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Main question

Try to compute the full automorphism group of a holomorphic vertex
operator algebra V of central charge 24.

Let V1
∼= g as a Lie algebra.

The main idea is to view V as a simple current extension of
VLg ⊗ V ĝ

Λg
(proposed by Höhn);

VLg is a lattice VOA and Λg is a coinvariant lattice of the Leech
lattice Λ .

The key step is to compute the stabilizer StabAut (V )(VLg ⊗ V ĝ
Λg

)

using the theory of simple current extensions [Shimakura 2007].

It turns out Aut (V ) = Inn (V )StabAut (V )(VLg ⊗ V ĝ
Λg

),

where Inn (V ) = 〈exp(a(0)) | a ∈ V1}.

We need to know the groups Aut (VLg) and Aut (V ĝ
Λg

).
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Λg

)

using the theory of simple current extensions [Shimakura 2007].

It turns out Aut (V ) = Inn (V )StabAut (V )(VLg ⊗ V ĝ
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StabAut (V )(VLg ⊗ V ĝ
Λg

)

Set V 1 = VLg and V 2 = V ĝ
Λg

.

Let f : (Irr(V 1), q1)→ (Irr(V 2),−q2) be an isometry such that

V =
⊕

M∈Irr(V 1)

M ⊗ f (M)

Then S = {(M, f (M)) | M ∈ Irr(V 1)} is a maximal totally singular
subspace of (Irr(V 1)⊕ Irr(V 2), q1 + q2).

By [Shimakura 2007], there is an exact sequence

1→ S∗ → NAut (V )(S∗)→ StabAut (V 1⊗V 2)(S)→ 1,

where StabAut (V 1⊗V 2)(S) = {g ∈ Aut (V 1 ⊗ V 2) | S ◦ g = S}
and S∗ = dual group of S .

Note: Aut (V 1 ⊗ V 2) = Aut (V 1)×Aut (V 2) since V 1 � V 2.
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Let
µi : Aut (V i )→ O(Irr(V i ), qi ), i = 1, 2,

be the group homomorphism induced from the g -conjugate action of
Aut (V i ) on Irr(V i ),

where O(Irr(V i ), qi ) denotes the isometry group of (Irr(V i ), qi ).

Lemma

StabAut (V 1⊗V 2)(S)/(ker µ1 × ker µ2) ∼= (Imµ1) ∩ f −1(Imµ2)f .
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Let K (V ) = {g ∈ Aut (V ) | g |V1 = idV1} and define

Out(V ) = Aut (V )/K (V )Inn (V ).

Proposition

Assume ker µ2 = id . Then we have

Out(V ) ∼= µ−1
L ((Imµ1) ∩ f −1(Imµ2)f )/W (V1),

where µL : O(Lg)→ O(D(Lg), qLg) is the canonical group homomorphism
and W (V1) the Weyl group of V1.

Lemma

We have K (V ) < Inn (V ) and

K (V ) = {exp(−2π
√
−1x(0)) | x ∈ Q̃∗/Lg},

where Q̃ =
⊕s

i=1
1√
ki
Q i , Q i is the root lattice of gi and

V1
∼= g ∼= g1 ⊕ · · · ⊕ gs .
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For kerµ1, let X (L) = {h ∈ O(L) | h = id on D(L) = L∗/L} and

X (L̂) = {g ∈ O(L̂) | ḡ ∈ X (L)}.

Then we have

Lemma

ker µ1 = Inn (VLg)X (L̂g) and Imµ1
∼= O(Lg)/X (Lg).
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Aut (V ĝ
Λg

)

Recall that
Aut (VL) = N(VL)O(L̂),

where N(VL) =
〈
exp(a(0)) | a ∈ (VL)1

〉
= Inn (VL).

Moreover, there is an exact sequence of [FLM88, Proposition 5.4.1]

1→ Hom(L,Z/2Z)→ O(L̂)
ϕ→ O(L)→ 1.

When L(2) = {x ∈ L | 〈x , x〉 = 2} = ∅, the normal subgroup
N(VL) = {exp(λα(0)) | α ∈ L, λ ∈ C} is abelian and we have

N(VL) ∩ O(L̂) = Hom(L,Z/2Z) and Aut (VL)/N(VL) ∼= O(L).

In particular, we have an exact sequence

1→ N(VL)→ Aut (VL)
ϕ→ O(L)→ 1.
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Theorem

Let L be an even positive definite lattice with L(2) = ∅. Let g be a fixed
point free isometry of L and ĝ a lift of g in O(L̂). Then we have the
following exact sequences.

1 −→ Hom(L/(1− g)L,C∗) −→ NAut (VL)(〈ĝ〉) ϕ−→ NO(L)(〈g〉) −→ 1;

1 −→ Hom(L/(1− g)L,C∗) −→ CAut (VL)(ĝ)
ϕ−→ CO(L)(g) −→ 1.

It is clear that NAut (VL)(〈ĝ〉) acts on V ĝ
L and there is a group

homomorphism f : NAut (VL)(〈ĝ〉)/〈ĝ〉 −→ Aut (V ĝ
L ).

The key question is to determine if f is injective and/or surjective.

Definition

An automorphism h ∈ Aut (V ĝ
L ) is said to be an extra automorphism if it

is not in the image of f .
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Extra automorphisms

Let An be a root lattice of type An.
Let hAn be an (n + 1)-cycle in Weyl(An) ∼= Symn+1. Then the action of
hAn on sln+1(C) is given by the conjugation of P, that is,

hAn : A→ P−1AP for A ∈ sl(n + 1,C),

and
B−1PB = diag(ω, ω2, ..., 1)

where

P =


0 1 · · · 0

.

.

.
. . .

. . .
.
.
.

0 0
. . . 1

1 0 · · · 0

 and B =
1√
n + 1


ω ω2 · · · ωn 1

ω2 ω4 · · · ω2n 1

.

.

.
. . .

. . .
.
.
.

.

.

.

ωn ω2n
. . . ωn2

1
1 1 · · · 1 1

 .

Define a map σAn : sl(n + 1,C)→ sl(n + 1,C) by σAn(A) = B−1AB.
By a direct calculation, it follows that

σAnhAnσ
−1
An

(Eij) = B−1P−1BEstB
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Let ρAn = 1
2 (n − 1, n − 2, . . . ,−(n − 2),−(n − 1)) be the Weyl vector.

Define ηAn = exp( 1
n+1 (2πiρAn(0)).

Then the action of ηAn on sln+1(C) is given by ηAn : A 7→ DAD−1.

Lemma

We have σAnhAnσ
−1
An

= ηAn and σAnηAnσ
−1
An

= h−1
An

on sln+1(C).
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Let
R = Ak1 ⊕ · · · ⊕ Akj

be an orthogonal sum of simple root lattices of type A.

Let L be an even overlattice of R and ρ̂ =
∑j

i=1
1

(ki+1)ρAki
.

Set
X = L(ρ̂) = {α ∈ L | 〈α, ρ̂〉 ∈ Z}.

Then L = SpanZX ∪ R.
Set

h = hAk1
⊗ · · · ⊗ hAkj

, η = ηAk1
⊗ · · · ⊗ ηAkj

, σ = σAk1
⊗ · · · ⊗ σAkj

.

Since they are inner automorphisms, we can extend them to VL by using
the same exponential expressions.

Theorem

We have σ(V h
X ) = V h

X and σ induces an automorphism of V h
X .

C.H. Lam (A.S.) Orbifold VOAs June 25, 2019 11 / 26



Let
R = Ak1 ⊕ · · · ⊕ Akj

be an orthogonal sum of simple root lattices of type A.
Let L be an even overlattice of R and ρ̂ =

∑j
i=1

1
(ki+1)ρAki

.

Set
X = L(ρ̂) = {α ∈ L | 〈α, ρ̂〉 ∈ Z}.

Then L = SpanZX ∪ R.
Set

h = hAk1
⊗ · · · ⊗ hAkj

, η = ηAk1
⊗ · · · ⊗ ηAkj

, σ = σAk1
⊗ · · · ⊗ σAkj

.

Since they are inner automorphisms, we can extend them to VL by using
the same exponential expressions.

Theorem

We have σ(V h
X ) = V h

X and σ induces an automorphism of V h
X .

C.H. Lam (A.S.) Orbifold VOAs June 25, 2019 11 / 26



Let
R = Ak1 ⊕ · · · ⊕ Akj

be an orthogonal sum of simple root lattices of type A.
Let L be an even overlattice of R and ρ̂ =

∑j
i=1

1
(ki+1)ρAki

.
Set

X = L(ρ̂) = {α ∈ L | 〈α, ρ̂〉 ∈ Z}.

Then L = SpanZX ∪ R.
Set

h = hAk1
⊗ · · · ⊗ hAkj

, η = ηAk1
⊗ · · · ⊗ ηAkj

, σ = σAk1
⊗ · · · ⊗ σAkj

.

Since they are inner automorphisms, we can extend them to VL by using
the same exponential expressions.

Theorem

We have σ(V h
X ) = V h

X and σ induces an automorphism of V h
X .

C.H. Lam (A.S.) Orbifold VOAs June 25, 2019 11 / 26



Let
R = Ak1 ⊕ · · · ⊕ Akj

be an orthogonal sum of simple root lattices of type A.
Let L be an even overlattice of R and ρ̂ =

∑j
i=1

1
(ki+1)ρAki

.
Set

X = L(ρ̂) = {α ∈ L | 〈α, ρ̂〉 ∈ Z}.

Then L = SpanZX ∪ R.

Set

h = hAk1
⊗ · · · ⊗ hAkj

, η = ηAk1
⊗ · · · ⊗ ηAkj

, σ = σAk1
⊗ · · · ⊗ σAkj

.

Since they are inner automorphisms, we can extend them to VL by using
the same exponential expressions.

Theorem

We have σ(V h
X ) = V h

X and σ induces an automorphism of V h
X .

C.H. Lam (A.S.) Orbifold VOAs June 25, 2019 11 / 26



Let
R = Ak1 ⊕ · · · ⊕ Akj

be an orthogonal sum of simple root lattices of type A.
Let L be an even overlattice of R and ρ̂ =

∑j
i=1

1
(ki+1)ρAki

.
Set

X = L(ρ̂) = {α ∈ L | 〈α, ρ̂〉 ∈ Z}.

Then L = SpanZX ∪ R.
Set

h = hAk1
⊗ · · · ⊗ hAkj

, η = ηAk1
⊗ · · · ⊗ ηAkj

, σ = σAk1
⊗ · · · ⊗ σAkj

.

Since they are inner automorphisms, we can extend them to VL by using
the same exponential expressions.

Theorem

We have σ(V h
X ) = V h

X and σ induces an automorphism of V h
X .

C.H. Lam (A.S.) Orbifold VOAs June 25, 2019 11 / 26



Let
R = Ak1 ⊕ · · · ⊕ Akj

be an orthogonal sum of simple root lattices of type A.
Let L be an even overlattice of R and ρ̂ =

∑j
i=1

1
(ki+1)ρAki

.
Set

X = L(ρ̂) = {α ∈ L | 〈α, ρ̂〉 ∈ Z}.

Then L = SpanZX ∪ R.
Set

h = hAk1
⊗ · · · ⊗ hAkj

, η = ηAk1
⊗ · · · ⊗ ηAkj

, σ = σAk1
⊗ · · · ⊗ σAkj

.

Since they are inner automorphisms, we can extend them to VL by using
the same exponential expressions.

Theorem

We have σ(V h
X ) = V h

X and σ induces an automorphism of V h
X .

C.H. Lam (A.S.) Orbifold VOAs June 25, 2019 11 / 26



Let
R = Ak1 ⊕ · · · ⊕ Akj

be an orthogonal sum of simple root lattices of type A.
Let L be an even overlattice of R and ρ̂ =

∑j
i=1

1
(ki+1)ρAki

.
Set

X = L(ρ̂) = {α ∈ L | 〈α, ρ̂〉 ∈ Z}.

Then L = SpanZX ∪ R.
Set

h = hAk1
⊗ · · · ⊗ hAkj

, η = ηAk1
⊗ · · · ⊗ ηAkj

, σ = σAk1
⊗ · · · ⊗ σAkj

.

Since they are inner automorphisms, we can extend them to VL by using
the same exponential expressions.

Theorem

We have σ(V h
X ) = V h

X and σ induces an automorphism of V h
X .

C.H. Lam (A.S.) Orbifold VOAs June 25, 2019 11 / 26



Next, we discuss several explicit examples (10 cases mentioned by Höhn).

Table: Standard lift of g ∈ O(Λ)

Class Type rank(Λg ) |φg | ρg O(Λg ) R(V
ĝ
Λg

)

2A 1828 16 2 1/2 2.O+
8 (2) 210

2C 212 12 4 3/4 211.Sym12 21042

3B 1636 12 3 2/3 6.PSU4(3).22 38

4C 142244 10 4 3/4 [213].Sym6 2246

5B 1454 8 5 4/5 (Frob20 × O+
4 (5))/2 56

6E 12223262 8 6 5/6 D12.(O
+
4 (2)× O+

4 (3)) 2636

6G 2363 6 12 11/12 [211.34] 24.42.35

7B 1373 6 7 6/7 7.3.2.L2(7).2 75

8E 12214182 6 8 7/8 [212.3] 2.4.84

10F 22102 4 20 19/20 5.2.[28] 22.42.54

φg denotes the standard lift of g in Aut (VΛ).
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Holy construction for the Leech lattice

Let N be a Niemeier lattice with the root lattice R = R1 ⊕ · · · ⊕ Rj ,
where Ri ’s are A, D or E type .

Let ρi be a Weyl vector of Ri and set ρ = 1
h

∑j
i=1 ρi ,

where h is the Coxeter number of Ri .

Define
N(ρ) = {x ∈ N | 〈x , ρ〉 ∈ Z},

and let α ∈ ρ+ N such that 〈α, α〉 ∈ 2Z.

Then the lattice Ñρ = SpanZN(ρ) ∪ {α} is isomorphic to the Leech lattice
[Conway-Sloane, Chapter 24].
In particular, the Leech lattice contains a sublattice isometric to
R(ρ) = {x ∈ R | 〈x , ρ〉 ∈ Z}.
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We verify that all coinvariant lattices mentioned in Table above can be
realized as a lattice of the form L(ρ̂).
The result is summarized in Table 2.

Table: Coinvariant lattices as L(ρ̂)

Class Type rank(Λg ) Niemeier R Glue

2A 1828 8 A24
1 A8

1 (18)

2C 212 12 A24
1 A12

1 (112)

3B 1636 12 A12
2 A6

2 (13,−13)

4C 142244 14 A8
3 A4

3A
2
1 (111− 1|11)

5B 1454 16 A6
4 A4

4 (1243)

6E 12223262 16 A4
5D4 A2

5A
2
2A

2
1 (11|11|11)

6G 2363 18 A4
5D4 A3

5A
3
1 (551|111)

7B 1373 18 A4
6 A3

6 (124)

8E 12214182 18 A2
7D

2
5 A2

7A3A1 (13|1|1)

10F 22102 20 A2
9D6 A2

9A
2
1 (32|11)

Note that A5 > A2
2, D4 > A4

1, D5 > A3A
2
1 and D6 > A6

1 as sublattices.
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Theorem

Let g ∈ O(Λ). Suppose CO(Λg )(〈g〉)/〈g〉 acts faithfully on Λ∗g/Λg . Then
the natural homomorphism

µ2 : Aut (V ĝ
Λg

)→ O(R(V ĝ
Λg

), q)

is injective, i.e., ker µ2 = id .
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Automorphism groups

Class Type rank(Λg ) |φg | ρg O(Λg ) R(V
ĝ
Λg

) Aut (V
ĝ
Λg

)

2A 1828 16 2 1/2 2.O+
8 (2) 210 O+

10(2)

2C 212 12 4 3/4 211.Sym12 21042 212.210.Sym12.Sym3

3B 1636 12 3 2/3 6.PSU4(3).22 38 Ω−
8 (3).2

4C 142244 10 4 3/4 [213].Sym6 2246 index 2

5B 1454 8 5 4/5 (Frob20 × O+
4 (5))/2 56 Ω+

6 (5).2

6E 12223262 8 6 5/6 D12.(O
+
4 (2)× O+

4 (3)) 2636 index 2

6G 2363 6 12 11/12 [211.34] 24.42.35

7B 1373 6 7 6/7 7.3.2.L2(7).2 75 Ω5(7).2

8E 12214182 6 8 7/8 [212.3] 2.4.84 index 2

10F 22102 4 20 19/20 5.2.[28] 22.42.54
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2A element in O(Λ)

Assume that g belongs to the conjugacy class 2A of O(Λ);

the coinvariant lattice Λg is isometric to
√

2E8 and
Aut (V+√

2E8
) ∼= O+(10, 2).

Let L be an even lattice of rank 16 such that D(L) ∼= Irr(VL) ∼= Z10
2 and

〈α|α〉 ∈ Z for α ∈ L∗.
Set N =

√
2L∗. Then D(N) ∼= Z6

2. and N is a level 2 lattice. Such lattices
has been classified.

Proposition ([SV01, Theorem 2])

Up to isometry, there exist exactly 17 level 2 lattices of rank 16 with
determinant 26. Moreover, they are uniquely determined by their root
systems.

The root systems and isometry groups of the lattices in the proposition
above are summarized in Table below.
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Level 2 lattices N of rank 16 with D(N) ∼= Z6
2

Root system R(N) N/Q O(N)/W (R(N)) Isometry group O(N)

A16
1 25 AGL4(2) W (A1) o AGL4(2)

A4
3(
√

2A1)4 2341 W (D4) (W (A3)4 ×W (A1)4).W (D4)

D2
4C

4
2 23 2× Sym4 (W (D4)2 ×W (C2)4).(2× Sym4)

A2
5(
√

2A2)2C2 3161 Dih8 (W (A5)2 ×W (A2)2 ×W (C2)).Dih8

A7(
√

2A3)C2
3 2141 Z2

2 (W (A7)×W (A3)×W (C3)2).Z2
2

D2
5 (
√

2A3)2 42 Dih8 (W (D5)2 ×W (A3)2).Dih8

C4
4 21 Sym4 W (C4) o Sym4

D6C4(
√

2B3)2 22 Z2 (W (D6)×W (C4)×W (B3)2).Z2

A9(
√

2A4)(
√

2B3) 101 Z2 (W (A9)×W (A4)×W (B3)).Z2

E6(
√

2A5)C5 61 Z2 (W (E6)×W (A5)×W (C5)).Z2

C2
6 (
√

2B4) 21 Z2 W (C6) o 2×W (B4)

D8(
√

2B4)2 22 Z2 W (D8)×W (B4) o Z2

D9(
√

2A7) 81 Z2 (W (D9)×W (A7)).Z2

C8F
2
4 1 Z2 W (C8)×W (F4) o Z2

E7(
√

2B5)F4 21 1 W (E7)×W (B5)×W (F4)

C10(
√

2B6) 21 1 W (C10)×W (B6)

E8(
√

2B8) 21 1 W (B8)×W (E8)

Note: The group AGL4(2) can be regarded as a subgroup of Sym16 via
the action on the first order Reed-Muller code RM(1, 4) of length 16,
which is the glue code of the lattice with respect to A16

1 .
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K (V ) and Out(V ) for the case g ∈ 2A

No. in [Sc93] R(
√

2L∗) V1 dim V1 K(V ) Out(V )

5 A16
1 A16

1,2 48 Z5
2 AGL4(2)

16 A4
3(
√

2A1)4 A4
3,2A

4
1,1 72 Z3

2 × Z4 W (D4)

22 A2
5(
√

2A2)2C2 A2
5,2C2,1A

2
2,1 96 Z3 × Z6 Dih8

25 D2
4C

2
2 D2

4,2C
4
2,1 96 Z3

2 Z2 × Sym4

31 D2
5 (
√

2A3)2 D2
5,2A

2
3,1 120 Z2

4 Dih8

33 A7(
√

2A3)C2
3 A7,2C

2
3,1A3,1 120 Z2 × Z4 Z2

2

38 C4
4 C4

4,1 144 Z2 Sym4

39 D6C4(
√

2B3)2 D6,2C4,1B
2
3,1 144 Z2

2 Z2

40 A9(
√

2A4)(
√

2B3) A9,2A4,1B3,1 144 Z10 Z2

44 E6A(
√

2A5)C5 E6,2C5,1A5,1 168 Z6 Z2

47 D8(
√

2B4)2 D8,2B
2
4,1 192 Z2

2 Z2

48 C2
6 (
√

2B4) C2
6,1B4,1 192 Z2 Z2

50 D9(
√

2A7) D9,2A7,1 216 Z8 Z2

52 C8F
2
4 C8,1F

2
4,1 240 1 Z2

53 D7(
√

2B5)F4 E7,2B5,1F4,1 240 Z2 1

56 C10(
√

2B6) C10,1B6,1 288 Z2 1

62 (
√

2B8)E8 B8,1E8,2 384 Z2 1
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3B element in O(Λ)

Assume that g belongs to the conjugacy class 3B of O(Λ);
its cycle shape is 1636.

The coinvariant lattice Λg is isometric to the Coxeter-Todd lattice K12 of
rank 12.
Then Irr(V 2) ∼= Z8

3 and Aut (V 2) ∼= Ω−(8, 3):2, which is an index 2
subgroup of the full orthogonal group

O(Irr(V 2), q2) = GO−(8, 3) ∼= 2× Ω−(8, 3):2.

Hence µ2 : Aut (V 2)→ O(Irr(V 2), q2) is injective.
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Let L be an even lattice of rank 12 such that D(L) ∼= Irr(VL) ∼= Z8
3

and 〈α|α〉 ∈ (2/3)Z for all α ∈ L∗.

Set N =
√

3L∗. Then D(N) ∼= Z4
3 and N is a level 3 lattice.

Such lattices are also classified.

Proposition ([SV01, Theorem 3])

Up to isometry, there exist exactly 6 level 3 lattices of rank 12 with
determinant 34. Moreover, they are uniquely determined by their root
systems.
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Table: Level 3 lattices N of rank 12 with D(N) ∼= Z4
3

Root system R(N) N/Q O(N)/W (R(N)) Isometry group O(N)

A6
2 31 Z2 × Sym6 (W (A2) o Sym6).Z2

A5D4(
√

3A1)3 23 Dih12 (W (A5)×W (D4)×W (A1)3).Dih12

A8(
√

3A2)2 32 Z2
2 (W (A8)×W (A2)2).Z2

2
D7(
√

3A3)G2 41 Z2 (W (D7)×W (A3)×W (G2)).Z2

E6G
3
2 1 Z2 × Sym3 (W (E6)×W (G2) o Sym3).Z2

E7(
√

3A5) 61 Z2 (W (E7)×W (A5)).Z2

Table: K (V ) and Out(V ) for the case g ∈ 3B

No. in [Sc93] R(N) V1 dim V1 K(V ) Out(V )

6 A6
2 A6

2,3 48 Z3 Sym6

17 A5D4(
√

3A1)3 A5,3D4,3A
3
1,1 72 Z3

2 Sym3

27 A8(
√

3A2)2 A8,3A
2
2,1 96 Z2

3 Z2

32 E6G
3
2 E6,3G2,1

3 120 1 Sym3

34 D7(
√

3A3)G2 D7,3A3,1G2,1 120 Z4 1

45 E7(
√

3A5) E7,3A5,1 168 Z6 1
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5B element in O(Λ)

Assume that g belongs to the conjugacy class 5B of O(Λ);
note that its cycle shape is 1454.

The coinvariant sublattice Λg has rank 16 and the discriminant group Z4
5.

In this case, Irr(V 2) ∼= Z6
5 and Aut (V 2) is an index 2 subgroup of

GO+
6 (5).

Let L be an even lattice of rank 8 such that D(L) ∼= Irr(VL) ∼= Z6
5 and

〈α|α〉 ∈ (2/5)Z for all α ∈ L∗.
Then N =

√
5L∗ is even and D(N) ∼= Z2

5.
There are two such lattices and their root system are A2

4 and D6(
√

5A2
1).

Table: Level 5 lattices N of rank 8 with D(N) ∼= Z2
5

Root system R(N) N/Q O(N)/W (R(N)) Isometry group O(N)

A2
4 1 Dih8 (2×W (A4)) o Sym2

D6(
√

5A2
1) 22 Sym2 (W (D6)×W (A1)2).2
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Table: K (V ) and Out(V ) for the case g ∈ 5B

No. in [Sc93] R(N) V1 dimV1 K (V ) Out(V )

9 A5
4 A2

4,5 48 1 Z2
2

20 D6(
√

5A2
1) D6,5A

2
1,1 72 Z2

2 1
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7B element in O(Λ)

Assume that g belongs to the conjugacy class 7B of O(Λ),
which has the cycle shape 1373.

The coinvariant lattice Λg has rank 18 and Irr(V 2) ∼= Z5
7.

Moreover, Aut (V 2) is isomorphic to an index 2 subgroup of
O(Irr(V 2), q2) ∼= GO5(7).

Table: Level 7 lattices N of rank 6 with D(N) ∼= Z7

Root system R(N) N/Q O(N)/W (R(N)) Isometry group O(N)

A6 1 Z2 Z2 ×W (A6)

The group structures of K (V ) and Out(V ) are as follows.

Table: K (V ) and Out(V ) for the case g ∈ 7B

No. in [Sc93] R(N) V1 dimV1 K (V ) Out(V )

11 A6 A6,7 48 1 1
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Thank You
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J. van Ekeren, S. Möller and N. Scheithauer, Construction and
Classification of Holomorphic Vertex Operator Algebras, J. Reine
Angew. Math., Published Online.
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G. Höhn, On the Genus of the Moonshine Module, preprint.

C.H. Lam (A.S.) Orbifold VOAs June 25, 2019 26 / 26
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