
Cosets of the large N = 4 superconformal algebra
and the diagonal coset of sl2

Andrew Linshaw

University of Denver

Joint work with Thomas Creutzig and Boris Feigin



1. Two-parameter families of vertex algebras

Ex: Affine vertex algebra V k(D(2, 1;α)) and its orbifolds,
quotients, Hamiltonian reductions.

This includes the large N = 4 superconformal vertex algebra V k,α
N=4.

It is the minimal W-algebra of D(2, 1;α) (Kac, Wakimoto, 2004).

Ex: Diagonal cosets.

Ex: Universal W∞-algebras of types W(2, 3, 4, . . . ) and
W(2, 4, 6, . . . )

Ex: More exotic universal algebras. One example has type
W(2, 3, 42, 52, 64, 74, 87, . . . ), and at least 3 parameters.
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2. Diagonal cosets

g a simple, finite-dimensional Lie algebra over C.

V k(g) universal affine vertex algebra at level k .

Regard k as a formal parameter, so V k(g) is defined over the
ring C[k].

Given formal parameters k1, k2, we have diagonal embedding

V k1+k2(g) ↪→ V k1(g)⊗ V k2(g), a(z) 7→ a(z)⊗ 1 + 1⊗ a(z).

Diagonal coset

Ck1,k2(g) = Com(V k1+k2(g), V k1(g)⊗ V k2(g))

is a two-parameter vertex algebra.

At special points, studied by many people, including
Adamovic-Perse (2012), Jiang-Lin (2014).
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3. The case g = sl2

Thm: As a two-parameter VOA, C k1,k2 = C k1,k2(sl2) is of type
W(2, 4, 6, 6, 8, 8, 9, 10, 10, 12). Equivalently this holds for generic
values of k1, k2.

First stated without proof by Blumenhagen, Eholzer, Honecker,
Hornfeck, Hübel, 1995.

Step 1: For k1 fixed, rescaling generators of V k2(sl2) by 1√
k2

,

lim
k2→∞

C k1,k2 ∼= V k1(sl2)SL2 .

A strong generating set for V k1(sl2)SL2 will give rise to a strong
generating set for C k1,k2 for generic k2 (Creutzig, L., 2014).

Step 2: Rescaling the generators of V k1(sl2) by 1√
k1

, we have

lim
k1→∞

V k1(sl2)SL2 ∼= H(3)SL2 ,

where H(3) is the rank 3 Heisenberg algebra.
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4. The case g = sl2, cont’d

Note: Adjoint representation of SL2 is the same as standard
representation of SO3.

So we can replace H(3)SL2 with H(3)SO3 .

Strong generating set for H(3)SO3 give rise to strong generators for
V k1(sl2)SL2 for generic values of k1 (Creutzig, L., 2014).

Need to show that H(3)SO3 is of type
W(2, 4, 6, 6, 8, 8, 9, 10, 10, 12).

This is a formal consequence of Weyl’s first and second
fundamental theorems of invariant theory for SO3.
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5. The case g = sl2, cont’d

Thm: (Weyl) For n ≥ 0, let Vn be a copy of the standard
representation C3 of SO3, with orthonormal basis {a1n, a2n, a3n}.

Then (Sym
⊕∞

n=0 Vn)SO3 is generated by

qij = a1i a
1
j + a2i a

2
j + a3i a

3
k , i , j ≥ 0, (1)

cklm =

∣∣∣∣∣∣
a1k a2k a2k
a1l a2l a3l
a1m a2m a3m

∣∣∣∣∣∣ , 0 ≤ k < l < m. (2)

The ideal of relations among the variables qij and cklm is generated
by polynomials of the following two types:

qijcklm − qkjcilm + qljckim − qmjckli , (3)

cijkclmn −

∣∣∣∣∣∣
qil qim qin
qjl qjm qjn
qkl qkm qkn

∣∣∣∣∣∣ . (4)
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6. The case g = sl2, cont’d

Step 3: We have linear isomorphisms

H(3)SO3 ∼= gr(H(3)SO3) ∼= gr(H(3))SO3 ∼= (Sym
⊕
j≥0

Vj)
SO3 ,

and isomorphisms of differential graded rings

gr(H(3)SO3) ∼= (Sym
⊕
j≥0

Vj)
SO3 .

Generating set {qij , cklm} for (Sym
⊕

j≥0 Vj)
SO3 corresponds to a

strong generating set {Qij ,Cklm} for H(3)SO3 , where

Qi ,j = : ∂iα1∂jα1+ : ∂ iα2∂jα2 : + : ∂ iα3∂jα3 :,

Cklm = : ∂kα1∂ lα2∂mα3 : − : ∂kα1∂mα2∂ lα3 : − : ∂ lα1∂kα2∂mα3 :

+ : ∂ lα1∂mα2∂kα3 : + : ∂mα1∂kα2∂lα3 : − : ∂mα1∂lα2∂kα3 : .
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7. The case g = sl2, cont’d

Note: Qij has weight i + j + 2 and Cklm has weight k + l + m + 3.

As a H(3)O3-module, H(3)SO3 ∼= M0 ⊕M1, where M0,M1 are
irreducible H(3)O3-modules (Dong, Li, Mason, 1998)

M0
∼= H(3)O3 , which has lowest-weight vector 1.

M1 has lowest-weight vector C012 and contains all cubics Cklm.

H(3)O3 generated by Q0,2, so H(3)SO3 generated by {Q0,2,C012}.

One checks that the following set closes under OPE:

{C01j | j = 2, 4, 5, 6, 8} ∪ {Q0,2k | k = 0, 1, 2, 3, 4}.

It follows that this set strongly generates H(3)SO3 .

Minimality follows from Weyl’s second fundamental theorem.
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8. Large N = 4 superconformal algebra V k,α
N=4

Weight 1: {e, f , h, e ′, f ′, h′} generate V `(sl2)⊗ V `′(sl2) where
` = −α+1

α k − 1 and `′ = −(α + 1)k − 1, where α 6= 0, −1.

Weight 2: Virasoro field L of central charge c = −6k − 3.

Weight 3
2 : Odd fields G±± which transform as C2 ⊗ C2 under

sl2 ⊕ sl2, and satisfy complicated OPE relations. For example,

G++(z)G−−(w) ∼ −2
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9. Affine coset of V k ,α
N=4

Let Dk,α = Com(V `(sl2)⊗ V `′(sl2),V k,α
N=4).

Thm: For generic values of k and α, Dk,α is of type
W(2, 4, 6, 6, 8, 8, 9, 10, 10, 12).

Step 1: Rescale x , y , h, x ′, y ′, h′, L by 1√
k

and rescale G±± by 1
k .

Then V k,α admits a well defined limit k →∞ limit

lim
k→∞

V k,α ∼= H(6)⊗ T ⊗ Godd(4).

H(6) = limk→∞ V `(sl2)⊗ V `′(sl2) a rank 6 Heisenberg algebra.

T has even generator L satisfying L(z)L(w) ∼ (z − w)−4.

Godd(4) has odd generators φi , i = 1, 2, 3, 4, satisfying

φi (z)φj(w) ∼ δi ,j(z − w)−3.
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10. Affine coset of V k ,α
N=4

Step 2: By a general result of Arakawa, Creutzig, L., Kawasetsu
(2017),

lim
k→∞

Dk,α ∼= T ⊗
(
Godd(4)

)SL2×SL2 .
Action of SL2 × SL2 on C2 ⊗ C2 is the same as the action of SO4

on its standard module C4.

We can replace
(
Godd(4)

)SL2×SL2 with
(
Godd(4)

)SO4 .

Generator of T has weight 2 and corresponds to the Virasoro field.

Suffices to prove that (Godd(4))SO4 is of type
W(4, 6, 6, 8, 8, 9, 10, 10, 12).

Step 3: This is a formal consequence of Weyl’s first and second
fundamental theorems of invariant theory of SO4.
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11. Isomorphism C k1,k2 ∼= Dk ,α

Thm: We have an isomorphism of two-parameter vertex algebras

C k1,k2 ∼= Dk,α.

Parameters are related by

k1 = −1 + k + αk

(1 + α)k
, k2 = −α + k + αk

(1 + α)k
.

Note: symmetry k1 ↔ k2 corresponds to symmetry α↔ 1
α .

Idea of proof: Both algebras are generated by the weight 4
primary field, which is unique up to scaling.

It follows from VOA axioms that the full OPE algebra is
determined by a small set of structure constants.

These can be found directly by computer.
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12. Simple one-parameter quotients of C k1,k2

C k1,k2 is simple as a VOA over C[k1, k2]: for every proper graded
ideal I ⊆ C k1,k2 , I[0] 6= {0}.

Equivalently, C k1,k2 is simple for generic k1, k2.

There exist curves in the parameter space C2 given by polynomials
p(k1, k2) = 0, where C k1,k2 degenerates.

Ex: p(k1, k2) = k2 − 1. Then C k1,1 has singular vector in weight 4.

Simple quotient C k1
1 coincides with

Com(V k1+1(sl2), V k1(sl2)⊗ L1(sl2)).

This is well-known to be just the Virasoro algebra.

Ex: p(k1, k2) = k2 − n, where n ≥ 1 is a positive integer.

Again, C k1,n is not simple. Simple quotient C k1
n coincides with

Com(V k1+n(sl2), V k1(sl2)⊗ Ln(sl2)).
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13. Simple one-parameter quotients, cont’d

Thm: In the case n = 2, C k1
2 is of type W(2, 4, 6).

C k1
2 is isomorphic as a simple, one-parameter vertex algebra to the

Z2-orbifold of the N = 1 superconformal vertex algebras.

Previously stated without proof in Blumenhagen et al (1995).

Thm: In the case n = −1
2 , C k1

−1/2 is of type W(2, 4, 6), but not

generically isomorphic to C k1
2 .

Thm: In the case n = −4
3 , C k1

−4/3 is of type W(2, 6, 8, 10, 12).

Rem: (W3)Z2 is another one-parameter VOA of type
W(2, 6, 8, 10, 12), but not generically isomorphic to C k1

−4/3.
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14. Simple zero-parameter quotients

Let k be admissible: k = −2 + p
q where (p, q) = 1 and p ≥ 2.

Thm:

1. The diagonal homomorphism V k+2(sl2)→ Lk(sl2)⊗ L2(sl2)
descends to a map

Lk+2(sl2) ↪→ Lk(sl2)⊗ L2(sl2).

2. The simple quotient Ck,2 of C k
2 coincides with the coset

Com(Lk+2(sl2), Lk(sl2)⊗ L2(sl2)).

3. Ck,2 is lisse and rational.

Statements (1) and (2) hold if 2 is replaced with an arbitrary
positive integer n.

We expect (3) to hold as well, but we are unable to prove it.
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15. Simple zero-parameter quotients, cont’d

Proof of (3): Let F (4) be the algebra of 4 free fermions.

Regarding F (4) as F (2)⊗ F (2), it is a simple current extension of
L1(sl2)⊗ L1(sl2).

Regarding F (4) as F (3)⊗ F (1), it is a simple current extension of
L2(sl2)⊗ F (1).

Then Com(Lk+2(sl2), Lk(sl2)⊗ F (4)) is both a simple current
extension of Ck,1 ⊗ Ck+1,1, and a simple current extension of
Ck,2 ⊗ F (1).

Rationality of Ck,2 follows from rationality of Ck,1 ⊗ Ck+1,1.
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16. Ck,2 and principle W-algebras of type C

Thm: We have the following isomorphisms Ck,2
∼=W`(sp2n, fprin)

for n ≥ 2.

1. k = − 4n

1 + 2n
, ` = −(n + 1) +

1 + 2n

4(1 + n)
,

2. k =
3− 2n

n
, ` = −(n + 1) +

3 + 2n

4n
,

3. k = 4n − 6, ` = −(n + 1) +
2n − 1

4(n − 1)
.

Rem: In cases (1) and (2), the levels ` are nondegenerate
admissible, so the rationality of W`(sp2n, fprin) is already known
(Arakawa, Annals of Math. 2015).

In case (3), the level ` is degenerate admissible.

Since Ck,2 is rational and lisse, we obtain new examples of rational
and lisse principal W-algebras.
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17. Universal even spin W∞-algebra

The following was conjectured by physicists Candu, Gaberdiel,
Kelm, Vollenweider (2013).

There exists a universal 2-parameter VOA Wev(c, λ) of type
W(2, 4, . . . ) with following properties:

I Generated by Virasoro field L and weight 4 primary field W 4.

I Freely generated of type W(2, 4, 6, . . . ).

I All VOAs of type W(2, 4, . . . , 2N) for some N satisfying some
mild hypotheses, arise as quotients.

I This includes principal W-algebras of types B and C , as well
as Z2-orbifold of type D principal W-algebras.

This was recently established in my joint paper with S. Kanade.
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18. Idea of proof

For fields a, b, c in any VOA, and r , s ≥ 0, we have identity

a(r)(b(s)c) = (−1)|a||b|b(s)(a(r)c) +
r∑

i=0

(
r

i

)
(a(i)b)(r+s−i)c .

These are called Jacobi relations of type (a, b, c).

Imposing relations of type (W 2i ,W 2j ,W 2k) for
2i + 2j + 2k ≤ 2n + 2 uniquely determines OPEs W 2a(z)W 2b(w)
for a + b ≤ 2n.

We obtain a nonlinear Lie conformal algebra over ring C[c , λ].

Wev(c, λ) is the universal enveloping VOA (de Sole, Kac, 2005).
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19. 1-parameter quotients of Wev(c , λ)

Each weight space of Wev(c , λ) is a free module over C[c , λ].

Let I ⊆ C[c, λ] be a prime ideal and let I · Wev(c , λ) be the VOA
ideal generated by I .

The quotient

Wev,I (c, λ) =Wev(c, λ)/(I · Wev(c , λ))

is a VOA over R = C[c , λ]/I .

Weight spaces are free R-modules, same rank as before.

Wev,I (c , λ) is simple for a generic ideal I . But for certain discrete
families of ideals I , Wev,I (c , λ) is not simple.

Let Wev
I (c , λ) be simple graded quotient of Wev,I (c , λ).

It is a one-parameter VOA, and V (I ) is called its truncation curve.
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20. Truncation curve V (I2n) for Wk(sp2n, fprin)

Let I2n = (p2n(c , λ)), where

p2n(c , λ) = f (c , n) + λg(c , n) + λ2h(c , n), and

f (c, n) = −204c2 − 192c3 + 171c4 + 952cn − 4612c2n + 2348c3n

− 38c4n + 1568n2 − 7708cn2 + 1788c2n2 + 2401c3n2 − 74c4n2

+ 560n3 − 18936cn3 + 22280c2n3 − 2112c3n3 + 8c4n3

− 16304n4 + 18640cn4 + 3420c2n4 − 364c3n4 + 8c4n4

− 17408n5 + 27680cn5 − 10576c2n5 + 304c3n5 − 3264n6

− 3072cn6 + 2736c2n6,

g(c , n) = −14(−1 + c)(−1 + 2c)(22 + 5c)(−2 + n)(−1 + n)

(3c + 10n + 2cn + 12n2)(5c + 28n + 2cn + 40n2),

h(c , n) = 49(−1 + c)2(22 + 5c)2(21c2 + 70cn − 14c2n + 200n2

− 135cn2 − 26c2n2 + 380n3 − 176cn3 + 8c2n3 + 436n4

+ 132cn4 + 8c2n4 + 448n5 + 112cn5 + 336n6).



21. One-parameter VOAs of type W(2, 4, 6)

Thm: There are exactly three distinct one-parameter VOAs of
type W(2, 4, 6) that arise as quotients of Wev(c , λ).

1. Wk(sp6, fprin) corresponds to the ideal I6.

2. C k
2 corresponds to the ideal J2 = (q2(c , λ)) where

q2(c , λ) = 7λ(−1 + c)(−17 + 2c)(22 + 5c) + 82− 47c − 10c2.

3. C k
−1/2 corresponds to the ideal J−1/2 = (q−1/2(c , λ)) where

q−1/2(c , λ) = 7λ(−41+c)(−1+c)(22+5c)−14+309c+5c2.

The proof of our isomorphisms Ck,2
∼=W`(sp2n, fprin) involves

finding intersection points on the curves V (J2) and V (I2n).
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22. A word about coincidences

Let I , J be ideals in C[c , λ], and Wev
I (c , λ), Wev

J (c , λ) the
corresponding simple, one-parameter quotients of Wev(c , λ).

Aside from degenerate cases, pointwise coincidences between the
simple quotients correspond to intersection points in V (I ) ∩ V (J).

Often, Wev
I (c , λ) and Wev

I (c, λ) are isomorphic to vertex algebras
Ak and B` via rational parametrizations

k 7→ ((c(k), λ(k)), ` 7→ (c(`), λ(`))

of the curves V (I ) and V (J), respectively. In our examples,
Ak = Ck2 and B` =W`(sp2n, fprin).

Subtlety 1: Specialization of C k
2 at a number k = k0 can be a

proper subset of the coset Com(Vk0+2(sl2), V k0(sl2), L2(sl2)).

Subtlety 2: If k0 is a pole of c(k) or λ(k), even if Ck0,2 is defined,
it is not obtained as a quotient of Wev(c, λ) at this point.

Neither of these problems occur in our examples.
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23. Some open problems

Consider the diagonal coset

C k1,k2(sln) = Com(V k1+k2(sln), V k1(sln)⊗ V k2(sln)).

This has a stabilization property as n→∞.

Both the graded character up to weight k, and the strong
generating type up to weight k , are independent of N for N > k .

In the stable limit, the algebra is of type
W(2, 3, 42, 52, 64, 74, 87, . . . ).

Idea: Generating type of C k1,k2(sln) is the same as V k(sln)SLn .

Need first and second fundamental theorems of invariant theory for
the adjoint representation of SLn (Procesi, 1976).

Description of generators (FFT) is independent of n, although
relations depend on n.



23. Some open problems

Consider the diagonal coset

C k1,k2(sln) = Com(V k1+k2(sln), V k1(sln)⊗ V k2(sln)).

This has a stabilization property as n→∞.

Both the graded character up to weight k, and the strong
generating type up to weight k , are independent of N for N > k .

In the stable limit, the algebra is of type
W(2, 3, 42, 52, 64, 74, 87, . . . ).

Idea: Generating type of C k1,k2(sln) is the same as V k(sln)SLn .

Need first and second fundamental theorems of invariant theory for
the adjoint representation of SLn (Procesi, 1976).

Description of generators (FFT) is independent of n, although
relations depend on n.



23. Some open problems

Consider the diagonal coset

C k1,k2(sln) = Com(V k1+k2(sln), V k1(sln)⊗ V k2(sln)).

This has a stabilization property as n→∞.

Both the graded character up to weight k, and the strong
generating type up to weight k , are independent of N for N > k .

In the stable limit, the algebra is of type
W(2, 3, 42, 52, 64, 74, 87, . . . ).

Idea: Generating type of C k1,k2(sln) is the same as V k(sln)SLn .

Need first and second fundamental theorems of invariant theory for
the adjoint representation of SLn (Procesi, 1976).

Description of generators (FFT) is independent of n, although
relations depend on n.



23. Some open problems

Consider the diagonal coset

C k1,k2(sln) = Com(V k1+k2(sln), V k1(sln)⊗ V k2(sln)).

This has a stabilization property as n→∞.

Both the graded character up to weight k, and the strong
generating type up to weight k , are independent of N for N > k .

In the stable limit, the algebra is of type
W(2, 3, 42, 52, 64, 74, 87, . . . ).

Idea: Generating type of C k1,k2(sln) is the same as V k(sln)SLn .

Need first and second fundamental theorems of invariant theory for
the adjoint representation of SLn (Procesi, 1976).

Description of generators (FFT) is independent of n, although
relations depend on n.



23. Some open problems

Consider the diagonal coset

C k1,k2(sln) = Com(V k1+k2(sln), V k1(sln)⊗ V k2(sln)).

This has a stabilization property as n→∞.

Both the graded character up to weight k, and the strong
generating type up to weight k , are independent of N for N > k .

In the stable limit, the algebra is of type
W(2, 3, 42, 52, 64, 74, 87, . . . ).

Idea: Generating type of C k1,k2(sln) is the same as V k(sln)SLn .

Need first and second fundamental theorems of invariant theory for
the adjoint representation of SLn (Procesi, 1976).

Description of generators (FFT) is independent of n, although
relations depend on n.



23. Some open problems

Consider the diagonal coset

C k1,k2(sln) = Com(V k1+k2(sln), V k1(sln)⊗ V k2(sln)).

This has a stabilization property as n→∞.

Both the graded character up to weight k, and the strong
generating type up to weight k , are independent of N for N > k .

In the stable limit, the algebra is of type
W(2, 3, 42, 52, 64, 74, 87, . . . ).

Idea: Generating type of C k1,k2(sln) is the same as V k(sln)SLn .

Need first and second fundamental theorems of invariant theory for
the adjoint representation of SLn (Procesi, 1976).

Description of generators (FFT) is independent of n, although
relations depend on n.



23. Some open problems

Consider the diagonal coset

C k1,k2(sln) = Com(V k1+k2(sln), V k1(sln)⊗ V k2(sln)).

This has a stabilization property as n→∞.

Both the graded character up to weight k, and the strong
generating type up to weight k , are independent of N for N > k .

In the stable limit, the algebra is of type
W(2, 3, 42, 52, 64, 74, 87, . . . ).

Idea: Generating type of C k1,k2(sln) is the same as V k(sln)SLn .

Need first and second fundamental theorems of invariant theory for
the adjoint representation of SLn (Procesi, 1976).

Description of generators (FFT) is independent of n, although
relations depend on n.



24. Some open problems

Thm: There exists a 3-parameter vertex algebra which is freely
generated of type W(2, 3, 42, 52, 64, 74, 87, . . . ).

For each n ≥ 3, the 2-parameter coset C k1,k2(sln) arises as a
quotient of this algebra.

It is not clear if this is the universal algebra of this kind.

Question: For n ≥ 3, is there a vertex superalgebra V k,α(sln)
containing two copies of affine sln in weight 1, which is an
analogue of the large N = 4 algebra V k,α

N=4?

Question: Is there an analogue of the isomorphism
C k1,k2(sl2) ∼= Dk,α that holds for sln for n ≥ 3?
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