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Introduction

Rational QFTs, when seen from a representation theory point of
view, naturally give rise to fusion categories. When the QFT is
unitary the corresponding representation category should also be
unitary.

In particular rational chiral CFTs are an important source very
interesting fusion categories. In fact it has been conjectured that
every unitary modular fusion category comes from a rational chiral
CFT.

Weak quasi-Hopf algebras are a generalization Drinfelds’ quasi-Hopf
algebras. Every fusion category is tensor equivalent to the
representation category of a weak quasi-Hopf algebra.

In this talk I will discuss some recent results showing that weak
quasi-Hopf algebras are a useful and natural tool to understand
certain aspects of the representation theory of rational VOAs
especially for the unitarity and the relations to the theory of
conformal nets.
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Tensor categories

We denote the objects of a category C by X ,Y ,Z , · · · ∈ Obj(C) and
the corresponding hom-spaces by Hom(X ,Y ) · · · ⊂ Hom(C).

In a linear category the hom-spaces are vector spaces
(finite-dimensional and over C in this talk) and the composition is
bilinear.

In a tensor category we have a tensor product of objects
X ,Y 7→ X ⊗ Y and a corresponding tensor product of arrows
T ∈ Hom(X1,Y1),S ∈ Hom(X2,Y2) 7→ T ⊗ S ∈
Hom(X1,⊗X2,Y1 ⊗ Y2).

We have a unit object ι ∈ Obj(C) that is simple, i.e. Hom(ι, ι) = C
and that here we assume to be strict i.e. ι⊗ X = X ⊗ ι = X for all
X ∈ Obj(C). Moreover, we have associativity isomorphisms
αX ,Y ,Z ∈ Hom

(
(X ⊗ Y )⊗ Z ),X ⊗ (Y ⊗ Z )

)
satisfying the so called

pentagon equation. A tensor category is called strict if the tensor
product is (strictly) associative and the associativity isomorphisms
are the identity isomorphisms.
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To simplify the exposition I will only consider fusion categories.
These are tensor categories with finitely many isomorphism classes
of simple objects and which are rigid i.e. every object X has a
(two-sided) dual object X∨. The Grothendieck ring Gr(C) generated
by the isomorphism classes of simple objects is the fusion ring of the
fusion category C.

A fusion category is called braided if it admits a natural family of
isomorphisms cX ,Y ∈ Hom(X ⊗ Y ,Y ⊗ X ) satisfyinfg the so called
hexagon equations. Braided fusion categories give rise to
representations of the braid group.

A braided fusion category with a compatible twist
X 7→ θX ∈ Hom(X ,X ) is called a ribbon fusion category. A ribbon
fusion category with a non-degenerate grading is called a modular
fusion category. The latter defines a (projective) representation of
the modular group SL(2,Z) trough the modular matrices S ,T .

Some examples of fusion categories are: Vec; VecG ; Rep(G ) (G
finite group); VecωG (ω 3-cocycle on G ); Rep(A) (A finite
dimensional semisimple Hopf algebra).
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Unitary fusion categories

A C*-category (with f.d. hom spaces) is a linear category with a
*-structure on the home spaces. This means that there is an
anti-linear involutive map Hom(X ,Y ) 3 T 7→ T ∗ ∈ Hom(Y ,X )
such that (TS)∗ = S∗T ∗. Moreover we have the positivity condition
T ∗T = 0⇒ T = 0.

A unitary (or C*) fusion category is a fusion category which is also a
C*-category and such that (T ⊗ S)∗ = T ∗ ⊗ S∗. Moreover the
associativity isomorphisms are unitary, i.e. α∗X ,Y ,Z = α−1X ,Y ,Z .

Some examples of unitary fusion categories are: Hilb; HilbG ; HilbωG ;
Repu(G ) . . .
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Fusion categories from chiral CFT

There are two main approaches to chiral (2D) CFT: VOAs and
conformal nets. Under suitable rationality conditions they both give
rise to modular fusion categories.

If V is strongly rational VOA then Rep(V ) is a modular fusion
categories (Huang 2008).

A conformal net A is an inclusion preserving map S1 3 I 7→ A(I ),
where each A(I ) is a von Neumann algebra acting on a fixed Hilbert
space H. The map is assumed to satisfy various natural
assumptions: locality, conformal covariance, positivity of the energy
..... Conformal nets have interesting representation theories.

If A is a completely rational then Rep(A) is a unitary modular fusion
category (Kawahigashi, Longo Mueger (2001)).
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Hopf algebras and generalizations

Original motivation for Hopf algebras: algebraic topology (50s)
Further motivations: duality for locally compact groups (G. Kac
60s); quantum groups (Drinfeld-Jimbo, Woronowicz 80s). Here I will
focus on the representation theory aspects

A Hopf algebra is a quadruple (A,∆, ε,S). Here A is a unital
associative algebra (over C in this talk), the coproduct
∆ : A→ A⊗ A is a unital homomorphism, the counit ε : A→ C is
a nonzero homomorphism and the antipode S : A→ A is an
antiautomorphism + axioms

The coproduct gives a tensor structure on Rep(A). The tensor
product ⊗ on the objects of Rep(A) is then given by
π1⊗π2 := π1 ⊗ π2 ◦∆ ∈ Rep(A).

If A is finite dimensional and semisimple then Rep(A) is a fusion
category. In fact the category is strict bacause the coproduct is
assumed to be coassociative: (∆⊗ id) ◦∆ = (id⊗∆) ◦∆
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A paradigmatic example is the group algebra A := CG which admit
a natural Hopf algebra structure so that Rep(A) becomes tensor
equivalent to Rep(G ).

By relaxing coassociativity one obtain the notion of quasi-Hopf
algebra first introduced by Drinfeld. These allows more flexibility in
dealing with non strict tensor categories: non-trivial associators
αX ,Y ,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z ). This is done trough a
suitable element Φ ∈ A⊗ A⊗ A satisfying a 3-cocycle condition
related to the pentagon equation. Accordingly the data of a
quasi-Hopf algebra is given by a quintuple (A,∆, ε,S ,Φ)

Quasi-Hopf algebras are not sufficiently general to describe many
interesting fusion categories related to QFT. This is because, when
A is semisimple, the function D on the fusion ring Gr(Rep(A))
defined by D([π]) := dim(Vπ), where Vπ is the representation space
of π, is a positive integral valued dimension function and hence it
must agree with the Frobenius-Perron dimension of the category
which in general is not integer valued. For example it can take the
values D([π]) = 2 cos(πn ), n=3, 4, 5, . . . .

8



In the early 90s Mack and Schoumerus suggested the following
solution to the above problem: give up to the request that ∆ is
unital so that a wak quasi-Hopf algebra is again a quintuple
(A,∆, ε,S ,Φ) with a possibly non-unital coproduct.

In this way ∆(1A) is an idempotent in A⊗ A commuting with ∆(A)
but typically different from 1A ⊗ 1A.

The tensor product π1⊗π2 in Rep(A) is now defined by the
restriction of π1 ⊗ π2 ◦∆ to π1 ⊗ π2 ◦∆(1A)Vπ1 ⊗ Vπ2 .

Now, for a given (f.d., semisimple) A, the additive function
D : Gr(Rep(A))→ Z>0 defined by D([π]) := dim(Vπ) is only a
weak dimension function i.e. it satisfies
D([π1⊗π2]) ≤ D([π1])D([π2]), D([ι]) = 1 and D(π) = D(π) and
this gives no important restrictions.
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Tannakian results

The following result are due mainly due to Häring-Oldenburg (1997).

Let C be a fusion category and D : Gr(C)→ Z≥0 be an integral
weak dimension then there exists a finite dimensional semisimple
weak quasi-Hopf algebra (A,∆, ε,S ,Φ) and a tensor equivalence
F : C → Rep(A) such that D([X ]) = dim(VF (X )) for all
X ∈ Obj(C).

Extra structure on C gives extra structure on A: brading ↔
R-matrix ; C*-tensor structure on C ↔ Ω - involutive structure on A
(in particular A is a C*-algebra).

The weak quasi-Hopf algebra associated to a fusion category C is
highly non-unique: it depends on the choice of D and, once D is
fixed is only defined up to a “twist”.
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From VOAs to conformal nets

A general connection between VOAs and conformal nets has been
recently considered by Carpi, Kawahigashi, Longo and Weiner
(2018).

One first need to consider only unitary VOAs (explicitly defined by
Dong, Lin and CKLW).

For sufficiently nice (simple) unitary VOAs called strongly local one
can define a map V 7→ AV into the class of conformal nets.

Conjecture 1: The map V 7→ AV gives a one-to-one correspondence
between the class of simple unitary VOAs and the class of conformal
nets.

Conjecture 2: The map V 7→ AV gives gives a one-to-one
correspondence between the class of strongly rational unitary VOAs
and the class of completely rational conformal nets. Moreover, if V
is completely rational we have a tensor equivalence
Rep(V ) ' Rep(AV ).
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Recently it has been suggested by Carpi, Weiner and Xu (in
preparation) to consider a strong integrability condition on unitary
VOA-modules of a strongly local V which allows to define a map
M 7→ πM from V -modules to representations of AV . In certain cases
this gives an isomorphism of linear C*-categories
F : Repu(V )→ Rep(AV ) where Repu(V ) is the linear C*-category
of unitary V -modules. Further results in this direction have been
recently obtained by Bin Gui and by James Tener.

Conjecture 3: Assume that V is strongly rational and strongly local.
Then Repu(V ) can be upgraded to a unitary modular tensor category
such that the forgetful functor : Repu(V )→ Rep(V ) is a braided
tensor equivalence. Moreover, the functor F : Repu(V )→ Rep(AV )
discussed above admits a unitary tensor structure.
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From VOAs to unitary fusion categories

The following result has been obtained using weak quasi-Hopf
algebra techniques.

Theorem (Carpi, Ciamprone, Pinzari): Let V be a strongly rational
VOA. Assume that every V -module is unitarizable and that Rep(V )
is tensor equivalent to a unitary fusion category. Then, Repu(V ) can
be upgraded to a unitary fusion category such that the forgetful
functor : Repu(V )→ Rep(V ) is a tensor equivalence. Moreover, the
corresponding unitary tensor structure on Repu(V ) is unique up to
unitary tensor equivalence.
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Let g be a complex simple Lie algebra, let k be a positive integer
and let Vgk

be the corresponding simple level k affine VOA. It is
known that Vgk

is a unitary strongly rational VOA and that every
Vgk

-module is unitarizable.

By a result of Finkelberg (1996) based on the work Kazhdan and
Lusztig we know that Rep(Vgk

) is tensor equivalent to the

“semisimplified” category R̃ep(Gq) associated to the representations
of the quantum group Gq, with G the simply connected compact Lie

group associated to g and q = e
iπ

d(k+h∨) , h∨ = dual Coxeter number,
d = 1 if g is ADE, d = 2 if g is BCF and d = 3 if g is G2.
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It was shown by Wenzl and Xu (1998) that R̃ep(Gq) is tensor
equivalent to a unitary fusion category.

As a consequence we get that Repu(Vgk
) admits an essentially

unique structure of unitary fusion category.

An equivalent result has been proved by Gui in a series of papers
appeared in the arXiv between 2017 and 2018 for the Lie types
A,B,C ,D,G2, by a completely different method based on Connes
fusions for bimodules and a deep analysis of the analytic properties of
the smeared intertwiners operators for VOA modules. Besides these
unitarity results Gui also proved Conjecture 3 in a remarkable class
of examples (including unitary affine VOAs for Lie types A,C ,G2).

Our method works also for many other VOAs such as e.g. lattice
VOAs, holomorphic orbifolds, . . . . We hope that it could be useful
in order to prove Conjecture 3 in the cases not covered in the work
of Gui.
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The Zhu algebra as a weak quasi-Hopf algebra

Let V be strongly rational. In 1998 Zhu introduced a
finite-dimensional semisimple algebra A(V ) gave a linear equivalence
FV : Rep(V )→ Rep(A(V )).

If DV ([M]) := dim(FV (M)) defines a weak dimension function
then, it follows from the previously described Tannakian results that
A(V ) can be upgraded to a weak-quasi Hopf algebra and
FV : Rep(V )→ Rep(A(V )) to an equivalence of fusion categories.

DV is not always a weak dimension function. A counterexample is
given e.g. by the Ising VOA (c = 1

2 Virasoro). However DV is a
weak dimension function in many interesting cases e.g. if V is a
unitary affine VOA.
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Classification of type A ribbon fusion categories

As another application of the theory of weak quasi-Hopf algebra we
give classification of pseudo-unitary type A fusion categories.

The starting point is the work of Kazhdan and Wenzl (1993) on the
classification of type A tensor categories.

As a consequence of our results we have in particular the following:
Let C be a modular fusion category with modular matrices S ,T
coinciding with the Kac-Peterson matrices for the sl(n) affine Lie
algebra at positive integer level k . Then C is ribbon equivalent to
Rep(Vsl(n)k )
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Consequence 1. Conjecture 3 is true for unitary affine VOAs of type
A. In fact we have a unitary ribbon equivalence
F : Rep(Vsl(n)k )→ Rep(AVsl(n)k

). As already mentioned the same
result has been independently obtained by Bin Gui by different
methods (direct analytic proof instead of classification).

Consequence 2. We have a proof of Finkelberg equivalence in the
type A case.
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THANK YOU!
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