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Recap: The original Zhu story

Zhu’s work: The study of n-point functions.

Definition (n-point functions)

Let V be a VOA with Virasoro vector ω of central charge c. For
v1, . . . , vn ∈ V and a weak V -module M, the n-point function is

ZM ((v1, x1), . . . , (vn, xn);

τ

)

:= trMY
(
ex1L(0)v1, e

x1
)
· · ·Y

(
exnL(0)vn, e

xn
)
qL(0)−

c
24 ,

where q := e2πiτ with τ ∈ H = {x + iy ∈ C | y > 0}.

Zhu’s core results concerning n-point functions:

Established their modularity.

Established their convergence.
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Recap: The original Zhu story

Theorem

Suppose V is a rational and C2-cofinite and V = M0,M1, . . . ,Mk be its
inequivalent irreducible modules. Moreover let vs ∈ V[wt vs ] for 1 ≤ s ≤ n.
Then

1 each ZM ((v1, x1); τ) converges on H, and

2 for any
(
a b
c d

)
∈ SL2(Z) we have there exists scalars αij ∈ C such that

ZMi

(
(v1, x1), . . . , (vn, xn);

aτ + b

cτ + d

)
= (cτ + d)

∑
wt vj

k∑
j=1

αijZMj
((v1, x1), . . . , (vn, xn); τ) .
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Recap: The original Zhu story

To establish this result Zhu introduced/enhanced a number of tools:

The change of coordinate VOA

The ‘Zhu algebra’

Introducing the theory of ODEs to study 1-point functions

Reduction formulas.

Core idea of proof

Zhu expressed n-point functions as linear combinations of (n − 1)-point
functions.

Reduced the study of n-point functions to the study of 1-point
functions.

Allowed the creation of ODEs whose solution space consisted of
1-point functions.
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Recap: Original Zhu reduction formula, Part I

Original Zhu reduction formula, Part I

We have

ZM ((a, y), (v1, x1), . . . , (vn, xn); τ)

= trM v(wt a− 1)Y
(
ex1L(0)v1, e

x1
)
· · ·Y

(
exnL(0)vn, e

xn
)
qL(0)−

c
24

+
n∑

j=1

∑
m≥0

Pm+1

(
y − xj

2πi
, τ

)
ZM ((v1, x1), . . . , (a[m]vj , xj), . . . , (vn, xn); τ) .

Where (qw = e2πiw )

Pm+1(w , τ) : =
(−1)m+1

m!

∑
n∈Z\{0}

nmqnw
1− qn

− δm,0
1

2

=
(−1)m

m!

(
1

2πi

d

dw

)n

(P1(w , τ)) .

Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019



Recap: Original Zhu reduction formula, Part I

Original Zhu reduction formula, Part I

We have

ZM ((a, y), (v1, x1), . . . , (vn, xn); τ)

= trM v(wt a− 1)Y
(
ex1L(0)v1, e

x1
)
· · ·Y

(
exnL(0)vn, e

xn
)
qL(0)−

c
24

+
n∑

j=1

∑
m≥0

Pm+1

(
y − xj

2πi
, τ

)
ZM ((v1, x1), . . . , (a[m]vj , xj), . . . , (vn, xn); τ) .

Where (qw = e2πiw )

Pm+1(w , τ) : =
(−1)m+1

m!

∑
n∈Z\{0}

nmqnw
1− qn

− δm,0
1

2

=
(−1)m

m!

(
1

2πi

d

dw

)n

(P1(w , τ)) .

Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019



Recap: Original Zhu reduction formula, Part II

Original Zhu reduction formula, Part II

Let a, v1, . . . vn ∈ V . For N ≥ 1 we have

ZM ((a[−N]v1, x1), . . . , (vn, xn); τ)

= δN,1 trM v(wt a− 1)Y
(
ex1L(0)v1, e

x1
)
· · ·Y

(
exnL(0)vn, e

xn
)
qL(0)−

c
24

+
∑
m≥0

(−1)m+1

(
m + N − 1

m

)
Gm+N(τ)ZM ((a[m]v1, x1), . . . , (vn, xn); τ)

+
n∑

j=2

∑
m≥0

(−1)N+1

(
m + N − 1

m

)
Pm+N

(
x1 − xj

2πi
, τ

)
× ZM ((v1, x1), . . . , (a[m]vj , xj), . . . , (vn, xn); τ) .

Here,
P1(w , τ) =

1

2πiw
−
∑
k≥1

Gk(τ)(2πiw)k−1.
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Recap: The original Zhu story

Rested heavily on the coefficient functions: For k ≥ 1,

G2k(τ) =
∑

(m,n)∈Z2\(0,0)

1

(mτ + n)2k
.

Modular forms for k ≥ 2.

Quasi-modular form when k = 1.

G2k(τ) holomorphic.

Notes:

1 G2

(
aτ+b
cτ+d

)
= (cτ + d)2G2(τ)− c(cτ+d)

2πi .

2 The ‘modular derivative’ defined as ϑk := 1
2πi

d
dτ + kG2(τ) is the

unique holomorphic differential operator that maps modular forms to
modular forms.
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Recap: Further iterations

To tackle modularity of trace functions:

1 Dong-Li-Mason: As mentioned before, extended to orbifold case

2 Miyamoto: C2-cofinite modularity

3 Miyamoto/Yamauchi: application to a single intertwining operator

4 Huang: Developed new theory and created a type of reduction
formula for n-many intertwining operators of a new type

5 Dong-Zhao: modularity of Z-graded VOSAs

6 Van Ekeren: modularity of Q-graded VOSAs and twisted modules

7 Miyamoto: Theta functions

8 Mason-Tuite-Zuesky: R-graded VOSAs

9 Etc.
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Recap: Other uses/occurrences

To prove other results:

1 Milas: The wronskian and number theoretic identities

2 Dong-Li-Mason: V1 is a reductive Lie algebra

3 Dong-Mason: Classifying 1-point functions for the Monster

4 Marks-K: Tool for finding noncongruence modular forms

5 Etc.

To trace functions with more than one variable:

1 Miyamoto: Study of multivariable trace functions

2 Gaberdiel-Keller: To study differential operators and CFTs

3 Mason-K: Study of two-variable (Jacobi) 1-point functions (see also
Heluani-Van Ekeren)

Note: It is this last two cases that we discuss further here.
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“Jacobi” n-point functions

Definition

Let V be a VOA with Virasoro vector ω of central charge c. Consider
J ∈ V1 such that J(0) acts semisimply on V . For v1, . . . , vn ∈ V and a
weak V -module M, the Jacobi n-point function is

Z J
M ((v1, x1), . . . , (vn, xn); z , τ)

:= trMY
(
ex1L(0)v1, e

x1
)
· · ·Y

(
exnL(0)vn, e

xn
)
ζJ(0)qL(0)−

c
24 ,

where ζ := e2πiz with z ∈ C.

Core notes:

1 Much of Zhu’s theory carries over (now Jacobi or quasi-Jacobi forms)

2 Modularity exists, but is developed differently than in Zhu (since no
ODE Frobenius-Fuch’s theory)
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Reduction formula, Part I

Reduction formula I

Let a, v1, . . . vn ∈ V with J(0)a = αa (αz 6∈ Zτ + Z). We have

Z J
M ((a, y), (v1, x1), . . . , (vn, xn); z , τ)

=
n∑

j=1

∑
m≥0

P̃m+1

(
y − xj

2πi
, αz , τ

)
× Z J

M ((v1, x1), . . . , (a[m]vj , xj), . . . , (vn, xn); z , τ) .

Here, (again qx = e2πix)
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Reduction formula, Part II

Reduction formula II

Let a, v1, . . . vn ∈ V with J(0)a = αa (αz 6∈ Zτ + Z). For N ≥ 1 we have

Z J
M ((a[−N]v1, x1), . . . , (vn, xn); z , τ)

=
∑
m≥0

(−1)m+1

(
m + N − 1

m

)
G̃m+N(αz , τ)

× Z J
M ((a[m]v1, x1), . . . , (vn, xn); z , τ)

+
n∑

j=2

∑
m≥0

(−1)N+1

(
m + N − 1

m

)
P̃m+N

(
x1 − xj

2πi
, αz , τ

)
× Z J

M ((v1, x1), . . . , (a[m]vj , xj), . . . , (vn, xn); z , τ) .

Here, (with poles at z ∈ Zτ + Z)

G̃k(z , τ) = −δk,1
qz

qz − 1
−Bk

k!
+

1

(k − 1)!

∑
n≥1

(
nk−1qzq

n

1− qzqn
+ (−1)k

nk−1q−1z qn

1− q−1z qn

)
.
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Why look at the reduction formula?

Previous uses:

1 Extend modularity of two-variable 1-point functions to n-point
functions (Mason-K)

2 Gain some control of convergence (Heluani-Van Ekeren: poles on
Zτ + Z for certain structures)

3 To study differential operators of N = 2 theories (Gaberdiel-Keller)

Our motivation:

1 Study the possible poles more closely

2 Study more elaborate differential operators of Jacobi forms

3 Use as a tool to write sums and products of quasi-Jacobi forms to
create Jacobi forms

4 Possibly gain insight in the structure of the VOA?
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Results/Progress I: Introduction of poles

Since P̃m(w , αz , τ) and Gk(αz , τ) have poles for z ∈ 1
αZτ + 1

αZ, it
appears many poles can be introduced.

Recall that the previous reduction formulas were given for αz 6∈ Zτ + Z.

What happens for αz ∈ Zτ + Z?

Ultimately, comes down to the facts that

P̃m+1(w , z , τ) has simple poles at z = λτ + µ for λ, µ ∈ Z with

residue
λmq−λw

m!2πi
and no other poles; and

This pole cancels with a zero of the trace function in the reduction
formula.
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Results/Progress I: Introduction of poles

Thus, for αz = λτ + µ ∈ Zτ + Z
the functions P̃m+1 and G̃k above can be replace with functions of
the form

Pm+1,λ (w , τ) : = lim
z→λτ+µ

(
P̃m+1(w , z , τ)− 1

(z − λτ − µ)

λmq−λw

m!2πi

)
=

(−1)m+1

m!

∑
n∈Z\{−λ}

nmqnw
1− qn+λ

and the G̃k can be replaced with

P1,λ(τ) =:
1

2πiw
−
∑
k≥1

Gk,λ(2πiw)k−1,

where it can be shown

Gk,λ(τ) =
k∑

j=0

λj

j!
Gk−j(τ).
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Results/Progress I: Introduction of poles

Theorem (Bringmann-K-Tuite)

A Jacobi n-point function for a VOA V does not have poles in C×H if
the (n − 1)-point functions do not contain poles for any choice of n − 1
vectors in V .

In other words, the reduction formulas do not introduce poles.

Note: These formula can also be deduced using a shifted Virasoro vector.
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Results/Progress II: Differential operators

Definition (Jacobi forms)

A (holomorphic) Jacobi form of weight k and index m (k ,m ∈ Z) on
SL2(Z) o Z2 is a (holomorphic) function φ : H× C→ C such that for all((

a b
c d

)
, [λ, µ]

)
∈ SL2(Z) o Z2 we have

φ

(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
= (cτ + d)k e

2πim

(
c(z+λτ+µ)2

cτ+d
−(λ2τ+2λz)

)
φ(τ, z)

for all (τ, z) ∈ H× C, and φ also has a Fourier expansion

φ(τ, z) =
∑
n≥0

∑
r2≤4mn

c(n, r)qnζr .

It is a weak Jacobi form if r2 ≤ 4mn is replaced with r ∈ Z.
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Results/Progress II: Differential operators

Definition (Quasi-Jacobi forms)

A function φ is a quasi-Jacobi form of weight k, index 0, and
depth (s, t) if there are meromorphic functions Sφj and Tφ

j

dependent only on φ such that

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)k

s∑
j=0

Sφj (τ, z)

(
ca

cτ + d

)j

for all
(
a b
c d

)
∈ SL2(Z) and

φ (τ, z + λτ + µ) =
t∑

j=0

Tφ
j (τ, z)λj

for all [λ, µ] ∈ Z2.
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Results/Progress II: Differential operators

Using the above reduction formulas and the fact certain 1-point
functions in VOAs are weak Jacobi forms, we find differential
operators which must preserve the Jacobi form transformation laws.

Gaberdiel-Keller did such an analysis for N = 2 VOSAs before and
realized the heat operator (for degree 2)

Hk,m = ϑk − D2
z −

1

2
G2(τ),

where Dx = 1
2πi

d
dx .

Are there differential operators that contain the quasi-Jacobi forms
G̃1(z , τ) and G̃2(z , τ)? (and others?)
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An example

Consider the VOA V := L
ŝl2

(m, 0) associated to the affine Lie algebra ŝl2
of level m ∈ N

where h, x , y ∈ sl2 are the typical basis elements of the Lie algebra,
and

we have h(0)x = [h, x ] = 2x and 〈x , y〉 = m.

Consider the endomorphism

S := L[−2]− 1

3

(
h[−1]2 − 1

2
x [−1]y [−1]

)
.
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An example

Then the reduction formulas show

S = L[−2]− 1

3
h[−1]2 +

1

6
x [−1]y [−1],

satisfies (for a V -module W )

ZW (S1; z , τ) = S (ZW (1; z , τ)) ,

where

S := ϑk −
1

3

[(
D2
z + 2G2(τ)

)
+

1

2

(
G̃1(2z , τ)Dz − G̃2(2z , τ)

)]
.

That is,
1

η(τ)

(
S (θ3(z , 2τ))
S (θ2(z , 2τ))

)
is a vector-valued Jacobi form.
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Another example

The same analysis for the holomorphic VOA VE8 gives

S
(
ZVE8

(1; z , τ)
)

= ZVE8
(S1; z , τ) .

From which one can deduce

S (E4,1(z , τ)) = − 7

24
E6,1(z , τ),

where Ek,m are the Jacobi-Eisenstein series of weight k and index m.

Such expressions are similar to one of the three Ramanujan equations
studies for modular derivatives and modular forms.
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Results/Progress II: Differential operators

A more general analysis finds

M =Mk,α =M(A,B),k,α,m (A,B, α ∈ Z)

:= ϑk +
1

A− 4mB

[
B
(
D2
z + 2mG2(τ)

)
.

+
A

α

(
G̃1(αz , τ)Dz −

2m

α
G̃2(αz , τ)

)]
,

preserves the transformation properties of Jacobi forms (and also the
convergence for appropriate A,B, k , α).

Higher degree differential operators can also be found.
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Results/Progress II: Differential operators

Above we realized a deviation of the ‘Serre’ derivative (which was studied
by Oberdieck)

ϑk +
1

α
G̃1(αz , τ)Dz −

2m

α2
G̃2(αz , τ).

However, does it introduce poles? (Oberdieck showed no for α = 1.)

Answer: Depends.

To see how this looks, we let N1,N2 ∈ N be uniquely defined for a
multiplier χ by

χ

(
0 1
1 1

)
= e

2πi
a1
N1 and χ(0, 1) = e

2πi
a2
N2 ,

where aj ∈ N satisfy gcd(aj ,Nj) = 1.
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Results/Progress II: Differential operators

Lemma

Let α ∈ Z.

1 The operator Mk,α maps forms transforming like Jacobi forms of
weight k with multiplier χ to forms of weight k + 2 with multiplier χ.

2 Assume that 2
αN2
∈ Z, χ

(
2
α , 0
)

= e2πi
a
N for a,N ∈ N with

gcd(a,N) = 1 and N odd, and χ
(−1 0

0 −1
)

= (−1)k . Then we have

Mk,α : Jk,m,χ → Jk+2,m,χ.

I.e., NO poles for α = ±1,±2. But for other α, poles could be introduced
(generically).
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Results/Progress II: Differential operators

By the reduction results above, however, poles are not introduced in
VOAs. This provides insight into the zeros of the partition functions
of VOAs.

I For example, suppose V is a strongly regular VOA with an
ŝl-subalgebra and that J(1)J = 2. Then dimV1,±2 = 1 and
Vn,±2n = {0} for all n ≥ 2.

Such differential operators can give information about functions that
satisfy the Jacobi form transformation properties.

I Take Tk,α = ϑk − 1
4mD2

z − 1
α G̃1(αz , τ) + 2m

α G̃2(αz , τ), and
I let c(n, r) be the coefficients in φ =

∑
n≥0,r2≤4nm c(n, r)qnζr .

I Example: If φ is a Jacobi form of weight k and index m and Tk,α(φ)
has no poles (|α| ≥ 1) , then for hm := b2

√
mc such that hm 6= 2m

α we
have c(1, hm) = 0.
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ŝl-subalgebra and that J(1)J = 2. Then dimV1,±2 = 1 and
Vn,±2n = {0} for all n ≥ 2.

Such differential operators can give information about functions that
satisfy the Jacobi form transformation properties.

I Take Tk,α = ϑk − 1
4mD2

z − 1
α G̃1(αz , τ) + 2m

α G̃2(αz , τ), and
I let c(n, r) be the coefficients in φ =

∑
n≥0,r2≤4nm c(n, r)qnζr .

I Example: If φ is a Jacobi form of weight k and index m and Tk,α(φ)
has no poles (|α| ≥ 1) , then for hm := b2

√
mc such that hm 6= 2m

α we
have c(1, hm) = 0.

Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019



Results/Progress II: Differential operators

By the reduction results above, however, poles are not introduced in
VOAs. This provides insight into the zeros of the partition functions
of VOAs.

I For example, suppose V is a strongly regular VOA with an
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The end

Thank you!

Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019



The end

Thank you!

Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019



Fermionic models

Reductions can also provide interesting sums and products of quasi-Jacobi
and Jacobi forms without differential operators.
Assume

V =
⊕

k∈ 1
2
Z Vk is an appropriate VOSA (of CFT-type, etc).

There are 2R ‘free fermion’ vectors ψ±r ∈ V 1
2

for r = 1, . . . ,R with

vertex operators Y (ψ±r , z) =
∑

n∈Z ψ
±
r (n)z−n−1 such that

ψ+
r (0)ψ−s = δr ,s1 and ψ±r (0)ψ±s = 0.

Then

J =
R∑

r=1

ψ+
r (−1)ψ−r

satisfies
J(0)ψ±r = ±ψ±r and J(1)J = R1,

i.e., 〈J, J〉 = R.
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Fermionic models

We also note that by defining Yσ(v , z) = Y (∆(σ, z)v , z) where

σ = eπiJ(0) (the fermion number automorphism), and

∆(σ, z) := z
1
2
J(0) exp

(
−1

2

∑
n≥1

J(n)
n (−z)−n

)
,

we have (V ,Yσ) is the σ-twisted V -module (by Li).

Thus we can consider

Z J
V (z , τ) := strV ζ

J(0)qL(0)−
c
24

so that using that

Jσ(0) = J(0) +
1

2
and Lσ(0) = L(0) +

1

2
J(0) +

R

8

we have

Z J
Vσ

(z , τ) := trV e iπJσ(0)ζJσ(0)qLσ(0)−
c
24 = i strV ζ

J(0)+ 1
2 qL(0)+

1
2
J(0)− (c−3R)

24 .
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Fermion model: Finding well-known functions

Taking specific endomorphism ΦR and ΨR one can find

Z J
V R
σ

(
ΦR ; z , τ

)
= FR(z , τ)

(
θ1(z , τ)

η(τ)

)R

,

Z J
V R
σ

(
ΨR ; z , τ

)
= KR(z , τ)

(
θ1(z , τ)

η(τ)

)R

,

where

Fk(z , τ) : =
(−1)k+1

k
(Pk(z , τ)− Gk(τ))

Kn(z , τ) : =
n∑

m=0

1

m!
G̃n−m(z , τ)G̃1(z , τ)m.

Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019



The end (seriously!)

Thank you!
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