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Minimal affine W–algebras

Minimal affine W–algebra Wk(g, fθ), where fθ is a minimal nilpotent
element, is the vertex algebra obtained by quantum Drinfeld-Sokolov
reduction from the affine vertex algebra V k(g).

Vertex algebra Wk(g, fθ) is strongly generated by vectors

G {u}, u ∈ g− 1
2
, of conformal weight 3

2

J{a}, a ∈ g\, of conformal weight 1

ω is the conformal vector of central charge

c(g, k) =
k dimg

k + h∨
− 6k + h∨ − 4.

For k 6= −h∨, Wk(g, fθ) has a unique simple quotient Wk(g, fθ).
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Bershadsky-Polyakov vertex algebra Wk

Bershadsky-Polyakov vertex algebra Wk :=Wk(sl3, fθ) is the minimal
affine W-algebra obtained by quantum DS reduction from V k(sl3).

Wk is generated by the fields T , J,G+,G−

we choose a new Virasoro vector

L(z) = T (z) +
1

2
DJ(z)

the fields L, J,G+,G− satisfy commutation relations:

[J(m), J(n)] = 2k+3
3 mδm+n,0, [J(m),G±(n)] = ±G±(m + n),

[L(m), J(n)] = −nJ(m + n)− (2k+3)(m+1)m
6 δm+n,0,

[L(m),G+(n)] = −nG+(m+n), [L(m),G−(n)] = (m−n)G−(m+n),
[G+(m),G−(n)] = 3(J2)(m + n) + (3(k + 1)m − (2k + 3)(m + n +

1))J(m + n)− (k + 3)L(m + n) + (k+1)(2k+3)(m−1)m
2 δm+n,0.
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Zhu algebra

Let V =
⊕∞

n=0 V (n) be a Z-graded VOA, and let dega = n for a ∈ V (n).
Define bilinear mappings ∗ : V × V −→ V , ◦ : V × V −→ V :

a ∗ b = Resz

(
Y (a, z)

(1 + z)deg a

z
b

)
,

a ◦ b = Resz

(
Y (a, z)

(1 + z)deg a

z2
b

)
,

for a ∈ V (n), b ∈ V .
Let O(V ) ⊂ V be the linear span of the elements a ◦b. The quotient space

A(V ) =
V

O(V )

is an associative algebra called the Zhu algebra of the VOA V .
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Irreducible highest weight Wk-modules

For every (x , y) ∈ C2 there exists an irreducible Wk -module L(x , y)
generated with a highest weight vector vx ,y such that

J(0)vx ,y = xvx ,y , J(n)vx ,y = 0 for n > 0,

L(0)vx ,y = yvx ,y , L(n)vx ,y = 0 for n > 0,

G−(n − 1)vx ,y = G+(n)vx ,y = 0 for n ≥ 1.
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Zhu algebra A(Wk)

Let A(Wk) denote the Zhu algebra of Wk . Let [v ] be the image of
v ∈ Wk under the mapping Wk 7→ A(Wk).

A(Wk) is generated by [G+], [G−], [J], [ω]

Zhu algebra A(Wk) is actually a quotient of another associative
algebra, called Smith algebra
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Smith-type algebra

Let g(x , y) ∈ C[x , y ] be an arbitrary polynomial. Associative algebra R(g)
of Smith type is generated by {E ,F ,X ,Y } such that Y is a central
element and the following relations hold:

XE − EX = E , XF − FX = −F , EF − FE = g(X ,Y ).

R(g) is a certain generalization of U(sl2)

highest weight modules for Smith-type algebra:

V (x , y) = R(g)⊗B Cvx ,y ,

where B =< X ,Y ,E > is a Borel subalgebra of R(g) and Cvx ,y is a
B-module such that Evx ,y = 0, Xvx ,y = xvx ,y , Yvx ,y = yvx ,y

V (x , y) has a unique simple quotient L(x , y)
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Structure of the Zhu algebra A(Wk)

Denote
E = [G+], F = [G−], X = [J], Y = [ω].

Proposition

Let R(g) be the Smith-type algebra generated by {E ,F ,X ,Y }, with

g(x , y) = −(3x2 − (2k + 3)x − (k + 3)y).

Then the Zhu algebra A(Wk) associated to the Bershadsky-Polyakov
algebra Wk is isomorphic to a certain quotient of the Smith algebra R(g).
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Structure of the Zhu algebra A(Wk)

Define functions

hi (x , y) =
1

i
(g(x , y) + g(x + 1, y) + ...+ g(x + i − 1, y))

Lemma (Arakawa 2013)

If the top level L(x , y)(0) is n-dimensional, then hn(x , y) = 0.
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Irreducible highest weight Wk-modules

We will need the following ∆-operator

∆(−J, z) = z−J(0)exp

( ∞∑
k=1

(−1)k+1−J(0)

kzk

)
,

such that ∑
n∈Z

Ψ(an)z−n−1 = Y (∆(−J, z)a, z).

Lemma (Arakawa 2013)

Let dim (L(x , y)(0)) = i . Then

Ψ(L(x , y)) ∼= L(x + i − 1− 2k + 3

3
, y − x − i + 1 +

2k + 3

3
).

Ana Kontrec (University of Zagreb) Representations ofW-algebras 12 / 28



Classification of irreducible ordinary Wk-modules for
k = −5/3

goal: classify irreducible ordinary Wk–modules(= modules with finite
dimensional L(0)–weight subspaces) for k = −5/3 (and some other
levels)

Proposition

Let k = −5
3 . Define

Sk = {(−1

9
, 0), (0, 0), (

1

3
,

1

3
), (−1

3
,

2

3
), (−4

9
,

1

3
), (−7

9
,

2

3
), }.

(i) For every (x , y) ∈ Sk , L(x , y) is a Wk–module.

(ii) Assume that L(x , y) is an ordinary Wk–module. Then it holds that
(x , y) ∈ Sk .
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Classification of irreducible ordinary W−5/3–modules
Sketch of proof

There is a singular vector in W−5/3 of level 4:

W4 = −62

9
L(−2)2

1 +
14

3
L(−4)1− 18J(−1)4

1 + 31J(−2)J(−1)2
1−

− 118J(−3)J(−1)1 +
133

9
J(−2)2

1− 8

9
J(−4)1+

+
62

9
L(−2)J(−2)1− 12L(−3)J(−1)1 + 46L(−2)J(−1)2

1−

− G+(−2)G−(−2)1 + G+(−1)G−(−3)1−
− 18J(−1)G+(−1)G−(−2)1.

From this formula, we obtain a relation in the Zhu algebra A(Wk):

[G+]2([ω] +
1

9
) = 0. (∗)
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Classification of irreducible ordinary W−5/3–modules
Sketch of proof

Let L(x , y) =
⊕∞

n=0 L(x , y)(n) be an irreducible ordinary Wk -module.
From (∗) it follows that either:

(i) L(x , y)(0) is a 1-dimensional or 2-dimensional module for the Smith
algebra R(g) and hence h1(x , y) = 0 or h2(x , y) = 0, or

(ii) y = −1/9 (we show that there are no ordinary modules satisfying this
condition)
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Classification of irreducible ordinary W−5/3–modules
Sketch of proof

Now we consider the modules Ψ(L(x , y)). Since
dim (L(x , y)(0)) <∞, the module Ψ(L(x , y)) := L(x̂ , ŷ) is also a
Wk -module with dim (L(x̂ , ŷ)(0)) <∞
=⇒ again, either:

(i’) L(x̂ , ŷ)(0) is a 1-dimensional or 2-dimensional module for the Smith
algebra R(g) and hence h1(x̂ , ŷ) = 0 or h2(x̂ , ŷ) = 0, or

(ii’) ŷ = −1/9
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Classification of irreducible ordinary W−5/3–modules
Sketch of proof

Combining these conditions we get:

(a) if dim L(x , y)(0) = 1,

h1(x , y) = h1(x̂ , ŷ) = 0 =⇒ (x , y) = (−1/9, 0)

h1(x , y) = h2(x̂ , ŷ) = 0 =⇒ (x , y) = (−4/9, 1/3) or

ŷ = −1/9 =⇒ (x , y) = (0, 0), (x , y) = (1/3, 1/3);

(b) if dim L(x , y)(0) = 2,

h2(x , y) = h1(x̂ , ŷ) = 0 =⇒ (x , y) = (−7/9, 2/3)

h2(x , y) = h2(x̂ , ŷ) = 0 =⇒ (x , y) = (−10/9, 5/4) or

ŷ = −1/9 =⇒ (x , y) = (−1/3, 2/3).
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Classification of irreducible ordinary W−5/3–modules
Sketch of proof

We need to check if L(0, 0), L(1/3, 1/3), L(−1/9, 0), L(−4/9, 1/3),
L(−1/3, 2/3), L(−7/9, 2/3), L(−10/9, 5/4) are indeed modules for Wk .

First notice that

L(−1/9, 0) = Ψ−1(L(0, 0))
L(−4/9, 1/3) = Ψ−1(L(−1/3, 2/3))
L(−7/9, 2/3) = Ψ−1(L(1/3, 1/3))

Since (x , y) ∈ C2 needs to be a zero of the polynomial
U(x , y) = [W4] =⇒ L(−10/9, 5/4) cannot be a Wk -module

We will realize L(0, 0), L(−1/3, 2/3), L(1/3, 1/3) as certain
subalgebras of the Weyl vertex algebra
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Classification of irreducible ordinary W−5/3–modules
Embedding into the Weyl vertex algebra

Proposition

Let

J = −1

3
a+
−1a
−
−11, ω =

1

2

(
a−−2a

+
−1 − a+

−2a
−
−1

)
1,

G+ =
1

3

(
a+
−1

)3
1, G− =

1

9

(
a−−1

)3
1,

where {a±n : n ∈ Z} are generators of the Weyl vertex algebra W . The

vertex subalgebra W̃k of the Weyl vertex algebra W generated by vectors
J, ω,G± is isomorphic to a certain quotient of Wk .

we will show that W̃k is in fact isomorphic to the simple quotient Wk
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Classification of irreducible ordinary W−5/3–modules
Embedding into the Weyl vertex algebra

Let g = e
2πi

3
J0 . Then g is an automorphism of W of order 3 and it holds

that
W = W (0) + W (1) + W (−1),

where
W (j) = {v ∈W | gv = e

−2πi
3

jv}, j = 0, 1, 2.

Hence W (0) is a simple vertex algebra, and W (±1) are irreducible
W (0)-modules.

Proposition

Let W be the Weyl vertex algebra, g as above. Then it holds that:

(1) Wk = W (0).

(2) W (±1) are irreducible Wk–modules of highest weight ( 1
3 ,

1
3 ), (−1

3 ,
2
3 )

respectively.
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Classification of irreducible ordinary W−5/3–modules
Embedding into the Weyl vertex algebra

Weyl vertex algebra W is a direct sum of three irreducible Wk–modules,
with the following highest weights:

W (0) has a highest weight vector 1, with the highest weight (0, 0)

W (1) has a highest weight vector a+
−11, with the highest weight

(1/3, 1/3)

W (−1) has a highest weight vector a−−11, with the highest weight
(−1/3, 2/3).

=⇒ hence L(0, 0), L(1/3, 1/3) and L(−1/3, 2/3) are irreducible
Wk–modules.
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Irreducible ordinary Wk-modules for integer levels k

Let L(x , y) be the irreducible highest weight Wk -module of weight
(x , y) ∈ C2.

for k ∈ Z, k ≥ −1, we show that the highest weights (x , y) are zeroes
of polynomials

hi (x , y) = 0, 1 ≤ i ≤ k + 2,

vectors
(G+(−1))n1, (G−(−2))n1

are singular in Wk for n = k + 2, where k ∈ Z.

Similar expressions for singular vectors also appeared in [A13], in the case
of k = p

2 − 3, p = 3, 5, 7, ...
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Irreducible ordinary Wk-modules for integer levels k

Let
Wk :=Wk/ < (G+(−1))k+2

1, (G−(−2))k+2
1 > .

Proposition

Let k ∈ Z, k ≥ −1. Isomorphism classes of irreducible Wk -modules are
contained in the set

Sk = {L(x , y) |hi (x , y) = 0, 1 ≤ i ≤ k + 2} .

question: are modules from the set Sk indeed Wk -modules?
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Classification of irreducible ordinary Wk-modules for
k = −1

k = −1 is a collapsing level for the Bershadsky-Polyakov algebra
Wk(sl(3), fθ) (cf. talks of A. Moreau, P. Papi), hence

W−1
∼= M(1).

Proposition

All irreducible W−1-modules are contained in the set

S−1 = {L(x , y) | h1(x , y) = 0}.
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Classification of irreducible ordinary Wk-modules for k = 0

Let VL = M(1)⊗ C[L] be the lattice vertex algebra associated with the
lattice L = Zα1 + Zα2, where

〈αi , αj〉 = δi ,j , i , j = 1, 2.

we consider the subalgebra V [D] = M(1)⊗ C[D] of VL, where
D = (α1 + α2).

for every x ∈ C, i = 0, 1,

V [D − iα1 − x(α1 − α2)] = V [D].e−iα1−x(α1−α2)

is an irreducible V [D]–module.
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Classification of irreducible ordinary Wk-modules for k = 0

Theorem

(1) The simple vertex algebra W0(=W0(sl(3), fθ)) can be realized as a
vertex subalgebra of V [D] generated by vectors

J 7→ α2(−1)

L 7→ 1

2

(
α1(−1)2 − α1(−2) + α2(−1)2 + α2(−2)

)
G+ 7→

√
3eα1+α2

G− 7→ −
√

3α1(−1)e−α1−α2 .

(2) W0 has two families of irreducible highest weight modules Ui (x),
i = 0, 1, x ∈ C, which are realized as

Ui (x) =W0(sl(3), fθ).e−iα1−x(α1−α2),

Highest weights of Ui (x) with respect to (J0, L0) are
(x , x2 + (i − 1)x).
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Thank you
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