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Definition 1

A 3-transposition group is a pair (G, I) of a group G and a set I

of involutions of G satisfying the following conditions.

(1) G is generated by I.

(2) I is closed under the conjugation, i.e., if a, b ∈ I then

ab = aba ∈ I.

(3) For any a and b ∈ I, the order of ab is bounded by 3.



Outline 3-transposition groups of symplectic type Ising vectors of σ-type VOAS generated by Ising vectors of σ-type Main Results Main results Reference

A 3-transposition group (G, I) is called indecomposable if I is

a conjugacy class of G.

An indecomposable (G, I) is called non-trivial if I is not a

singleton, i.e., G is not cyclic.

Let (G, I) be a 3-transposition group and a, b ∈ I. We define

a graph structure on I by a ∼ b if and only if a and b are

non-commutative.

It is clear that I is a connected graph if and only if I is a

single conjugacy class of G.
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Let α, β be non-zero complex numbers. Let

Bα,β(G, I) = ⊕i∈ICxi be the vector space spanned by a

formal basis {xi | i ∈ I} indexed by the set of involutions.

We define a bilinear product and a bilinear form on Bα,β(G, I)

by

xi · xj :=


2xi if i = j,

α
2
(xi + xj − xiji) if i ∼ j,

0 otherwise,

(1)
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(xi|xj) :=



β
2

if i = j,

αβ
8

i ∼ j,

0 otherwise.

(2)

Then Bα,β(G, I) is a commutative non-associative algebra

with a symmetric invariant bilinear form [Ma05].
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This algebra is called the Matsuo algebra associated with a

3-transposition group (G, I) with accessory parameters α and

β.

The radical of the bilinear form on Bα,β(G) forms an ideal.

We call the quotient algebra of Bα,β(G) by the radical of the

bilinear is the non-degenerate quotient.
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Suppose G is indecomposable. Then the number

]{j ∈ I | j ∼ i} is independent of i ∈ I if it is finite. We

denote this number by k.

One can verify that(∑
i∈I

xi
)
· xj =

(
kα

2
+ 2

)
xj.



Outline 3-transposition groups of symplectic type Ising vectors of σ-type VOAS generated by Ising vectors of σ-type Main Results Main results Reference

Suppose G is indecomposable. Then the number

]{j ∈ I | j ∼ i} is independent of i ∈ I if it is finite. We

denote this number by k.

One can verify that(∑
i∈I

xi
)
· xj =

(
kα

2
+ 2

)
xj.



Outline 3-transposition groups of symplectic type Ising vectors of σ-type VOAS generated by Ising vectors of σ-type Main Results Main results Reference

So if kα+ 4 is non-zero then

ω :=
4

kα+ 4

∑
i∈I

xi (3)

satisfies ωv = 2v for v ∈ Bα,β(G).

By the invariance, one has (xi|ω) = (xi|xi) and (ω|ω) = 2β|I|
kα+4

.
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Remark 2

A Matsuo algebra Bα,β(G) corresponds to the Griess algebra of a

VOA generated by Virasoro vectors of central charge β with binary

fusions determined by α [Ma05]. The vector ω is the conformal

vector of such a VOA.
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We now recall the notation of the Fischer space associated with a

3-transposition group. See [Ma05], [We84], [Ha89-1], [CH95] and

[As97] for detail.

A partial linear space is a pair (X,L) with X being the set of

points and L the subsets of X called the set of lines such that

any two points lie on at most one line and any line has at

least two points.

Consequently for any lines l1 and l2, we have either

l1 ∩ l2 = ∅, |l1 ∩ l2| = 1 or l1 = l2.
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The Dual affine plane of order 2 is the partial space (X,L)

such that

X = {x12, x13, x14, x23, x24, x34}

and L = {l1, l2, l3, l4}, where li = {xmn|i /∈ {m,n}}.

The Affine plane of order 3 is the partial space (X,L) such

that X = {xij|0 ≤ i ≤ j ≤ 2} and a 3-set {xij, xkl, xmn} is a

line if and only if (i+ k +m, j + l + n) ≡ (0, 0) mod 3 so

that ](L) = 12.
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A partial linear space (X,L) for which the lines consists of

three points is called an (abstract) Fischer space if it satisfies

the following property [CH95]:

(FS): For any two intersecting lines l1 and l2, the span of

them is isomorphic either to the dual affine plane of order 2 or

to the affine plane of order 3.

Proposition 3 (Fischer)

Let (G, I) be a 3-transposition group. Then the partial linear

space associated with (G, I) is a Fischer space.
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Conversely, let (X,L) be an abstract Fischer space. For

x ∈ X, let σx be the permutation of X defined by

σx(y) =

{
y if x and y are not collinear

z if {x, y, z} is a line.

The pair (G, I) is a centerfree 3-transposition group, where

I = {σx|x ∈ X} and G =< I >.
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A 3-transposition group is called of symplectic type if the affine

plane of order 3 does not occur in the associated Fischer space.

Such groups were classified in [Ha89-1] and [Ha89-2].

Theorem 4 (J.I. Hall)

An indecomposable centerfree 3-transposition group of symplectic

type is isomorphic to the extension of one of the groups:

Sn(n ≥ 3); Sp2n(2)(n ≥ 3); O+
2n(2)(n ≥ 4); and O−2n(2)(n ≥ 3),

by the direct sum of copies of the natural modules.
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Here the natural module which will be denoted by F , is

isomorphic to 22n for O±2n(2) or Sp2n(2). Note that

S4
∼= 22 : S3.
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Let V be a VOA.

A Virasoro vector e ∈ V with central charge c is called simple

if the subalgebra < e > generated by e is isomorphic to

L(c, 0).

A simple Virasoro vector of central charge 1/2 is called an

Ising vector.

Let e be an Ising vector of a VOA V of moonshine-type.

An Ising vector e is said to be of σ-type if there exists no

irreducible < e >-submodule of V isomorphic to L( 1
2
, 1

16
).
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In this case, we have

V = V [0]e ⊕ V [1/2]e (4)

where V [h]e is the sum of all irreducible < e >-submodules

isomorphic to L(1/2, h).

By the fusion rules of L(1/2, 0)-modules and based on the

decomposition (1), we can define an automorphism by

σe :=

 1 on V [0]e,

−1 on V [1/2]e.
(5)



Outline 3-transposition groups of symplectic type Ising vectors of σ-type VOAS generated by Ising vectors of σ-type Main Results Main results Reference

In this case, we have

V = V [0]e ⊕ V [1/2]e (4)

where V [h]e is the sum of all irreducible < e >-submodules

isomorphic to L(1/2, h).

By the fusion rules of L(1/2, 0)-modules and based on the

decomposition (1), we can define an automorphism by

σe :=

 1 on V [0]e,

−1 on V [1/2]e.
(5)



Outline 3-transposition groups of symplectic type Ising vectors of σ-type VOAS generated by Ising vectors of σ-type Main Results Main results Reference

The involution σe is called a Miyamoto involution of σ-type or

a σ-involution (cf. [Mi96]).

By the definition, we have the following conjugation.

Proposition 5

Let e ∈ V be an Ising vector of σ-type and g ∈ Aut(V ). Then we

have σge = gσeg
−1.
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The local structures of subalgebras of the Matsuo algebra

generated by two Ising vectors of σ-type are completely determined

in [Mi96, Ma05].

Proposition 6 ([Mi96, Ma05])

Let V be a VOA of moonshine-type and let a and b be distinct

Ising vectors of σ-type on V . Then the Griess subalgebra B

generated by a and b is one of the following.

(i) (a|b) = 0, a1b = 0 and B = Ca+ Cb. In this case σa and σb

are commutative on V .

(ii) (a|b) = 2−5, σab = σba, 4a1b = a+ b− σab and

B = Ca+ Cb+ Cσab. In this case σaσb has order three on V .
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Let V be a moonshine type VOA generated by Ising vectors of

σ-type. For simplicity, we say such VOAS satisfies Condition

1. We have

Lemma 7 ([JLY17])

Let V be a simple VOA satisfying Condition 1, then its Griess

algebra is linearly spanned by its Ising vectors of σ-type.
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Furthermore, we have

Proposition 8 ([JLY17])

Let V be a VOA satisfying Condition 1, and e, f ∈ V two Ising

vectors of σ-type such that (e|f) = 1
32

. Denote by U e,f the

subVOA generated by e and f . We have the following result.

U e,f ∼= L(
1

2
, 0)⊗ L(

7

10
, 0)⊕ L(

1

2
,
1

2
)⊗ L(

7

10
,
3

2
).
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We denote by EV the set of Ising vectors of σ-type of V and set

GV =< σe|e ∈ EV >. By Proposition 6 and Proposition 8, we

have

Proposition 9 ([Ma05], [JLY17])

Let V be a VOA satisfying Condition 1. Then GV is a

3-transposition group of symplectic type.
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The group GV in the above proposition is said to be

(1/2, 1/2)-realizable by a VOA.

Remark 10

Let V be a VOA satisfying Condition 1. It is very natural to

assume that each indecomposable component of GV is non-trivial.

Then GV is a center-free 3-transposition group of symplectic type,

and the Grieee algebra of V is a quotient of the Matsuo algebra

G1/2,1/2(GV ).



Outline 3-transposition groups of symplectic type Ising vectors of σ-type VOAS generated by Ising vectors of σ-type Main Results Main results Reference

Let R be a root lattice with root system Φ(R) of type ADE.

Denote by l the rank of R and h the Coxeter number of R.

Denote by
√

2R the lattice whose norm is twice of R’s.

Let V +√
2R

be the fixed point subalgebra of V√2R under the lift

of (-1)-isometry on R. Then V +√
2R

is moonshine-type.
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Set

s = sR :=
h

h+ 2
ω − 1

h+ 2

∑
α∈Φ(R)

e
√

2α ∈ V +√
2R
,

where ω is the Virasoro vector of V +√
2R

.

It is shown in [DLMN98] that s is a Virasoro vector with

central charge lh
h+2

.
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Then

ω̃ = ω̃R := ω − s =
2

h+ 2
ω +

1

h+ 2

∑
α∈Φ(R)

e
√

2α

is also a Virasoro vector with central charge 2l
h+2

and the

decomposition ω = s+ ω̃ is orthogonal.
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Denote [LSY07]

MR := CV +√
2R

(V ir(ω̃)) = KerV +√
2R

(ω̃0).

The commutant subalgebra MR naturally affords an action of

the Weyl group W (R) associated to the root system Φ(R)

[LSY07].

Referee [LSY07], [DLY09], [DLMN98], [KM01], [Gr98],

[JL16], [JLY17], etc. for the study of MR.
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Take R = An for example [LY00], [JL16], [La14], [JL14],

[DW10],

MAn
∼= CV√2An

(K(sl2, l))

∼= CL
ŝl2

(1,0)⊗n+1(Lŝl2(n+ 1, 0)) ∼= K(sln+1, 2).
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In general for MR and α ∈ R, let

ωα =
1

8
α(−1)α(−1)1− 1

4
(e
√

2α + e−
√

2α),

then ωα is Ising vector of σ-type and (MR)2 is linearly spanned by

{ωα|α ∈ R}. Furthermore,

EV = {ωα|α ∈ R},

except the case that R = E8 [LSY07].
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We have the following result.

Theorem 11 ([Ma05], [LSY07])

Let GV be a center-free indecomposable 3-transposition group of

symplectic type realizable by a simple vertex operator algebra V

which satisfies Condition 1 and carries a positive-definite

Hermitian form. Then (GV , V ) is one of the following:

(Sn+1,MAn
), (F : Sn+1(n ≥ 3), V +√

2An
), (F 2 : Sn(n ≥ 4), V +√

2Dn
),

(O−6 (2),ME6
), (26 : O−6 (2), V +√

2E6
), (O−8 (2),ComV +√

2E8

(MA2
)),

(Sp6(2),ME7
), (26 : Sp6(2), V +√

2E7
), (O+

8 (2)or Sp8(2) : ME8
),

(28 : O+
8 (2) or O+

10(2), V +√
2E8

).
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Remark 12

(1) The natural module F for Sn is defined as Zn−1
2 if n is odd

and as Zn−2
2 if n is even.

(2) For the pairs (G1, G2) = (O+
8 (2), Sp8(2)) and

(G1, G2) = (28 : O+
8 (2),O+

10(2)), we have G1 ≤ G2, and

B1/2,1/2(G1) is a subalgebra of B1/2,1/2(G2).

But the non-degenerate quotients of B1/2,1/2(G1) and B1/2,1/2(G2)

are the same. So they are realized by the same VOA.
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Our Goal:

Classify VOAS satisfying Condition 1.

Eliminate the positivity-condition in the classification of

center-free indecomposable 3-transpaosition groups

(1/2, 1/2)-realizable by a VOA in [Ma05].
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Theorem 13 ([JLY17])

Let V be a simple moonshine VOA generated by Ising vectors of

σ-type. Then the VOA structure of V is uniquely determined by its

Griess algebra.

Theorem 14 ([JLY17])

Let V be a moonshine VOA generated by Ising vectors of σ-type

such that GV = Sn+1. Then V is simple and isomorphic to MAn
.
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Theorem 15 ([JLY17])

Let V be a simple moonshine type VOA generated by Ising vectors

of σ-type and let VR be the real VOA generated by the set EV of

Ising vectors of V of σ-type. If the non-degenerate quotient of the

real Matsuo algebra B1/2,1/2(GV )R associated with GV is positive

definite, then VR is a compact real form of V . In this case a

non-trivial indecomposable component of the 3-transposition group

GV is isomorphic to one of the groups listed in Theorem 1 of

[Ma05].
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Conjecture 16

Let V be a moonshine type VOA generated by Ising vectors of

σ-type is simple and must be one of those listed in Theorem 11.

Conjecture 17

Let V be a simple moonshine type VOA generated by Ising vectors

of σ-type. Then the bilinear form on the R-span of EV is positive

definite, i.e., the non-degenerate quotient of the real Matsuo

algebra B1/2,1/2(GV )R associated with GV is positive definite.
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Main Theorem 1 (J-Lam-Yamauchi 19)

(1) Let V be a moonshine type VOA generated by Ising vectors of

σ-type. Then V is simple and isomorphic to one or tensor product

of the vertex operator algebras:

MAn
, ME6

, ME7
, ME8

, ComV +√
2E8

(MA2
),

V +√
2E6
, V +√

2Dn
, V +√

2An
, V +√

2E7
, V +√

2E8
.

(2) All the above vertex operator algebras are rational and

C2-cofinite.
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Main Theorem 2 (J-Lam-Yamauchi 19)

Let GV be a center-free indecomposable 3-transposition group of

symplectic type realizable by a moonshine type VOA V generated

by Ising vectors of σ-type. Then (GV , V ) is one of the pairs listed

in Theorem 11.
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