymbol{c}, \lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

Weight spaces are free *R*-modules, same rank as before.

 $\mathcal{W}^{\text{ev},l}(c,\lambda)$ is simple for a generic ideal *I*. But for certain discrete families of ideals *I*, $\mathcal{W}^{\text{ev},l}(c,\lambda)$ is not simple.

Let $\mathcal{W}_{I}^{ev}(c,\lambda)$ be simple graded quotient of $\mathcal{W}^{ev,I}(c,\lambda)$.

Each weight space of $\mathcal{W}^{ev}(c,\lambda)$ is a free module over $\mathbb{C}[c,\lambda]$.

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal and let $I \cdot \mathcal{W}^{ev}(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}^{\mathrm{ev},l}(\boldsymbol{c},\lambda)=\mathcal{W}^{\mathrm{ev}}(\boldsymbol{c},\lambda)/(l\cdot\mathcal{W}^{\mathrm{ev}}(\boldsymbol{c},\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

Weight spaces are free *R*-modules, same rank as before.

 $\mathcal{W}^{\text{ev},l}(c,\lambda)$ is simple for a generic ideal *I*. But for certain discrete families of ideals *I*, $\mathcal{W}^{\text{ev},l}(c,\lambda)$ is not simple.

Let $\mathcal{W}_{I}^{ev}(c,\lambda)$ be simple graded quotient of $\mathcal{W}^{ev,I}(c,\lambda)$.

Each weight space of $\mathcal{W}^{ev}(c,\lambda)$ is a free module over $\mathbb{C}[c,\lambda]$.

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal and let $I \cdot \mathcal{W}^{ev}(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}^{\mathrm{ev},l}(\boldsymbol{c},\lambda)=\mathcal{W}^{\mathrm{ev}}(\boldsymbol{c},\lambda)/(l\cdot\mathcal{W}^{\mathrm{ev}}(\boldsymbol{c},\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

Weight spaces are free *R*-modules, same rank as before.

 $\mathcal{W}^{\text{ev},l}(c,\lambda)$ is simple for a generic ideal *I*. But for certain discrete families of ideals *I*, $\mathcal{W}^{\text{ev},l}(c,\lambda)$ is not simple.

Let $\mathcal{W}_{I}^{ev}(c,\lambda)$ be simple graded quotient of $\mathcal{W}^{ev,I}(c,\lambda)$.

Each weight space of $\mathcal{W}^{ev}(c,\lambda)$ is a free module over $\mathbb{C}[c,\lambda]$.

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal and let $I \cdot \mathcal{W}^{ev}(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}^{\mathrm{ev},l}(\boldsymbol{c},\lambda)=\mathcal{W}^{\mathrm{ev}}(\boldsymbol{c},\lambda)/(l\cdot\mathcal{W}^{\mathrm{ev}}(\boldsymbol{c},\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

Weight spaces are free *R*-modules, same rank as before.

 $\mathcal{W}^{\text{ev},l}(c,\lambda)$ is simple for a generic ideal *I*. But for certain discrete families of ideals *I*, $\mathcal{W}^{\text{ev},l}(c,\lambda)$ is not simple.

Let $\mathcal{W}_{I}^{ev}(c,\lambda)$ be simple graded quotient of $\mathcal{W}^{ev,I}(c,\lambda)$.

Each weight space of $\mathcal{W}^{ev}(c,\lambda)$ is a free module over $\mathbb{C}[c,\lambda]$.

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal and let $I \cdot \mathcal{W}^{ev}(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}^{\mathrm{ev}, l}(\boldsymbol{c}, \lambda) = \mathcal{W}^{\mathrm{ev}}(\boldsymbol{c}, \lambda) / (l \cdot \mathcal{W}^{\mathrm{ev}}(\boldsymbol{c}, \lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

Weight spaces are free *R*-modules, same rank as before.

 $\mathcal{W}^{\text{ev},l}(c,\lambda)$ is simple for a generic ideal *I*. But for certain discrete families of ideals *I*, $\mathcal{W}^{\text{ev},l}(c,\lambda)$ is not simple.

Let $\mathcal{W}_{I}^{ev}(c,\lambda)$ be simple graded quotient of $\mathcal{W}^{ev,I}(c,\lambda)$.

20. Truncation curve $V(I_{2n})$ for $\mathcal{W}^k(\mathfrak{sp}_{2n}, f_{prin})$ Let $I_{2n} = (p_{2n}(c, \lambda))$, where $p_{2n}(c,\lambda) = f(c,n) + \lambda g(c,n) + \lambda^2 h(c,n)$, and $f(c, n) = -204c^2 - 192c^3 + 171c^4 + 952cn - 4612c^2n + 2348c^3n$ $-38c^4n + 1568n^2 - 7708cn^2 + 1788c^2n^2 + 2401c^3n^2 - 74c^4n^2$ $+560n^{3}-18936cn^{3}+22280c^{2}n^{3}-2112c^{3}n^{3}+8c^{4}n^{3}$ $-16304n^{4} + 18640cn^{4} + 3420c^{2}n^{4} - 364c^{3}n^{4} + 8c^{4}n^{4}$ $-17408n^{5}+27680cn^{5}-10576c^{2}n^{5}+304c^{3}n^{5}-3264n^{6}$ $-3072cn^{6}+2736c^{2}n^{6}$. g(c, n) = -14(-1+c)(-1+2c)(22+5c)(-2+n)(-1+n) $(3c + 10n + 2cn + 12n^2)(5c + 28n + 2cn + 40n^2),$ $h(c,n) = 49(-1+c)^2(22+5c)^2(21c^2+70cn-14c^2n+200n^2)$ $-135cn^{2}-26c^{2}n^{2}+380n^{3}-176cn^{3}+8c^{2}n^{3}+436n^{4}$ $+ 132cn^4 + 8c^2n^4 + 448n^5 + 112cn^5 + 336n^6).$

21. One-parameter VOAs of type W(2, 4, 6)

Thm: There are exactly three distinct one-parameter VOAs of type $\mathcal{W}(2,4,6)$ that arise as quotients of $\mathcal{W}^{ev}(c,\lambda)$.

- 1. $\mathcal{W}^k(\mathfrak{sp}_6, f_{prin})$ corresponds to the ideal I_6 .
- 2. C_2^k corresponds to the ideal $J_2 = (q_2(c, \lambda))$ where

$$q_2(c,\lambda) = 7\lambda(-1+c)(-17+2c)(22+5c)+82-47c-10c^2.$$

3. $C_{-1/2}^k$ corresponds to the ideal $J_{-1/2} = (q_{-1/2}(c,\lambda))$ where

$$q_{-1/2}(c,\lambda) = 7\lambda(-41+c)(-1+c)(22+5c) - 14 + 309c + 5c^2.$$

The proof of our isomorphisms $C_{k,2} \cong W_{\ell}(\mathfrak{sp}_{2n}, f_{\text{prin}})$ involves finding **intersection points** on the curves $V(J_2)$ and $V(I_{2n})$.

21. One-parameter VOAs of type W(2, 4, 6)

Thm: There are exactly three distinct one-parameter VOAs of type $\mathcal{W}(2,4,6)$ that arise as quotients of $\mathcal{W}^{ev}(c,\lambda)$.

- 1. $\mathcal{W}^k(\mathfrak{sp}_6, f_{prin})$ corresponds to the ideal I_6 .
- 2. C_2^k corresponds to the ideal $J_2 = (q_2(c, \lambda))$ where

$$q_2(c,\lambda) = 7\lambda(-1+c)(-17+2c)(22+5c)+82-47c-10c^2.$$

3. $C_{-1/2}^k$ corresponds to the ideal $J_{-1/2} = (q_{-1/2}(c,\lambda))$ where

$$q_{-1/2}(c,\lambda) = 7\lambda(-41+c)(-1+c)(22+5c) - 14 + 309c + 5c^2.$$

The proof of our isomorphisms $C_{k,2} \cong W_{\ell}(\mathfrak{sp}_{2n}, f_{prin})$ involves finding **intersection points** on the curves $V(J_2)$ and $V(I_{2n})$.

Let I, J be ideals in $\mathbb{C}[c, \lambda]$, and $\mathcal{W}_{I}^{ev}(c, \lambda)$, $\mathcal{W}_{J}^{ev}(c, \lambda)$ the corresponding simple, one-parameter quotients of $\mathcal{W}^{ev}(c, \lambda)$.

Aside from degenerate cases, pointwise coincidences between the simple quotients correspond to intersection points in $V(I) \cap V(J)$.

Often, $W_I^{ev}(c, \lambda)$ and $W_I^{ev}(c, \lambda)$ are isomorphic to vertex algebras \mathcal{A}^k and \mathcal{B}^ℓ via rational parametrizations

 $k \mapsto ((c(k), \lambda(k)), \qquad \ell \mapsto (c(\ell), \lambda(\ell))$

of the curves V(I) and V(J), respectively. In our examples, $\mathcal{A}^k = \mathcal{C}_2^k$ and $\mathcal{B}^\ell = \mathcal{W}_\ell(\mathfrak{sp}_{2n}, f_{prin})$.

Subtlety 1: Specialization of C_2^k at a number $k = k_0$ can be a proper subset of the coset $Com(V_{k_0+2}(\mathfrak{sl}_2), V^{k_0}(\mathfrak{sl}_2), L_2(\mathfrak{sl}_2))$.

Subtlety 2: If k_0 is a pole of c(k) or $\lambda(k)$, even if $C_{k_0,2}$ is defined, it is not obtained as a quotient of $\mathcal{W}^{ev}(c,\lambda)$ at this point.

Let I, J be ideals in $\mathbb{C}[c, \lambda]$, and $\mathcal{W}_{I}^{ev}(c, \lambda)$, $\mathcal{W}_{J}^{ev}(c, \lambda)$ the corresponding simple, one-parameter quotients of $\mathcal{W}^{ev}(c, \lambda)$.

Aside from degenerate cases, pointwise coincidences between the simple quotients correspond to intersection points in $V(I) \cap V(J)$.

Often, $W_I^{ev}(c, \lambda)$ and $W_I^{ev}(c, \lambda)$ are isomorphic to vertex algebras \mathcal{A}^k and \mathcal{B}^ℓ via rational parametrizations

 $k \mapsto ((c(k), \lambda(k)), \qquad \ell \mapsto (c(\ell), \lambda(\ell))$

of the curves V(I) and V(J), respectively. In our examples, $\mathcal{A}^k = \mathcal{C}_2^k$ and $\mathcal{B}^\ell = \mathcal{W}_\ell(\mathfrak{sp}_{2n}, f_{prin})$.

Subtlety 1: Specialization of C_2^k at a number $k = k_0$ can be a proper subset of the coset $\text{Com}(V_{k_0+2}(\mathfrak{sl}_2), V^{k_0}(\mathfrak{sl}_2), L_2(\mathfrak{sl}_2))$.

Subtlety 2: If k_0 is a pole of c(k) or $\lambda(k)$, even if $C_{k_0,2}$ is defined, it is not obtained as a quotient of $\mathcal{W}^{ev}(c,\lambda)$ at this point.

Let I, J be ideals in $\mathbb{C}[c, \lambda]$, and $\mathcal{W}_{I}^{ev}(c, \lambda)$, $\mathcal{W}_{J}^{ev}(c, \lambda)$ the corresponding simple, one-parameter quotients of $\mathcal{W}^{ev}(c, \lambda)$.

Aside from degenerate cases, pointwise coincidences between the simple quotients correspond to intersection points in $V(I) \cap V(J)$.

Often, $\mathcal{W}_{I}^{ev}(c,\lambda)$ and $\mathcal{W}_{I}^{ev}(c,\lambda)$ are isomorphic to vertex algebras \mathcal{A}^{k} and \mathcal{B}^{ℓ} via rational parametrizations

 $k\mapsto ((c(k),\lambda(k)), \qquad \ell\mapsto (c(\ell),\lambda(\ell))$

of the curves V(I) and V(J), respectively. In our examples, $\mathcal{A}^k = \mathcal{C}_2^k$ and $\mathcal{B}^\ell = \mathcal{W}_\ell(\mathfrak{sp}_{2n}, f_{\mathsf{prin}})$.

Subtlety 1: Specialization of C_2^k at a number $k = k_0$ can be a proper subset of the coset $\text{Com}(V_{k_0+2}(\mathfrak{sl}_2), V^{k_0}(\mathfrak{sl}_2), L_2(\mathfrak{sl}_2))$.

Subtlety 2: If k_0 is a pole of c(k) or $\lambda(k)$, even if $C_{k_0,2}$ is defined, it is not obtained as a quotient of $\mathcal{W}^{ev}(c,\lambda)$ at this point.

Let I, J be ideals in $\mathbb{C}[c, \lambda]$, and $\mathcal{W}_{I}^{ev}(c, \lambda)$, $\mathcal{W}_{J}^{ev}(c, \lambda)$ the corresponding simple, one-parameter quotients of $\mathcal{W}^{ev}(c, \lambda)$.

Aside from degenerate cases, pointwise coincidences between the simple quotients correspond to intersection points in $V(I) \cap V(J)$.

Often, $\mathcal{W}_{I}^{ev}(c,\lambda)$ and $\mathcal{W}_{I}^{ev}(c,\lambda)$ are isomorphic to vertex algebras \mathcal{A}^{k} and \mathcal{B}^{ℓ} via rational parametrizations

$$k\mapsto ((c(k),\lambda(k)), \qquad \ell\mapsto (c(\ell),\lambda(\ell))$$

of the curves V(I) and V(J), respectively. In our examples, $\mathcal{A}^k = \mathcal{C}_2^k$ and $\mathcal{B}^\ell = \mathcal{W}_\ell(\mathfrak{sp}_{2n}, f_{\mathsf{prin}})$.

Subtlety 1: Specialization of C_2^k at a number $k = k_0$ can be a proper subset of the coset $\text{Com}(V_{k_0+2}(\mathfrak{sl}_2), V^{k_0}(\mathfrak{sl}_2), L_2(\mathfrak{sl}_2))$.

Subtlety 2: If k_0 is a pole of c(k) or $\lambda(k)$, even if $C_{k_0,2}$ is defined, it is not obtained as a quotient of $\mathcal{W}^{ev}(c,\lambda)$ at this point.

Let I, J be ideals in $\mathbb{C}[c, \lambda]$, and $\mathcal{W}_{I}^{ev}(c, \lambda)$, $\mathcal{W}_{J}^{ev}(c, \lambda)$ the corresponding simple, one-parameter quotients of $\mathcal{W}^{ev}(c, \lambda)$.

Aside from degenerate cases, pointwise coincidences between the simple quotients correspond to intersection points in $V(I) \cap V(J)$.

Often, $\mathcal{W}_{I}^{ev}(c,\lambda)$ and $\mathcal{W}_{I}^{ev}(c,\lambda)$ are isomorphic to vertex algebras \mathcal{A}^{k} and \mathcal{B}^{ℓ} via rational parametrizations

$$k\mapsto ((c(k),\lambda(k)), \qquad \ell\mapsto (c(\ell),\lambda(\ell))$$

of the curves V(I) and V(J), respectively. In our examples, $\mathcal{A}^k = \mathcal{C}_2^k$ and $\mathcal{B}^\ell = \mathcal{W}_\ell(\mathfrak{sp}_{2n}, f_{\mathsf{prin}}).$

Subtlety 1: Specialization of C_2^k at a number $k = k_0$ can be a proper subset of the coset $\text{Com}(V_{k_0+2}(\mathfrak{sl}_2), V^{k_0}(\mathfrak{sl}_2), L_2(\mathfrak{sl}_2))$.

Subtlety 2: If k_0 is a pole of c(k) or $\lambda(k)$, even if $C_{k_0,2}$ is defined, it is not obtained as a quotient of $\mathcal{W}^{ev}(c,\lambda)$ at this point.

Let I, J be ideals in $\mathbb{C}[c, \lambda]$, and $\mathcal{W}_{I}^{ev}(c, \lambda)$, $\mathcal{W}_{J}^{ev}(c, \lambda)$ the corresponding simple, one-parameter quotients of $\mathcal{W}^{ev}(c, \lambda)$.

Aside from degenerate cases, pointwise coincidences between the simple quotients correspond to intersection points in $V(I) \cap V(J)$.

Often, $\mathcal{W}_{I}^{ev}(c,\lambda)$ and $\mathcal{W}_{I}^{ev}(c,\lambda)$ are isomorphic to vertex algebras \mathcal{A}^{k} and \mathcal{B}^{ℓ} via rational parametrizations

$$k\mapsto ((c(k),\lambda(k)), \qquad \ell\mapsto (c(\ell),\lambda(\ell))$$

of the curves V(I) and V(J), respectively. In our examples, $\mathcal{A}^k = \mathcal{C}_2^k$ and $\mathcal{B}^\ell = \mathcal{W}_\ell(\mathfrak{sp}_{2n}, f_{\mathsf{prin}}).$

Subtlety 1: Specialization of C_2^k at a number $k = k_0$ can be a proper subset of the coset $\text{Com}(V_{k_0+2}(\mathfrak{sl}_2), V^{k_0}(\mathfrak{sl}_2), L_2(\mathfrak{sl}_2))$.

Subtlety 2: If k_0 is a pole of c(k) or $\lambda(k)$, even if $C_{k_0,2}$ is defined, it is not obtained as a quotient of $\mathcal{W}^{ev}(c,\lambda)$ at this point.

Neither of these problems occur in our examples.

Consider the diagonal coset

 $C^{k_1,k_2}(\mathfrak{sl}_n) = \operatorname{Com}(V^{k_1+k_2}(\mathfrak{sl}_n), V^{k_1}(\mathfrak{sl}_n) \otimes V^{k_2}(\mathfrak{sl}_n)).$

This has a **stabilization property** as $n \to \infty$.

Both the graded character up to weight k, and the strong generating type up to weight k, are independent of N for N > k.

In the stable limit, the algebra is of type $\mathcal{W}(2,3,4^2,5^2,6^4,7^4,8^7,\dots)$.

Idea: Generating type of $C^{k_1,k_2}(\mathfrak{sl}_n)$ is the same as $V^k(\mathfrak{sl}_n)^{SL_n}$.

Need first and second fundamental theorems of invariant theory for the adjoint representation of SL_n (Procesi, 1976).

Consider the diagonal coset

 $C^{k_1,k_2}(\mathfrak{sl}_n) = \operatorname{Com}(V^{k_1+k_2}(\mathfrak{sl}_n), V^{k_1}(\mathfrak{sl}_n) \otimes V^{k_2}(\mathfrak{sl}_n)).$

This has a **stabilization property** as $n \to \infty$.

Both the graded character up to weight k, and the strong generating type up to weight k, are independent of N for N > k.

In the stable limit, the algebra is of type $W(2, 3, 4^2, 5^2, 6^4, 7^4, 8^7, ...)$.

Idea: Generating type of $C^{k_1,k_2}(\mathfrak{sl}_n)$ is the same as $V^k(\mathfrak{sl}_n)^{SL_n}$.

Need first and second fundamental theorems of invariant theory for the adjoint representation of SL_n (Procesi, 1976).

Consider the diagonal coset

 $C^{k_1,k_2}(\mathfrak{sl}_n) = \operatorname{Com}(V^{k_1+k_2}(\mathfrak{sl}_n), V^{k_1}(\mathfrak{sl}_n) \otimes V^{k_2}(\mathfrak{sl}_n)).$

This has a **stabilization property** as $n \to \infty$.

Both the graded character up to weight k, and the strong generating type up to weight k, are independent of N for N > k.

In the stable limit, the algebra is of type $W(2,3,4^2,5^2,6^4,7^4,8^7,...)$.

Idea: Generating type of $C^{k_1,k_2}(\mathfrak{sl}_n)$ is the same as $V^k(\mathfrak{sl}_n)^{SL_n}$.

Need first and second fundamental theorems of invariant theory for the adjoint representation of SL_n (Procesi, 1976).

Consider the diagonal coset

 $C^{k_1,k_2}(\mathfrak{sl}_n) = \operatorname{Com}(V^{k_1+k_2}(\mathfrak{sl}_n), V^{k_1}(\mathfrak{sl}_n) \otimes V^{k_2}(\mathfrak{sl}_n)).$

This has a **stabilization property** as $n \to \infty$.

Both the graded character up to weight k, and the strong generating type up to weight k, are independent of N for N > k.

In the stable limit, the algebra is of type $\mathcal{W}(2,3,4^2,5^2,6^4,7^4,8^7,\dots).$

Idea: Generating type of $C^{k_1,k_2}(\mathfrak{sl}_n)$ is the same as $V^k(\mathfrak{sl}_n)^{SL_n}$.

Need first and second fundamental theorems of invariant theory for the adjoint representation of SL_n (Procesi, 1976).

Consider the diagonal coset

 $C^{k_1,k_2}(\mathfrak{sl}_n) = \operatorname{Com}(V^{k_1+k_2}(\mathfrak{sl}_n), V^{k_1}(\mathfrak{sl}_n) \otimes V^{k_2}(\mathfrak{sl}_n)).$

This has a **stabilization property** as $n \to \infty$.

Both the graded character up to weight k, and the strong generating type up to weight k, are independent of N for N > k.

In the stable limit, the algebra is of type $\mathcal{W}(2,3,4^2,5^2,6^4,7^4,8^7,\dots)$.

Idea: Generating type of $C^{k_1,k_2}(\mathfrak{sl}_n)$ is the same as $V^k(\mathfrak{sl}_n)^{SL_n}$.

Need first and second fundamental theorems of invariant theory for the adjoint representation of SL_n (Procesi, 1976).

Consider the diagonal coset

 $C^{k_1,k_2}(\mathfrak{sl}_n) = \operatorname{Com}(V^{k_1+k_2}(\mathfrak{sl}_n), V^{k_1}(\mathfrak{sl}_n) \otimes V^{k_2}(\mathfrak{sl}_n)).$

This has a **stabilization property** as $n \to \infty$.

Both the graded character up to weight k, and the strong generating type up to weight k, are independent of N for N > k.

In the stable limit, the algebra is of type $\mathcal{W}(2,3,4^2,5^2,6^4,7^4,8^7,\dots).$

Idea: Generating type of $C^{k_1,k_2}(\mathfrak{sl}_n)$ is the same as $V^k(\mathfrak{sl}_n)^{SL_n}$.

Need first and second fundamental theorems of invariant theory for the adjoint representation of SL_n (Procesi, 1976).

Consider the diagonal coset

 $C^{k_1,k_2}(\mathfrak{sl}_n) = \operatorname{Com}(V^{k_1+k_2}(\mathfrak{sl}_n), V^{k_1}(\mathfrak{sl}_n) \otimes V^{k_2}(\mathfrak{sl}_n)).$

This has a **stabilization property** as $n \to \infty$.

Both the graded character up to weight k, and the strong generating type up to weight k, are independent of N for N > k.

In the stable limit, the algebra is of type $\mathcal{W}(2,3,4^2,5^2,6^4,7^4,8^7,\dots)$.

Idea: Generating type of $C^{k_1,k_2}(\mathfrak{sl}_n)$ is the same as $V^k(\mathfrak{sl}_n)^{SL_n}$.

Need first and second fundamental theorems of invariant theory for the adjoint representation of SL_n (Procesi, 1976).

Thm: There exists a 3-parameter vertex algebra which is freely generated of type $\mathcal{W}(2,3,4^2,5^2,6^4,7^4,8^7,\dots)$.

For each $n \ge 3$, the 2-parameter coset $C^{k_1,k_2}(\mathfrak{sl}_n)$ arises as a quotient of this algebra.

It is not clear if this is the **universal algebra** of this kind.

Question: For $n \ge 3$, is there a vertex superalgebra $V^{k,\alpha}(\mathfrak{sl}_n)$ containing two copies of affine \mathfrak{sl}_n in weight 1, which is an analogue of the large N = 4 algebra $V_{N=4}^{k,\alpha}$?

(日) (同) (三) (三) (三) (○) (○)

Thm: There exists a 3-parameter vertex algebra which is freely generated of type $\mathcal{W}(2,3,4^2,5^2,6^4,7^4,8^7,\dots)$.

For each $n \ge 3$, the 2-parameter coset $C^{k_1,k_2}(\mathfrak{sl}_n)$ arises as a quotient of this algebra.

It is not clear if this is the **universal algebra** of this kind.

Question: For $n \ge 3$, is there a vertex superalgebra $V^{k,\alpha}(\mathfrak{sl}_n)$ containing two copies of affine \mathfrak{sl}_n in weight 1, which is an analogue of the large N = 4 algebra $V_{N=4}^{k,\alpha}$?

(日) (同) (三) (三) (三) (○) (○)

Thm: There exists a 3-parameter vertex algebra which is freely generated of type $\mathcal{W}(2,3,4^2,5^2,6^4,7^4,8^7,\dots)$.

For each $n \ge 3$, the 2-parameter coset $C^{k_1,k_2}(\mathfrak{sl}_n)$ arises as a quotient of this algebra.

It is not clear if this is the **universal algebra** of this kind.

Question: For $n \ge 3$, is there a vertex superalgebra $V^{k,\alpha}(\mathfrak{sl}_n)$ containing two copies of affine \mathfrak{sl}_n in weight 1, which is an analogue of the large N = 4 algebra $V_{N=4}^{k,\alpha}$?

Thm: There exists a 3-parameter vertex algebra which is freely generated of type $\mathcal{W}(2,3,4^2,5^2,6^4,7^4,8^7,\dots)$.

For each $n \ge 3$, the 2-parameter coset $C^{k_1,k_2}(\mathfrak{sl}_n)$ arises as a quotient of this algebra.

It is not clear if this is the **universal algebra** of this kind.

Question: For $n \ge 3$, is there a vertex superalgebra $V^{k,\alpha}(\mathfrak{sl}_n)$ containing two copies of affine \mathfrak{sl}_n in weight 1, which is an analogue of the large N = 4 algebra $V_{N=4}^{k,\alpha}$?

Thm: There exists a 3-parameter vertex algebra which is freely generated of type $\mathcal{W}(2,3,4^2,5^2,6^4,7^4,8^7,\dots)$.

For each $n \ge 3$, the 2-parameter coset $C^{k_1,k_2}(\mathfrak{sl}_n)$ arises as a quotient of this algebra.

It is not clear if this is the **universal algebra** of this kind.

Question: For $n \ge 3$, is there a vertex superalgebra $V^{k,\alpha}(\mathfrak{sl}_n)$ containing two copies of affine \mathfrak{sl}_n in weight 1, which is an analogue of the large N = 4 algebra $V_{N=4}^{k,\alpha}$?