Smith algebra and classification of irreducible modules for certain W-algebras

Ana Kontrec

University of Zagreb

joint work with D. Adamović

Supported by ZCI QuantiXlie

akontrec@gmail.com

Znanstveni centar izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri

Projekt KK.01.1.1.01.0004

Projekt je sufinancirala Europska unija iz Europskog fonda za regionalni razvoj. Sadržaj ovog seminara isključiva je odgovornost Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu te ne predstavlja nužno stajalište Europske unije.

Europska unija Zajedno do fondova EU

EUROPSKA UNIJA Europski fond za regionalni razvoj

PROVEDBA VRHUNSKIH ISTRAŽIVANJA U SKLOPU ZNANSTVENOG CENTRA IZVRSNOSTI ZA KVANTNE I KOMPLEKSNE SUSTAVE TE REPREZENTACIJE LIEJEVIH ALGEBRI

EUROPSKA UNIJA Zajedno do fondova EU

(日) (周) (三) (三)

э

 ${f 1}$ Bershadsky-Polyakov vertex algebra ${\cal W}^k$

2 Structure of the Zhu algebra $A(\mathcal{W}^k)$

Smith-type algebra

4 Classification of irreducible ordinary W_k -modules for $k = -\frac{5}{3}$

5 Irreducible ordinary W_k -modules for integer levels k

(日) (周) (三) (三)

Minimal affine \mathcal{W} -algebra $\mathcal{W}^k(\mathfrak{g}, f_\theta)$, where f_θ is a minimal nilpotent element, is the vertex algebra obtained by quantum Drinfeld-Sokolov reduction from the affine vertex algebra $\mathcal{V}^k(\mathfrak{g})$.

Vertex algebra $\mathcal{W}^k(\mathfrak{g}, f_{ heta})$ is strongly generated by vectors

- $G^{\{u\}}$, $u \in \mathfrak{g}_{-\frac{1}{2}}$, of conformal weight $\frac{3}{2}$
- $J^{\{a\}}$, $a\in \mathfrak{g}^{
 atural}$, of conformal weight 1
- ω is the conformal vector of central charge

$$c(\mathfrak{g},k)=rac{k\dim\mathfrak{g}}{k+h^{ee}}-6k+h^{ee}-4.$$

For $k \neq -h^{\vee}$, $\mathcal{W}^k(\mathfrak{g}, f_{\theta})$ has a unique simple quotient $\mathcal{W}_k(\mathfrak{g}, f_{\theta})$.

・ロン ・聞と ・ヨン ・ヨン … ヨ

Bershadsky-Polyakov vertex algebra \mathcal{W}^k

Bershadsky-Polyakov vertex algebra $\mathcal{W}^k := \mathcal{W}^k(sl_3, f_\theta)$ is the minimal affine \mathcal{W} -algebra obtained by quantum DS reduction from $V^k(sl_3)$.

- \mathcal{W}^k is generated by the fields $\mathcal{T}, \mathcal{J}, \mathcal{G}^+, \mathcal{G}^-$
- we choose a new Virasoro vector

$$L(z) = T(z) + \frac{1}{2}DJ(z)$$

• the fields L, J, G^+, G^- satisfy commutation relations:

$$\begin{split} & [J(m), J(n)] = \frac{2k+3}{3} m \delta_{m+n,0}, \quad [J(m), G^{\pm}(n)] = \pm G^{\pm}(m+n), \\ & [L(m), J(n)] = -nJ(m+n) - \frac{(2k+3)(m+1)m}{6} \delta_{m+n,0}, \\ & [L(m), G^{+}(n)] = -nG^{+}(m+n), \quad [L(m), G^{-}(n)] = (m-n)G^{-}(m+n), \\ & [G^{+}(m), G^{-}(n)] = 3(J^{2})(m+n) + (3(k+1)m - (2k+3)(m+n+1))J(m+n) - (k+3)L(m+n) + \frac{(k+1)(2k+3)(m-1)m}{2} \delta_{m+n,0}. \end{split}$$

Zhu algebra

Let $V = \bigoplus_{n=0}^{\infty} V(n)$ be a \mathbb{Z} -graded VOA, and let dega = n for $a \in V(n)$. Define bilinear mappings $* : V \times V \longrightarrow V$, $\circ : V \times V \longrightarrow V$:

$$a * b = \operatorname{Res}_{z}\left(Y(a,z)\frac{(1+z)^{\deg a}}{z}b\right),$$

$$a \circ b = \operatorname{Res}_{z}\left(Y(a,z)\frac{(1+z)^{\deg a}}{z^{2}}b\right).$$

for $a \in V(n)$, $b \in V$. Let $O(V) \subset V$ be the linear span of the elements $a \circ b$. The quotient space

$$A(V) = \frac{V}{O(V)}$$

is an associative algebra called the Zhu algebra of the VOA V.

For every $(x, y) \in \mathbb{C}^2$ there exists an irreducible \mathcal{W}^k -module L(x, y) generated with a highest weight vector $v_{x,y}$ such that

$$J(0)v_{x,y} = xv_{x,y}, \quad J(n)v_{x,y} = 0 \text{ for } n > 0,$$

$$L(0)v_{x,y} = yv_{x,y}, \quad L(n)v_{x,y} = 0 \text{ for } n > 0,$$

$$G^{-}(n-1)v_{x,y} = G^{+}(n)v_{x,y} = 0 \text{ for } n \ge 1.$$

- Let $A(\mathcal{W}^k)$ denote the Zhu algebra of \mathcal{W}^k . Let [v] be the image of $v \in \mathcal{W}^k$ under the mapping $\mathcal{W}^k \mapsto \mathcal{A}(\mathcal{W}^k)$.
 - $A(\mathcal{W}^k)$ is generated by $[G^+], [G^-], [J], [\omega]$

- ∢ ∃ ▶

- Let $A(\mathcal{W}^k)$ denote the Zhu algebra of \mathcal{W}^k . Let [v] be the image of $v \in \mathcal{W}^k$ under the mapping $\mathcal{W}^k \mapsto A(\mathcal{W}^k)$.
 - $A(\mathcal{W}^k)$ is generated by $[G^+], [G^-], [J], [\omega]$
 - Zhu algebra $A(\mathcal{W}^k)$ is actually a quotient of another associative algebra, called Smith algebra

$$XE - EX = E$$
, $XF - FX = -F$, $EF - FE = g(X, Y)$.

$$XE - EX = E$$
, $XF - FX = -F$, $EF - FE = g(X, Y)$.

• R(g) is a certain generalization of $U(sl_2)$

$$XE - EX = E$$
, $XF - FX = -F$, $EF - FE = g(X, Y)$.

- R(g) is a certain generalization of $U(sl_2)$
- highest weight modules for Smith-type algebra:

$$V(x,y)=R(g)\otimes_B \mathbb{C}v_{x,y},$$

where $B = \langle X, Y, E \rangle$ is a Borel subalgebra of R(g) and $\mathbb{C}v_{x,y}$ is a *B*-module such that $Ev_{x,y} = 0$, $Xv_{x,y} = xv_{x,y}$, $Yv_{x,y} = yv_{x,y}$

$$XE - EX = E$$
, $XF - FX = -F$, $EF - FE = g(X, Y)$.

- R(g) is a certain generalization of $U(sl_2)$
- highest weight modules for Smith-type algebra:

$$V(x,y)=R(g)\otimes_B \mathbb{C}v_{x,y},$$

where $B = \langle X, Y, E \rangle$ is a Borel subalgebra of R(g) and $\mathbb{C}v_{x,y}$ is a *B*-module such that $Ev_{x,y} = 0$, $Xv_{x,y} = xv_{x,y}$, $Yv_{x,y} = yv_{x,y}$

• V(x, y) has a unique simple quotient L(x, y)

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト …

Denote

$$E = [G^+], F = [G^-], X = [J], Y = [\omega].$$

Proposition

Let R(g) be the Smith-type algebra generated by $\{E, F, X, Y\}$, with

$$g(x,y) = -(3x^2 - (2k+3)x - (k+3)y).$$

Then the Zhu algebra $A(W^k)$ associated to the Bershadsky-Polyakov algebra W^k is isomorphic to a certain quotient of the Smith algebra R(g).

Define functions

$$h_i(x,y) = \frac{1}{i}(g(x,y) + g(x+1,y) + ... + g(x+i-1,y))$$

Lemma (Arakawa 2013)

If the top level L(x, y)(0) is n-dimensional, then $h_n(x, y) = 0$.

< 3 > < 3 >

Irreducible highest weight \mathcal{W}^k -modules

We will need the following Δ -operator

$$\Delta(-J,z) = z^{-J(0)} exp\left(\sum_{k=1}^{\infty} (-1)^{k+1} \frac{-J(0)}{kz^k}\right),$$

such that

$$\sum_{n\in\mathbb{Z}}\Psi(a_n)z^{-n-1}=Y(\Delta(-J,z)a,z).$$

Lemma (Arakawa 2013)

Let dim (L(x, y)(0)) = i. Then

$$\Psi(L(x,y)) \cong L(x+i-1-\frac{2k+3}{3}, y-x-i+1+\frac{2k+3}{3}).$$

Classification of irreducible ordinary W_k -modules for k = -5/3

• goal: classify irreducible ordinary W_k -modules(= modules with finite dimensional L(0)-weight subspaces) for k = -5/3 (and some other levels)

Proposition

Let $k = -\frac{5}{3}$. Define

$$\mathcal{S}_{k} = \{(-\frac{1}{9}, 0), (0, 0), (\frac{1}{3}, \frac{1}{3}), (-\frac{1}{3}, \frac{2}{3}), (-\frac{4}{9}, \frac{1}{3}), (-\frac{7}{9}, \frac{2}{3}), \}.$$

(i) For every $(x, y) \in S_k$, L(x, y) is a W_k -module.

(ii) Assume that L(x, y) is an ordinary W_k -module. Then it holds that $(x, y) \in S_k$.

(日) (四) (日) (日) (日)

• There is a singular vector in $\mathcal{W}_{-5/3}$ of level 4:

$$\begin{split} \mathcal{N}_4 &= -\frac{62}{9}\overline{L}(-2)^2\mathbbm{1} + \frac{14}{3}\overline{L}(-4)\mathbbm{1} - 18J(-1)^4\mathbbm{1} + 31J(-2)J(-1)^2\mathbbm{1} - \\ &- 118J(-3)J(-1)\mathbbm{1} + \frac{133}{9}J(-2)^2\mathbbm{1} - \frac{8}{9}J(-4)\mathbbm{1} + \\ &+ \frac{62}{9}\overline{L}(-2)J(-2)\mathbbm{1} - 12\overline{L}(-3)J(-1)\mathbbm{1} + 46\overline{L}(-2)J(-1)^2\mathbbm{1} - \\ &- G^+(-2)G^-(-2)\mathbbm{1} + G^+(-1)G^-(-3)\mathbbm{1} - \\ &- 18J(-1)G^+(-1)G^-(-2)\mathbbm{1}. \end{split}$$

• From this formula, we obtain a relation in the Zhu algebra $A(\mathcal{W}^k)$:

$$[G^+]^2([\omega] + \frac{1}{9}) = 0.$$
 (*)

イロト イ理ト イヨト イヨト

- Let L(x, y) = ⊕[∞]_{n=0} L(x, y)(n) be an irreducible ordinary W_k-module. From (*) it follows that either:
 - (i) L(x, y)(0) is a 1-dimensional or 2-dimensional module for the Smith algebra R(g) and hence $h_1(x, y) = 0$ or $h_2(x, y) = 0$, or
 - (ii) y = -1/9 (we show that there are no ordinary modules satisfying this condition)

- Now we consider the modules Ψ(L(x, y)). Since dim (L(x, y)(0)) < ∞, the module Ψ(L(x, y)) := L(x̂, ŷ) is also a W_k-module with dim (L(x̂, ŷ)(0)) < ∞
 - \implies again, either:
 - (i') $L(\hat{x}, \hat{y})(0)$ is a 1-dimensional or 2-dimensional module for the Smith algebra R(g) and hence $h_1(\hat{x}, \hat{y}) = 0$ or $h_2(\hat{x}, \hat{y}) = 0$, or
 - (ii') $\hat{y} = -1/9$

Combining these conditions we get:

(a) if
$$\dim L(x, y)(0) = 1$$
,

$$\begin{split} h_1(x,y) &= h_1(\hat{x},\hat{y}) = 0 \Longrightarrow (x,y) = (-1/9,0) \\ h_1(x,y) &= h_2(\hat{x},\hat{y}) = 0 \Longrightarrow (x,y) = (-4/9,1/3) \text{ or} \\ \hat{y} &= -1/9 \Longrightarrow (x,y) = (0,0), (x,y) = (1/3,1/3); \end{split}$$

(b) if dim L(x, y)(0) = 2,

$$\begin{aligned} h_2(x,y) &= h_1(\hat{x},\hat{y}) = 0 \Longrightarrow (x,y) = (-7/9,2/3) \\ h_2(x,y) &= h_2(\hat{x},\hat{y}) = 0 \Longrightarrow (x,y) = (-10/9,5/4) \text{ or } \\ \hat{y} &= -1/9 \Longrightarrow (x,y) = (-1/3,2/3). \end{aligned}$$

イロト イポト イヨト イヨト

We need to check if L(0,0), L(1/3,1/3), L(-1/9,0), L(-4/9,1/3), L(-1/3,2/3), L(-7/9,2/3), L(-10/9,5/4) are indeed modules for W_k .

イロト イポト イヨト イヨト

We need to check if L(0,0), L(1/3,1/3), L(-1/9,0), L(-4/9,1/3), L(-1/3,2/3), L(-7/9,2/3), L(-10/9,5/4) are indeed modules for W_k .

First notice that

•
$$L(-1/9,0) = \Psi^{-1}(L(0,0))$$

• $L(-4/9,1/3) = \Psi^{-1}(L(-1/3,2/3))$
• $L(-7/9,2/3) = \Psi^{-1}(L(1/3,1/3))$

We need to check if L(0,0), L(1/3,1/3), L(-1/9,0), L(-4/9,1/3), L(-1/3,2/3), L(-7/9,2/3), L(-10/9,5/4) are indeed modules for W_k .

First notice that

•
$$L(-1/9,0) = \Psi^{-1}(L(0,0))$$

• $L(-4/9,1/3) = \Psi^{-1}(L(-1/3,2/3))$
• $L(-7/9,2/3) = \Psi^{-1}(L(1/3,1/3))$

• Since $(x, y) \in \mathbb{C}^2$ needs to be a zero of the polynomial $U(x, y) = [W_4] \Longrightarrow L(-10/9, 5/4)$ cannot be a \mathcal{W}_k -module

(4月) (1日) (日)

We need to check if L(0,0), L(1/3,1/3), L(-1/9,0), L(-4/9,1/3), L(-1/3,2/3), L(-7/9,2/3), L(-10/9,5/4) are indeed modules for W_k .

First notice that

•
$$L(-1/9,0) = \Psi^{-1}(L(0,0))$$

• $L(-4/9,1/3) = \Psi^{-1}(L(-1/3,2/3))$
• $L(-7/9,2/3) = \Psi^{-1}(L(1/3,1/3))$

- Since $(x, y) \in \mathbb{C}^2$ needs to be a zero of the polynomial $U(x, y) = [W_4] \Longrightarrow L(-10/9, 5/4)$ cannot be a \mathcal{W}_k -module
- We will realize L(0,0), L(-1/3, 2/3), L(1/3, 1/3) as certain subalgebras of the Weyl vertex algebra

- 4 週 ト - 4 ヨ ト - 4 ヨ ト -

Classification of irreducible ordinary $\mathcal{W}_{-5/3}$ -modules Embedding into the Weyl vertex algebra

Proposition

Let

$$egin{aligned} &J=-rac{1}{3}a^+_{-1}a^-_{-1}\mathbbm{1},\;\omega=rac{1}{2}\left(a^-_{-2}a^+_{-1}-a^+_{-2}a^-_{-1}
ight)\mathbbm{1}\ &G^+=rac{1}{3}\left(a^+_{-1}
ight)^3\mathbbm{1},\;G^-=rac{1}{9}\left(a^-_{-1}
ight)^3\mathbbm{1}, \end{aligned}$$

where $\{a_n^{\pm} : n \in \mathbb{Z}\}$ are generators of the Weyl vertex algebra W. The vertex subalgebra $\widetilde{W_k}$ of the Weyl vertex algebra W generated by vectors J, ω, G^{\pm} is isomorphic to a certain quotient of W^k .

• we will show that $\widetilde{\mathcal{W}_k}$ is in fact isomorphic to the simple quotient \mathcal{W}_k

Classification of irreducible ordinary $\mathcal{W}_{-5/3}$ -modules Embedding into the Weyl vertex algebra

Let $g = e^{\frac{2\pi i}{3}J_0}$. Then g is an automorphism of W of order 3 and it holds that

$$W = W^{(0)} + W^{(1)} + W^{(-1)},$$

where

$$W^{(j)} = \{ v \in W | gv = e^{\frac{-2\pi i}{3}j}v \}, \quad j = 0, 1, 2.$$

Hence $W^{(0)}$ is a simple vertex algebra, and $W^{(\pm 1)}$ are irreducible $W^{(0)}$ -modules.

Proposition

Let W be the Weyl vertex algebra, g as above. Then it holds that: (1) $W_k = W^{(0)}$.

W^(±1) are irreducible W_k-modules of highest weight (¹/₃, ¹/₃), (-¹/₃, ²/₃) respectively.

э

<ロ> (日) (日) (日) (日) (日)

Weyl vertex algebra W is a direct sum of three irreducible W_k -modules, with the following highest weights:

- $W^{(0)}$ has a highest weight vector 1, with the highest weight (0,0)
- $W^{(1)}$ has a highest weight vector $a^+_{-1}\mathbbm{1}$, with the highest weight (1/3,1/3)
- $W^{(-1)}$ has a highest weight vector $a_{-1}^{-1}\mathbb{1}$, with the highest weight (-1/3, 2/3).

・ロト ・聞 ト ・ ヨト ・ ヨト …

Weyl vertex algebra W is a direct sum of three irreducible W_k -modules, with the following highest weights:

- $W^{(0)}$ has a highest weight vector 1, with the highest weight (0,0)
- $W^{(1)}$ has a highest weight vector $a^+_{-1}\mathbbm{1}$, with the highest weight (1/3,1/3)
- $W^{(-1)}$ has a highest weight vector $a_{-1}^{-1}\mathbb{1}$, with the highest weight (-1/3, 2/3).

 \implies hence L(0,0), L(1/3,1/3) and L(-1/3,2/3) are irreducible \mathcal{W}_k -modules.

イロト 不得下 イヨト イヨト 二日

Irreducible ordinary \mathcal{W}_k -modules for integer levels k

- Let L(x, y) be the irreducible highest weight W_k -module of weight $(x, y) \in \mathbb{C}^2$.
 - for k ∈ Z, k ≥ −1, we show that the highest weights (x, y) are zeroes of polynomials

 $h_i(x,y)=0, \quad 1\leq i\leq k+2,$

Irreducible ordinary \mathcal{W}_k -modules for integer levels k

Let L(x, y) be the irreducible highest weight W_k -module of weight $(x, y) \in \mathbb{C}^2$.

for k ∈ Z, k ≥ −1, we show that the highest weights (x, y) are zeroes of polynomials

$$h_i(x,y)=0, \quad 1\leq i\leq k+2,$$

vectors

$$(G^{+}(-1))^{n}\mathbb{1}, \ (G^{-}(-2))^{n}\mathbb{1}$$

are singular in \mathcal{W}^k for n = k + 2, where $k \in \mathbb{Z}$.

Similar expressions for singular vectors also appeared in [A13], in the case of $k = \frac{p}{2} - 3$, p = 3, 5, 7, ...

・ロト ・四ト ・ヨト ・ヨトー

Irreducible ordinary \mathcal{W}_k -modules for integer levels k

Let

$$\overline{\mathcal{W}_k} := \mathcal{W}_k / < (\mathcal{G}^+(-1))^{k+2}\mathbb{1}, (\mathcal{G}^-(-2))^{k+2}\mathbb{1} > .$$

Proposition

Let $k \in \mathbb{Z}$, $k \ge -1$. Isomorphism classes of irreducible $\overline{\mathcal{W}_k}$ -modules are contained in the set

$$S_k = \{L(x, y) \mid h_i(x, y) = 0, \ 1 \le i \le k+2\}.$$

• question: are modules from the set S_k indeed W_k -modules?

Classification of irreducible ordinary \mathcal{W}_k -modules for k = -1

• k = -1 is a *collapsing level* for the Bershadsky-Polyakov algebra $W_k(sl(3), f_{\theta})$ (cf. talks of A. Moreau, P. Papi), hence

 $\mathcal{W}_{-1}\cong M(1).$

Classification of irreducible ordinary \mathcal{W}_k -modules for k = -1

• k = -1 is a *collapsing level* for the Bershadsky-Polyakov algebra $W_k(sl(3), f_{\theta})$ (cf. talks of A. Moreau, P. Papi), hence

 $\mathcal{W}_{-1}\cong M(1).$

Proposition

All irreducible W_{-1} -modules are contained in the set

$$S_{-1} = \{L(x, y) \mid h_1(x, y) = 0\}.$$

Let $V_L = M(1) \otimes \mathbb{C}[L]$ be the lattice vertex algebra associated with the lattice $L = \mathbb{Z}\alpha_1 + \mathbb{Z}\alpha_2$, where

$$\langle \alpha_i, \alpha_j \rangle = \delta_{i,j}, \quad i, j = 1, 2.$$

- we consider the subalgebra $V[D] = M(1) \otimes \mathbb{C}[D]$ of V_L , where $D = (\alpha_1 + \alpha_2)$.
- for every $x \in \mathbb{C}$, i = 0, 1,

$$V[D - i\alpha_1 - x(\alpha_1 - \alpha_2)] = V[D].e^{-i\alpha_1 - x(\alpha_1 - \alpha_2)}$$

is an irreducible V[D]-module.

Classification of irreducible ordinary W_k -modules for k = 0

Theorem

(1) The simple vertex algebra $W_0(=W_0(sl(3), f_\theta))$ can be realized as a vertex subalgebra of V[D] generated by vectors

$$J \mapsto \alpha_2(-1)$$

$$L \mapsto \frac{1}{2} \left(\alpha_1(-1)^2 - \alpha_1(-2) + \alpha_2(-1)^2 + \alpha_2(-2) \right)$$

$$G^+ \mapsto \sqrt{3} e^{\alpha_1 + \alpha_2}$$

$$G^- \mapsto -\sqrt{3} \alpha_1(-1) e^{-\alpha_1 - \alpha_2}.$$

(2) \mathcal{W}_0 has two families of irreducible highest weight modules $U_i(x)$, $i = 0, 1, x \in \mathbb{C}$, which are realized as

$$U_i(x) = \mathcal{W}_0(sl(3), f_\theta) \cdot e^{-i\alpha_1 - x(\alpha_1 - \alpha_2)},$$

Highest weights of $U_i(x)$ with respect to (J_0, L_0) are $(x, x^2 + (i - 1)x)$.

- [Ad05] D. Adamović, A construction of admissible A₁⁽¹⁾-modules of level -⁴/₃, Journal of Pure and Applied Algebra, Vol. 196 (2005), pp. 119–134
- (MPP] D. Adamović, V. G. Kac, P. Möseneder Frajria, P. Papi, O. Perše, Conformal embeddings of affine vertex algebras in minimal W-algebras I: Structural results, Journal of Algebra, Vol. 500 (2018), pp. 117–152
- [Ar13] T. Arakawa, Rationality of Bershadsky-Polyakov vertex algebras, Communications in Mathematical Physics, Vol. 323, No. 2 (2013), pp. 627–633
 - [S] S.P. Smith, A class of algebras similar to the enveloping algebra of sl(2), Transactions of the American Mathematical Society, Vol. 322, No. 1 (1990), pp. 285–314

イロト イポト イヨト イヨト

Thank you

2

メロト メポト メヨト メヨト