On Indecomposable N-graded Vertex Algebras

Gaywalee Yamskulna

Illinois State University

June 28th , 2019

メロト メ御 ドメ 君 ドメ 君 ドッ 君 い

 2990

- \triangleright This talk is based on the joint works with P. Jitjankarn.
- \blacktriangleright List of Topics
	- \blacktriangleright Leibniz Algebras
	- ▶ 1-Truncated Conformal Algebras and Vertex Algebroids

- \triangleright N-graded Vertex Algebras
- \triangleright Vertex Algebras Associated with Vertex Algebroids

Leibniz Algebras

 \triangleright Definition A left Leibniz algebra $\mathfrak L$ is a C-vector space equipped with a bilinear map $[,]: \mathfrak{L} \times \mathfrak{L} \rightarrow \mathfrak{L}$ satisfying the Leibniz identity

$$
[a,[b,c]] = [[a,b],c] + [b,[a,c]]
$$

for all $a, b, c \in \mathfrak{L}$.

- \blacktriangleright Examples
	- \triangleright (i) Every Lie algebra is a left Leibniz algebra.
	- \triangleright (ii) Let G be a Lie algebra and let M be a skew-symmetric G-module (i.e., $[m, g] = 0$ for all $g \in G$, $m \in M$). Then the vector space $Q = G \oplus M$ equipped with the multiplication $[u + m, v + n] = [u, v] + u \cdot n$ is a left Leibniz algebra. Here, $u, v \in G$, $m, n \in M$.
- \triangleright Definition Let $\mathfrak L$ be a left Leibniz algebra over $\mathbb C$. Let *I* be a subspace of \mathfrak{L} . I is a left (respectively, right) ideal of $\mathfrak L$ if $[\mathfrak{L}, I] \subseteq I$ (respectively, $[I, \mathfrak{L}] \subseteq I$). *I* is an *ideal* of \mathfrak{L} if it is both a left and a right ideal.
- \blacktriangleright Example: We define

$$
Leib(\mathfrak{L}) = Span\{ [u, u] | u \in \mathfrak{L} \}
$$

= Span{ [u, v] + [v, u] | u, v \in \mathfrak{L} }.

KORK EX KEY KEY YOUR

Leib(\mathfrak{L}) is an ideal of \mathfrak{L} . Moreover, for $v, w \in \text{Leib}(\mathfrak{L})$, $[v, w] = 0.$

 \triangleright Definition Let $(\mathfrak{L}, [,])$ be a left Leibniz algebra. The series of ideals

 $\mathfrak{L}^{(2)}\subseteq\mathfrak{L}^{(1)}\subseteq\mathfrak{L}$

where $\mathfrak{L}^{(1)}=[\mathfrak{L},\mathfrak{L}],\ \mathfrak{L}^{(i+1)}=[\mathfrak{L}^{(i)},\mathfrak{L}^{(i)}]$ is called the *derived* series of L.

A left Leibniz algebra ${\mathfrak{L}}$ is *solvable* if ${\mathfrak{L}}^{(m)}=0$ for some integer $m > 0$.

As in the case of Lie algebras, any left Leibniz algebra $\mathfrak L$ contains a unique maximal solvable ideal $rad(\mathfrak{L})$ called the radical of $\mathfrak L$ which contains all solvable ideals.

A O A Y A P A P A P A SHOP

Example: Leib (\mathfrak{L}) is a solvable ideal.

\blacktriangleright Definition

A left Leibniz algebra $\mathcal L$ is simple if $[\mathcal L, \mathcal L] \neq \text{Leib}(\mathcal L)$, and $\{0\}$, Leib(\mathfrak{L}), \mathfrak{L} are the only ideals of \mathfrak{L} .

KORK EX KEY KEY YOUR

A left Leibniz algebra $\mathfrak L$ is said to be semisimple if $rad(\mathfrak{L}) = Leib(\mathfrak{L}).$

▶ Remarks [Demir-Misra-Stitzinger]

- \triangleright The Leibniz algebra $\mathfrak L$ is semisimple if and only if the Lie algebra $\mathcal{L}/Leib(\mathcal{L})$ is semisimple.
- However, if $\mathcal{L}/Leib(\mathcal{L})$ is a simple Lie algebra then $\mathcal L$ is not necessarily a simple Leibniz algebra.
- Also, $\mathfrak L$ is not necessary a direct sum of simple Leibniz ideals when $\mathfrak{L}/Leib(\mathfrak{L})$ is a semisimple Lie algebra.

A DIA K PIA A BIA A BIA A Q A CA

Examples [Demir-Misra-Stitzinger]

- For a positive integer m, we set V_m to be an irreducible s/2-module of dimension m. Then $s/2 \oplus V_m$ is a simple Leibniz algebra with Leib(s $l_2 \oplus V_m = V_m$.
- ► Next, we set $U = V_m \oplus V_n$. A vector space $\mathfrak{L} = sl_2 \oplus U$ is a Leibniz algebra with $Leib(\mathfrak{L}) = U$.
	- Clearly, U, V_m , V_n are all different ideals of \mathfrak{L} .
	- Hence, $\mathfrak L$ is not a simple Leibniz algebra although $\mathfrak L/Leib(\mathfrak L)$ is a simple Lie algebra.

KORK EX KEY KEY YOUR

Eurthermore, observe that $\mathfrak L$ can not be written as a direct sum of simple Leibniz ideals.

FI Theorem [Barnes, Demir-Misra-Stitzinger]

Let $\mathfrak L$ be a left Leibniz algebra.

- \triangleright (i) There exists a subalgebra S which is a semisimple Lie algebra of $\mathfrak L$ such that $\mathfrak L = \overline{S+} rad(\mathfrak L)$. As in the case of a Lie algebra, we call S a Levi subalgebra or a Levi factor of B .
- \triangleright (ii) If $\mathfrak L$ is a semisimple Leibniz algebra then $\mathfrak{L}=(\mathcal{S}_1\oplus\mathcal{S}_2\oplus...\oplus\mathcal{S}_k)\dot{+}$ Leib $(\mathfrak{L}),$ where \mathcal{S}_j is a simple Lie algebra for all $1 \leq j \leq k$. Moreover, $[\mathfrak{L}, \mathfrak{L}] = \mathfrak{L}$.
- \triangleright (iii) If $\mathfrak L$ is a simple Leibniz algebra, then there exists a simple Lie algebra S such that $Leib(\mathfrak{L})$ is an irreducible module over S and $\mathfrak{L} = S \dot{+} Leib(\mathfrak{L})$.

KORKAR KERKER EL VOLO

 \triangleright Definition Let $\mathfrak L$ be a left Leibniz algebra. A left $\mathfrak L$ -module is a vector space M equipped with a $\mathbb C$ -bilinear map $\mathfrak{L} \times M \rightarrow M$; $(u, m) \mapsto u \cdot m$ such that

$$
([u, v]) \cdot m = u \cdot (v \cdot m) - v \cdot (u \cdot m)
$$

KORA (FRAGE) A EL VIGO

for all $u, v \in \mathfrak{L}, m \in M$.

The usual definitions of the notions of submodule, irreducibility, complete reducibility, homomorphism, isomorphism, etc., hold for left Leibniz modules.

Remark Leib(\mathfrak{L}) acts as zero on M.

1-Truncated Conformal Algebras and Vertex Algebroids

▶ Definition [Gorbounov-Malikov-Schechtman]

A 1-truncated conformal algebra is a graded vector space $C = C_0 \oplus C_1$ equipped with a linear map $\partial : C_0 \rightarrow C_1$ and bilinear operations $(u, v) \mapsto u_i v$ for $i = 0, 1$ of degree $-i - 1$ on $C = C_0 \oplus C_1$ such that the following axioms hold:

▶ (Derivation) for $a \in C_0$, $u \in C_1$,

$$
(\partial a)_0=0,\ (\partial a)_1=-a_0,\ \partial (u_0a)=u_0\partial a;
$$

► (Commutativity) for $a \in C_0$, $u, v \in C_1$,

 $u_0 a = -a_0 u$, $u_0 v = -v_0 u + \partial (u_1 v)$, $u_1 v = v_1 u$;

In (Associativity) for $\alpha, \beta, \gamma \in C_0 \oplus C_1$,

$$
\alpha_0\beta_i\gamma = \beta_i\alpha_0\gamma + (\alpha_0\beta)_i\gamma.
$$

- ▶ Definition [Bressler, Gorbounov-Malikov-Schechtman] Let $(A, *)$ be a unital commutative associative algebra over $\mathbb C$ with the identity 1. A vertex A-algebroid is a C-vector space Γ equipped with
	- 1. a C-bilinear map $A \times \Gamma \rightarrow \Gamma$, $(a, v) \mapsto a \cdot v$ such that $1 \cdot v = v$ (i.e. a nonassociative unital A-module),
	- 2. a structure of a Leibniz C-algebra $[,] : \Gamma \times \Gamma \rightarrow \Gamma$,
	- 3. a homomorphism of Leibniz C-algebra $\pi : \Gamma \to Der(A)$,
	- 4. a symmetric C-bilinear pairing $\langle , \rangle : \Gamma \otimes_{\mathbb{C}} \Gamma \to A$,
	- 5. a C-linear map ∂ : $A \rightarrow \Gamma$ such that $\pi \circ \partial = 0$ which satisfying the following conditions:

$$
a \cdot (a' \cdot v) - (a * a') \cdot v = \pi(v)(a) \cdot \partial(a') + \pi(v)(a') \cdot \partial(a),
$$

\n
$$
[u, a \cdot v] = \pi(u)(a) \cdot v + a \cdot [u, v], [u, v] + [v, u] = \partial(\langle u, v \rangle),
$$

\n
$$
\pi(a \cdot v) = a\pi(v), \langle a \cdot u, v \rangle = a * \langle u, v \rangle - \pi(u)(\pi(v)(a)),
$$

\n
$$
\pi(v)(\langle v_1, v_2 \rangle) = \langle [v, v_1], v_2 \rangle + \langle v_1, [v, v_2] \rangle,
$$

\n
$$
\partial(a * a') = a \cdot \partial(a') + a' \cdot \partial(a),
$$

\n
$$
[v, \partial(a)] = \partial(\pi(v)(a)), \langle v, \partial(a) \rangle = \pi(v)(a)
$$

4 D X 4 P X 3 X 4 B X 3 B X 9 Q O

for $a, a' \in A$, $u, v, v_1, v_2 \in \Gamma$.

Proposition[Li-Y.]

Let $(A,*)$ be a unital commutative associative algebra and let B be a module for A as a nonassociative algebra . Then a vertex A-algebroid structure on B exactly amounts to a 1-truncated conformal algebra structure on $C = A \oplus B$ with

$$
a_i a' = 0
$$
, $u_0 v = [u, v]$, $u_1 v = \langle u, v \rangle$,
\n $u_0 a = \pi(u)(a)$, $a_0 u = -u_0 a$

for $a, a' \in A$, $u, v \in B$, $i = 0, 1$ such that

$$
a \cdot (a' \cdot u) - (a * a') \cdot u = (u_0 a) \cdot \partial a' + (u_0 a') \cdot \partial a,
$$

\n
$$
u_0(a \cdot v) - a \cdot (u_0 v) = (u_0 a) \cdot v,
$$

\n
$$
u_0(a * a') = a * (u_0 a') + (u_0 a) * a',
$$

\n
$$
a_0(a' \cdot v) = a' * (a_0 v)
$$

\n
$$
(a \cdot u)_1 v = a * (u_1 v) - u_0 v_0 a,
$$

\n
$$
\partial(a * a') = a \cdot \partial(a') + a' \cdot \partial(a).
$$

4 D X 4 P X 3 X 4 B X 3 B X 9 Q O

From now, we assume that

(i) $(A, *)$ is a finite dimensional unital commutative associative algebra with the identity $\hat{1}$.

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

(ii) B is a finite dimensional vertex A -algebroid.

(iii) A is not a trivial module of the Leibniz algebra B .

Theorem

Let B be a simple Leibniz algebra such that Leib(B) \neq {0}.

- Assume that its Levi factor $S = Span\{e, f, h\}$ such that $e_0 f = h$, $h_0 e = 2e$, $h_0 f = -2f$, and $e_1 f = k\hat{1} \in (\mathbb{C}\hat{1}) \setminus \{0\}$.
- \blacktriangleright Then

• (i)
$$
e_1e = f_1f = e_1h = f_1h = 0, k = 1, h_1h = 2\hat{1}.
$$

► (ii)
$$
Ker(\partial) = \mathbb{C}\hat{1}
$$

- \blacktriangleright (III)
	- Eib(B) is an irreducible sI_2 -module of dimension 2.
	- A is a local algebra. Moreover, as a $s/2$ -module, A is a direct sum of a trivial module and an irreducible s/2-module of dimension 2.

KORK EX KEY KEY YOUR

- \blacktriangleright (iv) Let $A_{\neq 0}$ be an irreducible s/2-submodule of A that has dimension 2.
	- Exect a_0 be the highest weight vector of $A_{\neq 0}$ of weight 1 and let $a_1 = f_0 a_0$. Hence, the set $\{a_0, a_1\}$ forms a basis of $A_{\neq 0}$, the set $\{\hat{1}, a_0, a_1\}$ is a basis of A, and the set $\{\partial(a_0), \partial(a_1)\}\$ is a basis of $Leib(B)$.

Relationships among a_0 , a_1 , e , f , h , $\partial(a_0)$, $\partial(a_1)$ are desribed below:

$$
(\partial(a_0))_1 e = 0, \ (\partial(a_0))_1 f = a_1, \ (\partial(a_0))_1 h = a_0, \n(\partial(a_1))_1 e = a_0, \ (\partial(a_1))_1 f = 0, \ (\partial(a_1))_1 h = -a_1, \na_0 \cdot e = 0, \ a_0 \cdot f = \partial(a_1), \ a_0 \cdot h = \partial(a_0), \ a_0 \cdot \partial(a_i) = 0, \na_1 \cdot e = \partial(a_0), \ a_1 \cdot f = 0, \ a_1 \cdot h = -\partial(a_1), \ a_1 \cdot \partial(a_i) = 0, \na_i * a_j = 0 \text{ for all } i, j \in \{0, 1\}.
$$

Theorem Suppose that B is a semisimple Leibniz algebra such that Leib(B) \neq {0}, and Ker(∂) = {a \in A | u₀a = 0 for all $u \in B$ }.

- Assume that the Levi factor $S = Span\{e, f, h\}$ such that $e_0 f = h$, $h_0 e = 2e$, $h_0 f = -2f$ and $e_1 f = k\hat{1} \in \mathbb{C} \hat{1} \setminus \{0\}$.
- \blacktriangleright We set $A = \mathbb{C} \hat{1} \oplus_{j=1}^l \mathcal{N}^j$ where each \mathcal{N}^j is an irreducible $s/2$ -submodule of \overline{A} .
- \blacktriangleright Then

(i)
$$
e_1e = f_1f = e_1h = f_1h = 0
$$
, $k = 1$, $h_1h = 2\hat{1}$;
\n(ii) $Ker(\partial) = \mathbb{C}\hat{1}$;
\n(iii) For $j \in \{1, ..., l\}$ dim $N^j = 2$, and dim $Leib(B) = 2l$;

KORKA REPARATION ADD

(iv) A is a local algebra. For each j , we let $a_{j,0}$ be a highest weight vector of N^{j} and $a_{j,1} = f_0(a_{j,0})$. Then $\{\hat{1}, a_{j,i} \mid j \in \{1,....,I\}, \,\, i \in \{0,1\}\}$ is a basis of A, and $\{\partial(a_{i,j}) \mid j \in \{1, ..., l\}, i \in \{0, 1\}\}\$ is a basis of Leib(B). Relations among $a_{j,i}, e, f, h, \partial(a_{j,i})$ are described below:

$$
a_{j,i} * a_{j',i'} = 0,
$$

\n
$$
a_{j,0} \cdot e = 0, a_{j,1} \cdot e = \partial(a_{j,0}),
$$

\n
$$
a_{j,0} \cdot f = \partial(a_{j,1}), a_{j,1} \cdot f = 0,
$$

\n
$$
a_{j,0} \cdot h = \partial(a_{j,0}), a_{j,1} \cdot h = -\partial(a_{j,1}),
$$

\n
$$
a_{j,i} \cdot \partial(a_{j',i'}) = 0,
$$

\n
$$
\partial(a_{j,i})_1 e = e_0 a_{j,i} = (2 - i)a_{j,i-1},
$$

\n
$$
\partial(a_{j,i})_1 f = f_0 a_{j,i} = (i + 1)a_{j,i+1},
$$

\n
$$
\partial(a_{j,i})_1 h = h_0 a_{j,i} = (1 - 2i)a_{j,i}.
$$

KORA (FRAGE) A EL VIGO

We set $Ann_B(A) = \{ b \in B \mid b_0 a = 0 \text{ for all } a \in A \}.$ **Corollary**

- Ann_B $(A) = \partial(A) =$ Leib (B) ;
- \blacktriangleright B/Ann_B(A) is isomorphic to sl₂ as a Lie algebra.

Proposition [Gorbounov-Malikov-Schechtman]

If $V = \coprod_{n \in \mathbb{N}} V_{(n)}$ is a $\mathbb{N}\text{-graded vertex algebra then}$

 \blacktriangleright (i) $V_{(0)}$ is a commutative associative algebra with the identity **1** and $V_{(1)}$ is a Leibniz algebra.

KORKAR KERKER EL VOLO

- \blacktriangleright (ii) In fact, $V_{(0)}\oplus V_{(1)}$ is a 1-truncated conformal algebra.
- \blacktriangleright (iii) Moreover, $V_{(1)}$ is a vertex $V_{(0)}$ -algebroid.

\blacktriangleright Proposition

 $\overline{\mathsf{Let}} \,\, V = \oplus_{n=0}^\infty \mathcal{V}_{(n)}$ be a $\mathbb{N}\text{-}\mathsf{graded}$ vertex algebra such that $V_{(0)}$ is a finite dimensional commutative associative algebra and dim $V_{(0)} \geq 2$.

If $V_{(0)}$ is a local algebra then V is indecomposable.

Remark It was shown by Dong and Mason that if V is a N-graded vertex operator algebra then

V is indecomposable if and only if V_0 is a commutative associative local algebra.

Note that in order to prove this statement one needs to have a Virasoro element.

Proposition

Let $V=\oplus_{n=0}^\infty V_{(n)}$ be a $\mathbb N$ -graded vertex algebra that satisfies the following properties

$$
\blacktriangleright \text{ (a) } 2 \leq \text{dim } \; V_{(0)} < \infty, \, 1 \leq \text{dim } \; V_{(1)} < \infty;
$$

 \blacktriangleright (b) $V_{(0)}$ is not a trivial module for a Leibniz algebra $V_{(1)}$, $u_0 u \neq 0$ for some $u \in V_{(1)}$;

• (c) the Levi factor of
$$
V_{(1)}
$$
 equals $Span\{e, f, h\}$, $e_0 f = h$, $h_0 e = 2e$, $h_0 f = -2f$, and $e_1 f = k\hat{1}$. Here, $k \in \mathbb{C} \setminus \{0\}$.

Assume that one of the following statements hold.

- \blacktriangleright (I) $V_{(1)}$ is a simple Leibniz algebra;
- \blacktriangleright (II) $V_{(1)}$ is a semisimple Leibniz algebra and $Ker(D) \cap V_{(0)} = \{ a \in V_{(0)} \mid b_0 a = 0 \text{ for all } b \in V_{(1)} \}.$ Here, D is a linear operator on V such that $D(v) = v_{-2}$ for $v \in V$. Then V is indecomposable.

A O A Y A P A P A P A SHOP

Next, we recall definitions of a Lie algebroid and its module.

- \blacktriangleright Definitions
	- \triangleright Let A be a commutative associative algebra. A Lie A-algebroid is a Lie algebra g equipped with an A-module structure and a module action on A by derivation such that

$$
[u, av] = a[u, v] + (ua)v, a(ub) = (au)b
$$

for all $u, v \in \mathfrak{g}, a, b \in A$.

 \triangleright A module for a Lie A-algebroid g is a vector space W equipped with a g-module structure and an A-module structure such that

$$
u(aw) - a(uw) = (ua)w, a(uw) = (au)w
$$

KORK EX KEY KEY YOUR

for $a \in A$, $u \in \mathfrak{g}$, $w \in W$.

Example Let $V = \bigoplus_{n=0}^{\infty} V_{(n)}$ be a $\mathbb{N}\text{-graded vertex algebra such that}$ dim $V_{(0)} \geq 2$.

- $\blacktriangleright \; V_{(1)}/Ann_{V_{(1)}}(V_{(0)})$ is a Lie $V_{(0)}$ -algebroid.
- \blacktriangleright $V_{(0)}$ is a module of the Lie $V_{(0)}$ -algebroid $V_{(1)}/Ann_{V_{(1)}}(V_{(0)}).$

A DIA K PIA A BIA A BIA A Q A CA

Theorem

Let $V = \bigoplus_{n=0}^{\infty} V_{(n)}$ be a $\mathbb{N}\text{-}\mathsf{graded}$ vertex algebra such that

- ► 2 \leq dim $V_{(0)} < \infty$, 1 \leq dim $V_{(1)} < \infty$, and
- \blacktriangleright V is generated by $V_{(0)}$ and $V_{(1)}$.

If V is simple then $\mathit{V}_{(0)}$ is a simple module for a Lie $\mathit{V}_{(0)}$ -algebroid $V_{(1)}/Ann_{V_{(1)}}(V_{(0)})$.

KORKA REPARATION ADD

Theorem

Let $V = \oplus_{n=0}^{\infty} V_{(n)}$ be a $\mathbb N$ -graded vertex algebra that satisfies the following properties

- ► (a) $2 \le \dim V_{(0)} < \infty$, $1 \le \dim V_{(1)} < \infty$, V is generated by $V_{(0)}$ and $V_{(1)}$;
- \blacktriangleright (b) $V_{(0)}$ is not a trivial module of a Leibniz algebra $V_{(1)}$, $u_0u \neq 0$ for some $u \in V_{(1)}$;
- \blacktriangleright (c) the Levi Factor of $V_{(1)}$ equals $Span\{e, f, h\}$, $e_0f = h$, $h_0e = 2e$, $h_0f = -2f$ and $e_1f = k\mathbf{1}$. Here, $k \in \mathbb{C} \setminus \{0\}$.

Assume that one of the following statements hold.

 \blacktriangleright (i) $V_{(1)}$ is a simple Leibniz algebra;

 \blacktriangleright (ii) $V_{(1)}$ is a semisimple Leibniz algebra and $Ker(D) \cap V_{(0)} = \{ a \in V_{(0)} \mid b_0 a = 0 \text{ for all } b \in V_{(1)} \}.$ Here, D is a linear operator on V such that $D(v) = v_{-2}$ for $v \in V$.

Then V is indecomposable but not a simple vertex algebra.

Vertex Algebras associated with Vertex Algebroids

- \blacktriangleright Let A be a commutative associative algebra with the identity $\hat{1}$ and let B be a vertex A-algebroid.
- Eet V_B be a N-graded vertex algebra associated with the vertex A-algebroid B constructed by Gorbounov, Malikov and Schechtman.
- \blacktriangleright We have $(V_B)_{(0)} = A$ and $(V_B)_{(1)} = B$, and V_B as a vertex algebra is generated by $A \oplus B$. Furthermore, for any $n \geq 1$,

$$
(V_B)_{(n)} = span\{b_{-n_1}^1...b_{-n_k}^k \mathbf{1} \mid b^i \in B, n_1 \geq ... \geq n_k \geq 1, n_1 + ... + n_k = n\}.
$$

KORKAR KERKER EL VOLO

Proposition [Li-Y.]

The set of representatives of equivalence classes of simple N-graded V_B -modules is equivalent to the set of representatives of equivalence classes of simple modules for the Lie A-algebroid $B/A\partial A$. Here $A\partial(A) = Span\{a \cdot \partial(a') \mid a, a' \in A\}.$

KORKAR KERKER EL VOLO

Theorem

Let A be a finite-dimensional commutative associative algebra with the identity $\hat{1}$ and dim $A > 2$.

Let B be a finite-dimensional vertex A-algebroid such that A is not a trivial module of the Leibniz algebra B.

KORKAR KERKER DRAM

Let S be its Levi factor such that $S = Span\{e, f, h\}$, $e_0 f = h$, $h_0e = 2e$, $h_0f = -2f$, and $e_1f = k\hat{1}$. Here, $k \in \mathbb{C} \setminus \{0\}$.

Assume that one of the following statements hold.

- \blacktriangleright (1) B is simple Leibniz algebra;
- \triangleright (II) B is a semisimple Leibniz algebra and $Ker(\partial) = \{a \in A \mid b_0a = 0 \text{ for all } b \in B\}.$

We then have the following results:

- \triangleright (i) V_B is indecomposable but not a simple N-graded vertex algebra.
- \blacktriangleright (ii) The set of representatives of equivalence classes of finite-dimensional simple s/p -modules is equivalent to the set of representatives of equivalence classes of simple N-graded V_B -modules $N = \bigoplus_{n=0}^{\infty} N_{(n)}$ such that $dim N_{(0)} < \infty$.

A DIA K PIA A BIA A BIA A Q A CA

Theorem

Let A be a finite-dimensional commutative associative algebra with the identity $\hat{1}$ and dim $A > 2$.

Let B be a finite-dimensional vertex A-algebroid that satisfies the given conditions in the previous theorem.

Let (e₋₁e) be an ideal of V_B that is generated by e₋₁e.

Then

$$
\blacktriangleright
$$
 (i) $(e_{-1}e) \cap A = \{0\}$, and $(e_{-1}e) \cap B = \{0\}$. Consequently,

$$
(V_B/(e_{-1}e))_{(0)}=A, \text{ and } (V_B/(e_{-1}e))_{(1)}=B.
$$

- \triangleright (ii) $V_B / (e_{-1}e)$ is an indecomposable but not simple N-graded vertex algebra.
- \triangleright (iii) $V_B / (e_{-1}e)$ satisfies the C₂-condition.
- \triangleright (iv) There are only two representatives of equivalence classes of simple $\mathbb{N}\text{-graded }V_B\text{-modules }{\cal N}=\oplus_{n=0}^\infty {\cal N}_{(n)}$ such that dim $N_{(0)} < \infty$.

A O A Y A P A P A P A SHOP