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Minimal affine VW-algebras

Minimal affine WW—-algebra W*(g, fy), where f5 is a minimal nilpotent
element, is the vertex algebra obtained by quantum Drinfeld-Sokolov
reduction from the affine vertex algebra V*(g).

Vertex algebra W¥(g, fy) is strongly generated by vectors
o G4} e g 1, of conformal weight %
2

o J12} ae g% of conformal weight 1
@ w is the conformal vector of central charge

_ kdimg

= k~|—hV_6k+hv_4'

c(g, k)

For k # —hY, W¥(g, fy) has a unique simple quotient Wi (g, f).
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Bershadsky-Polyakov vertex algebra Wk

Bershadsky-Polyakov vertex algebra W := Wk(sk, fy) is the minimal
affine W-algebra obtained by quantum DS reduction from VX(sl3).

o W¥ is generated by the fields T,J, G+, G~

@ we choose a new Virasoro vector
1
L(z)=T(z)+ §DJ(Z)

e the fields L, J, G, G~ satisfy commutation relations:
[J(m), J(m)] = L2 mémyno,  [J(m), GF(n)] = £6F(m + n),
[L(m), J(n)] = —nJ(m + n) — GERIEDTGS, o,

[L(m), G*(n)] = =nG™(m-+n),  [L(m), G~ (m)] = (m—m)G(m+n),
[G+(m) G (n)] = 3(JA)(m+n) + 3k + 1)m — (2k + 3)(m + n +
D)J(m -+ n) = (k +3)L(m + n) 4 CEUERmImg,
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Zhu algebra

Let V =@)7, V(n) be a Z-graded VOA, and let dega = n for a € V/(n).
Define bilinear mappings x: VXV — V,0: V xV — V:

1 deg a
ax b= Res, (Y(a,z)Hz)b> ,
z

1 dega
ao b= Res, (Y(a,z)(—i_z)b> ,

Z2

forae V(n), be V.
Let O(V) C V be the linear span of the elements ao b. The quotient space

is an associative algebra called the Zhu algebra of the VOA V.

Ana Kontrec (University of Zagreb) Representations of WW-algebras



Irreducible highest weight YW*-modules

For every (x,y) € C? there exists an irreducible WW-module L(x, y)
generated with a highest weight vector v, , such that

J(0)vy,y = xvx,y, J(n)vx, =0forn>0,

L(O)vx,y = yvx,y, L(n)vx,y =0forn>0,
G (n—1)vy =G (n)vx, =0forn>1.
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Zhu algebra A(Wk)

Let AOVK) denote the Zhu algebra of Wk, Let [v] be the image of
v € Wk under the mapping WK — A(Wk).
o AOWK) is generated by [GT],[G7], [J], [w]
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Zhu algebra A(Wk)

Let AOVK) denote the Zhu algebra of Wk, Let [v] be the image of
v € Wk under the mapping WK — A(Wk).
o AOWK) is generated by [GT],[G7], [J], [w]
o Zhu algebra AOWVX) is actually a quotient of another associative
algebra, called Smith algebra
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Smith-type algebra

Let g(x,y) € C[x, y] be an arbitrary polynomial. Associative algebra R(g)
of Smith type is generated by {E, F, X, Y} such that Y is a central
element and the following relations hold:

XE — EX = E, XF — FX = —F, EF — FE = g(X, Y).
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Smith-type algebra

Let g(x,y) € C[x, y] be an arbitrary polynomial. Associative algebra R(g)
of Smith type is generated by {E, F, X, Y} such that Y is a central
element and the following relations hold:

XE — EX = E, XF — FX = —F, EF — FE = g(X, Y).

e R(g) is a certain generalization of U(sh)
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Smith-type algebra

Let g(x,y) € C[x, y] be an arbitrary polynomial. Associative algebra R(g)
of Smith type is generated by {E, F, X, Y} such that Y is a central
element and the following relations hold:

XE — EX = E, XF — FX = —F, EF — FE = g(X, Y).
e R(g) is a certain generalization of U(sh)
@ highest weight modules for Smith-type algebra:
V(Xa)/) = R(g) B (CVx,yv

where B =< X, Y, E > is a Borel subalgebra of R(g) and Cv, , is a
B-module such that Ev,, = 0, Xvy ), = xvy ,, Yvyx, = yvx,
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Smith-type algebra

Let g(x,y) € C[x, y] be an arbitrary polynomial. Associative algebra R(g)
of Smith type is generated by {E, F, X, Y} such that Y is a central
element and the following relations hold:

XE — EX = E, XF — FX = —F, EF — FE = g(X, Y).

e R(g) is a certain generalization of U(sh)

@ highest weight modules for Smith-type algebra:

V(Xa)/) = R(g) B (CVx,yv

where B =< X, Y, E > is a Borel subalgebra of R(g) and Cv, , is a
B-module such that Ev,, = 0, Xvy ), = xvy ,, Yvyx, = yvx,

@ V(x,y) has a unique simple quotient L(x, y)
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Structure of the Zhu algebra A(W*)

Denote
E=[G"], F=[GT], X=[J], Y = [v].

Proposition
Let R(g) be the Smith-type algebra generated by {E,F, X, Y}, with

g(x,y) = —(3x% — (2k + 3)x — (k + 3)y).

Then the Zhu algebra A(W*) associated to the Bershadsky-Polyakov
algebra W* is isomorphic to a certain quotient of the Smith algebra R(g).

v
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Structure of the Zhu algebra A(W*)

Define functions

h(x,y) = Hgley) + 80+ Ly) + o+ 8+ 1,y))

Lemma (Arakawa 2013)

If the top level L(x, y)(0) is n-dimensional, then h,(x,y) = 0.
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Irreducible highest weight YW*-modules

We will need the following A-operator

A(—J,z) = 27O exp (i 1)kl )> 5

k=1

such that

D W(an)z " = Y(A(-J, 2)a, 2).

nez

Lemma (Arakawa 2013)

Let dim (L(x,y)(0)) =i. Then

2k +3 . 2k +3
3 Yy —x—i+1+

V(L(x,y)) = Lx+i—1-
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Classification of irreducible ordinary YW,-modules for

k=—5/3

@ goal: classify irreducible ordinary Wi—modules(= modules with finite
dimensional L(0)-weight subspaces) for k = —5/3 (and some other
levels)

Let k = —%. Define

Sk =1(-5,0, 0,0, 5. 3). (~5. ) (~5:3) (- 2).

(i) For every (x,y) € Sk, L(x,y) is a Wx—module.
(ii) Assume that L(x,y) is an ordinary YW —module. Then it holds that
(X7.y) € Sk-
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Classification of irreducible ordinary WW_5 ;3—modules

Sketch of proof

@ There is a singular vector in W_g 3 of level 4:

W, = —%Z(—2)2]l + 13—41(—4)11 —18J(—1)*1 + 31J(—2)J(-1)’1—
133 8

5 g /(=M1

(—2)J(=2)1 — 12L(—=3)J(=1)1 + 46L(—2)J(—1)*1—
— GH(=2)G (-2)1+ G (-1)G (-3)1-
—18J(-1)GT(-1)G(-2)1.

— 118J(—=3)J(~1)1 +
62—
—L

9

J(—=2)%1 -

o From this formula, we obtain a relation in the Zhu algebra A(W¥):

(6] + §) =0 (4
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Classification of irreducible ordinary WW_5 ;3—modules

Sketch of proof

o Let L(x,y) = D;~ L(x,y)(n) be an irreducible ordinary Wy-module.

From (x) it follows that either:
(i) L(x,y)(0) is a 1-dimensional or 2-dimensional module for the Smith
algebra R(g) and hence hi(x,y) =0 or hy(x,y) =0, or
(i) y = —1/9 (we show that there are no ordinary modules satisfying this

condition)

Representations of WW-algebras
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Classification of irreducible ordinary WW_5 ;3—modules

Sketch of proof

@ Now we consider the modules W(L(x,y)). Since
dim (L(x, y)(0)) < oo, the module W(L(x,y)) := L(%X,y) is also a
Wi-module with dim (L(%,7)(0)) < oo
= again, either:
(i") L(%,79)(0) is a 1-dimensional or 2-dimensional module for the Smith
algebra R(g) and hence hi(%,9) =0 or hy(X,y) =0, or

(i) 9= ~1/9

Representations of WW-algebras
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Classification of irreducible ordinary WW_5 ;3—modules

Sketch of proof

@ Combining these conditions we get:
(a) if dim L(x,y)(0) =1,

hl(va) - hl()%ﬂ?) =0= (va) = (_1/9’0)
hl(X’y) - h2()?7}7) =0= (Xay) = (_4/97 1/3) or
y=-1/9= (x,y) =(0,0), (x,y) = (1/3,1/3);

(b) if dim L(x,y)(0) = 2,
hZ(X’.V) = hl()?7}7) =0= (X’.)/) = (_7/9’2/3)
h2(X7}/) = h2()?7}7) =0= (X7}/) = (_10/975/4) or
y=-1/9= (x,y) =(-1/3,2/3).
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Classification of irreducible ordinary WW_5 ;3—modules

Sketch of proof

We need to check if L(0,0), L(1/3,1/3), L(—1/9,0), L(—4/9,1/3),
L(-1/3,2/3), L(—7/9,2/3), L(—10/9,5/4) are indeed modules for W.
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Classification of irreducible ordinary WW_5 ;3—modules

Sketch of proof

We need to check if L(0,0), L(1/3,1/3), L(—1/9,0), L(—4/9,1/3),
L(-1/3,2/3), L(—7/9,2/3), L(—10/9,5/4) are indeed modules for W.

@ First notice that
o L(—1/9,0) = w~1(L(0,0))
o L(—4/9,1/3) = W1(L(~1/3,2/3))
o L(—7/9,2/3) = Ww~1(L(1/3,1/3))
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Classification of irreducible ordinary WW_5 ;3—modules

Sketch of proof

We need to check if L(0,0), L(1/3,1/3), L(—1/9,0), L(—4/9,1/3),
L(-1/3,2/3), L(—7/9,2/3), L(—10/9,5/4) are indeed modules for W.

@ First notice that

o L(—1/9,0) = w~1(L(0,0))

o L(—4/9,1/3) = W1(L(~1/3,2/3))
o L(-7/9,2/3) = V~1(L(1/3,1/3))
(

e Since (x,y) € C? needs to be a zero of the polynomial
U(x,y) = [W4] = L(—10/9,5/4) cannot be a Wy-module
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Classification of irreducible ordinary WW_5 ;3—modules

Sketch of proof

We need to check if L(0,0), L(1/3,1/3), L(—1/9,0), L(—4/9,1/3),
L(-1/3,2/3), L(—7/9,2/3), L(—10/9,5/4) are indeed modules for W.

@ First notice that
o L(—1/9,0) = w~1(L(0,0))
o L(—4/9,1/3) = W1(L(~1/3,2/3))
o L(-7/9,2/3) = V~1(L(1/3,1/3))

e Since (x,y) € C? needs to be a zero of the polynomial
U(x,y) = [W4] = L(—10/9,5/4) cannot be a Wj-module

o We will realize L(0,0),L(—1/3,2/3),L(1/3,1/3) as certain
subalgebras of the Weyl vertex algebra
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Classification of irreducible ordinary WW_5 ;3—modules
Embedding into the Weyl vertex algebra

Proposition
Let 1 1
J= —531—13:1]17 w = 5 (a:zail - afzail) L,
1 3 -1, 3
Gt = § (atl) 1, 6" = 6 (3_1) 1,

where {a : n € Z} are generators of the Weyl vertex algebra W. The
vertex subalgebra W) of the Weyl vertex algebra W generated by vectors
J,w, G* is isomorphic to a certain quotient of W,

o we will show that VV; is in fact isomorphic to the simple quotient Wi
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Classification of irreducible ordinary WW_5 ;3—modules

Embedding into the Weyl vertex algebra

Let g = e5' % Then g is an automorphism of W of order 3 and it holds
that
w=woO w4+ w1

where ' o
wl) = {veW|gv=e3'v}, j=0,1,2

Hence W(® is a simple vertex algebra, and WD) are irreducible
W(©)-modules.

Proposition

Let W be the Weyl vertex algebra, g as above. Then it holds that:

(1) Wy = w0,

(2) W are irreducible Wy—modules of highest weight (%,
respectively.

) (=3.3)

W=
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Classification of irreducible ordinary WW_5 ;3—modules

Embedding into the Weyl vertex algebra

Weyl vertex algebra W is a direct sum of three irreducible WW,—modules,
with the following highest weights:
o W) has a highest weight vector 1, with the highest weight (0, 0)
o WM has a highest weight vector ai’l]l, with the highest weight
(1/3,1/3)
o W1 has a highest weight vector a_;1, with the highest weight

(—1/3,2/3).
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Classification of irreducible ordinary WW_5 ;3—modules

Embedding into the Weyl vertex algebra

Weyl vertex algebra W is a direct sum of three irreducible WW,—modules,
with the following highest weights:
o W) has a highest weight vector 1, with the highest weight (0, 0)
o WM has a highest weight vector ai’l]l, with the highest weight
(1/3,1/3)
o W1 has a highest weight vector a_;1, with the highest weight

(—1/3,2/3).

= hence L(0,0), L(1/3,1/3) and L(—1/3,2/3) are irreducible
Wi—modules.
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Irreducible ordinary Wy-modules for integer levels k

Let L(x, y) be the irreducible highest weight W;-module of weight
(x,y) € C2.
e for k € Z, k > —1, we show that the highest weights (x, y) are zeroes
of polynomials
hi(Xay):Oa 1§I§k+27
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Irreducible ordinary Wy-modules for integer levels k

Let L(x, y) be the irreducible highest weight W;-module of weight
(x,y) € C%.
e for k € Z, k > —1, we show that the highest weights (x, y) are zeroes

of polynomials
hi(Xay):Oa 1§I§k+27

@ vectors
(G (-1)"L, (67 (-2))"1

are singular in WX for n = k 4 2, where k € Z.

Similar expressions for singular vectors also appeared in [A13], in the case
of k=%5-3,p=3,5.7,..
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Irreducible ordinary Wy-modules for integer levels k

Let
Wi = Wi/ < (GH(=1))K21, (G (=2))*+%1 > .

Proposition

Let k € Z, k > —1. Isomorphism classes of irreducible W,.-modules are
contained in the set

SkZ{L(Xay) ‘h,’(X,y)ZO, 1<i< k+2}

@ question: are modules from the set Sy indeed Wy-modules?
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Classification of irreducible ordinary YW,-modules for

k=—1

@ k= —1is a collapsing level for the Bershadsky-Polyakov algebra
Wi(sl(3), fa) (cf. talks of A. Moreau, P. Papi), hence
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Classification of irreducible ordinary YW,-modules for

k=—1

@ k= —1is a collapsing level for the Bershadsky-Polyakov algebra
Wi(sl(3), fa) (cf. talks of A. Moreau, P. Papi), hence

Proposition

All irreducible W_1-modules are contained in the set

S1= {L(Xv.y) | hl(Xay) = 0}
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Classification of irreducible ordinary W;-modules for k = 0

Let V) = M(1) ® C[L] be the lattice vertex algebra associated with the
lattice L = Zay + Zao, where

(aj, o) =6y, i,j=1,2.
@ we consider the subalgebra V[D] = M(1) ® C[D] of V|, where

D = (a1 + az).
o forevery x e C, i =0,1,

VID — iog — x(a1 — ap)] = V[D].e ior—x(ea=a2)

is an irreducible V[D]-module.
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Classification of irreducible ordinary W;-modules for k = 0

(1) The simple vertex algebra Wo(= W (sl(3), fa)) can be realized as a
vertex subalgebra of V/[D] generated by vectors

J— OQ(—].)
L— % (al(—1)2 = 011(—2) + 042(—1)2 -+ OQ(—2))
Gt — \/gearﬁ-az

G~ — —V3ay(—1)e @2,

(2) Wo has two families of irreducible highest weight modules U;(x),
i=0,1, x € C, which are realized as

Ui(x) = Wo(sI(3), fy).e~er—x(eame2),

Highest weights of U;(x) with respect to (Jo, Lo) are
(x,x2 + (i — 1)x).
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