Weak Quasi-Hopf Algebras and Vertex Operator Algebras

Sebastiano Carpi

University of Chieti and Pescara

Dubrovnik, June 28, 2019

Based on a joint work with Sergio Ciamprone and Claudia Pinzari (in preparation)

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

Introduction

- Rational QFTs, when seen from a representation theory point of view, naturally give rise to fusion categories. When the QFT is unitary the corresponding representation category should also be unitary.
- In particular rational chiral CFTs are an important source very interesting fusion categories. In fact it has been conjectured that every unitary modular fusion category comes from a rational chiral CFT.
- Weak quasi-Hopf algebras are a generalization Drinfelds' quasi-Hopf algebras. Every fusion category is tensor equivalent to the representation category of a weak quasi-Hopf algebra.
- In this talk I will discuss some recent results showing that weak quasi-Hopf algebras are a useful and natural tool to understand certain aspects of the representation theory of rational VOAs especially for the unitarity and the relations to the theory of conformal nets.

Tensor categories

- We denote the objects of a category C by X, Y, Z, ··· ∈ Obj(C) and the corresponding hom-spaces by Hom(X, Y) ··· ⊂ Hom(C).
- In a linear category the hom-spaces are vector spaces (finite-dimensional and over ℂ in this talk) and the composition is bilinear.
- In a tensor category we have a tensor product of objects $X, Y \mapsto X \otimes Y$ and a corresponding tensor product of arrows $T \in \text{Hom}(X_1, Y_1), S \in \text{Hom}(X_2, Y_2) \mapsto T \otimes S \in \text{Hom}(X_1, \otimes X_2, Y_1 \otimes Y_2).$
- We have a unit object ι ∈ Obj(C) that is simple, i.e. Hom(ι, ι) = C and that here we assume to be strict i.e. ι ⊗ X = X ⊗ ι = X for all X ∈ Obj(C). Moreover, we have associativity isomorphisms α_{X,Y,Z} ∈ Hom((X ⊗ Y) ⊗ Z), X ⊗ (Y ⊗ Z)) satisfying the so called pentagon equation. A tensor category is called strict if the tensor product is (strictly) associative and the associativity isomorphisms are the identity isomorphisms.

- To simplify the exposition I will only consider fusion categories. These are tensor categories with finitely many isomorphism classes of simple objects and which are rigid i.e. every object X has a (two-sided) dual object X^V. The Grothendieck ring Gr(C) generated by the isomorphism classes of simple objects is the fusion ring of the fusion category C.
- A fusion category is called braided if it admits a natural family of isomorphisms c_{X,Y} ∈ Hom(X ⊗ Y, Y ⊗ X) satisfyinfg the so called hexagon equations. Braided fusion categories give rise to representations of the braid group.
- A braided fusion category with a compatible twist
 X → θ_X ∈ Hom(X, X) is called a ribbon fusion category. A ribbon
 fusion category with a non-degenerate grading is called a modular
 fusion category. The latter defines a (projective) representation of
 the modular group SL(2, Z) trough the modular matrices S, T.
- Some examples of fusion categories are: Vec; Vec_G; Rep(G) (G finite group); Vec_G^ω (ω 3-cocycle on G); Rep(A) (A finite dimensional semisimple Hopf algebra).

- A C*-category (with f.d. hom spaces) is a linear category with a *-structure on the home spaces. This means that there is an anti-linear involutive map $\operatorname{Hom}(X, Y) \ni T \mapsto T^* \in \operatorname{Hom}(Y, X)$ such that $(TS)^* = S^*T^*$. Moreover we have the positivity condition $T^*T = 0 \Rightarrow T = 0$.
- A unitary (or C*) fusion category is a fusion category which is also a C*-category and such that (T ⊗ S)* = T* ⊗ S*. Moreover the associativity isomorphisms are unitary, i.e. α^{*}_{X,Y,Z} = α⁻¹_{X,Y,Z}.
- Some examples of unitary fusion categories are: Hilb; Hilb_G; Hilb_G^ω; Rep^u(G)...

Fusion categories from chiral CFT

- There are two main approaches to chiral (2D) CFT: VOAs and conformal nets. Under suitable rationality conditions they both give rise to modular fusion categories.
- If V is strongly rational VOA then Rep(V) is a modular fusion categories (Huang 2008).
- A conformal net \mathcal{A} is an inclusion preserving map $S^1 \ni I \mapsto \mathcal{A}(I)$, where each $\mathcal{A}(I)$ is a von Neumann algebra acting on a fixed Hilbert space \mathcal{H} . The map is assumed to satisfy various natural assumptions: locality, conformal covariance, positivity of the energy Conformal nets have interesting representation theories.
- If A is a completely rational then Rep(A) is a unitary modular fusion category (Kawahigashi, Longo Mueger (2001)).

Hopf algebras and generalizations

- Original motivation for Hopf algebras: algebraic topology (50s)
 Further motivations: duality for locally compact groups (G. Kac 60s); quantum groups (Drinfeld-Jimbo, Woronowicz 80s). Here I will focus on the representation theory aspects
- A Hopf algebra is a quadruple (A, Δ, ε, S). Here A is a unital associative algebra (over C in this talk), the coproduct
 Δ: A → A ⊗ A is a unital homomorphism, the counit ε : A → C is a nonzero homomorphism and the antipode S : A → A is an antiautomorphism + axioms
- The coproduct gives a tensor structure on $\operatorname{Rep}(A)$. The tensor product $\underline{\otimes}$ on the objects of $\operatorname{Rep}(A)$ is then given by $\pi_1 \underline{\otimes} \pi_2 := \pi_1 \otimes \pi_2 \circ \Delta \in \operatorname{Rep}(A)$.
- If A is finite dimensional and semisimple then Rep(A) is a fusion category. In fact the category is strict bacause the coproduct is assumed to be coassociative: (Δ ⊗ id) ∘ Δ = (id ⊗ Δ) ∘ Δ

- A paradigmatic example is the group algebra A := CG which admit a natural Hopf algebra structure so that Rep(A) becomes tensor equivalent to Rep(G).
- By relaxing coassociativity one obtain the notion of quasi-Hopf algebra first introduced by Drinfeld. These allows more flexibility in dealing with non strict tensor categories: non-trivial associators $\alpha_{X,Y,Z}$: $(X \otimes Y) \otimes Z \rightarrow X \otimes (Y \otimes Z)$. This is done trough a suitable element $\Phi \in A \otimes A \otimes A$ satisfying a 3-cocycle condition related to the pentagon equation. Accordingly the data of a quasi-Hopf algebra is given by a quintuple $(A, \Delta, \varepsilon, S, \Phi)$
- Quasi-Hopf algebras are not sufficiently general to describe many interesting fusion categories related to QFT. This is because, when A is semisimple, the function D on the fusion ring Gr(Rep(A)) defined by $D([\pi]) := \dim(V_{\pi})$, where V_{π} is the representation space of π , is a positive integral valued dimension function and hence it must agree with the Frobenius-Perron dimension of the category which in general is not integer valued. For example it can take the values $D([\pi]) = 2\cos(\frac{\pi}{n})$, n=3, 4, 5,

- In the early 90s Mack and Schoumerus suggested the following solution to the above problem: give up to the request that Δ is unital so that a wak quasi-Hopf algebra is again a quintuple (A, Δ, ε, S, Φ) with a possibly non-unital coproduct.
- In this way Δ(1_A) is an idempotent in A ⊗ A commuting with Δ(A) but typically different from 1_A ⊗ 1_A.
- The tensor product π₁⊗π₂ in Rep(A) is now defined by the restriction of π₁ ⊗ π₂ ∘ Δ to π₁ ⊗ π₂ ∘ Δ(1_A)V_{π1} ⊗ V_{π2}.
- Now, for a given (f.d., semisimple) *A*, the additive function $D: \operatorname{Gr}(\operatorname{Rep}(A)) \to \mathbb{Z}_{>0}$ defined by $D([\pi]) := \dim(V_{\pi})$ is only a weak dimension function i.e. it satisfies $D([\pi_1 \boxtimes \pi_2]) \leq D([\pi_1])D([\pi_2]), D([\iota]) = 1$ and $D(\overline{\pi}) = D(\pi)$ and this gives no important restrictions.

- The following result are due mainly due to Häring-Oldenburg (1997).
- Let C be a fusion category and $D : \operatorname{Gr}(C) \to \mathbb{Z}_{\geq 0}$ be an integral weak dimension then there exists a finite dimensional semisimple weak quasi-Hopf algebra $(A, \Delta, \varepsilon, S, \Phi)$ and a tensor equivalence $\mathscr{F} : C \to \operatorname{Rep}(A)$ such that $D([X]) = \dim(V_{\mathscr{F}(X)})$ for all $X \in \operatorname{Obj}(C)$.
- Extra structure on C gives extra structure on A: brading \leftrightarrow *R*-matrix ; C*-tensor structure on $C \leftrightarrow \Omega$ - involutive structure on A (in particular A is a C*-algebra).
- The weak quasi-Hopf algebra associated to a fusion category C is highly non-unique: it depends on the choice of D and, once D is fixed is only defined up to a "twist".

From VOAs to conformal nets

- A general connection between VOAs and conformal nets has been recently considered by Carpi, Kawahigashi, Longo and Weiner (2018).
- One first need to consider only unitary VOAs (explicitly defined by Dong, Lin and CKLW).
- For sufficiently nice (simple) unitary VOAs called strongly local one can define a map V → A_V into the class of conformal nets.
- Conjecture 1: The map V → A_V gives a one-to-one correspondence between the class of simple unitary VOAs and the class of conformal nets.
- Conjecture 2: The map V → A_V gives gives a one-to-one correspondence between the class of strongly rational unitary VOAs and the class of completely rational conformal nets. Moreover, if V is completely rational we have a tensor equivalence Rep(V) ≃ Rep(A_V).

- Recently it has been suggested by Carpi, Weiner and Xu (in preparation) to consider a strong integrability condition on unitary VOA-modules of a strongly local V which allows to define a map M → π_M from V-modules to representations of A_V. In certain cases this gives an isomorphism of linear C*-categories
 F : Rep^u(V) → Rep(A_V) where Rep^u(V) is the linear C*-category of unitary V-modules. Further results in this direction have been recently obtained by Bin Gui and by James Tener.
- Conjecture 3: Assume that V is strongly rational and strongly local. Then Rep^u(V) can be upgraded to a unitary modular tensor category such that the forgetful functor : Rep^u(V) → Rep(V) is a braided tensor equivalence. Moreover, the functor F : Rep^u(V) → Rep(A_V) discussed above admits a unitary tensor structure.

- The following result has been obtained using weak quasi-Hopf algebra techniques.
- Theorem (Carpi, Ciamprone, Pinzari): Let V be a strongly rational VOA. Assume that every V-module is unitarizable and that $\operatorname{Rep}(V)$ is tensor equivalent to a unitary fusion category. Then, $\operatorname{Rep}^{u}(V)$ can be upgraded to a unitary fusion category such that the forgetful functor : $\operatorname{Rep}^{u}(V) \to \operatorname{Rep}(V)$ is a tensor equivalence. Moreover, the corresponding unitary tensor structure on $\operatorname{Rep}^{u}(V)$ is unique up to unitary tensor equivalence.

- Let \mathfrak{g} be a complex simple Lie algebra, let k be a positive integer and let $V_{\mathfrak{g}_k}$ be the corresponding simple level k affine VOA. It is known that $V_{\mathfrak{g}_k}$ is a unitary strongly rational VOA and that every $V_{\mathfrak{g}_k}$ -module is unitarizable.
- By a result of Finkelberg (1996) based on the work Kazhdan and Lusztig we know that $\operatorname{Rep}(V_{\mathfrak{g}_k})$ is tensor equivalent to the "semisimplified" category $\operatorname{Rep}(G_q)$ associated to the representations of the quantum group G_q , with G the simply connected compact Lie group associated to \mathfrak{g} and $q = e^{\frac{i\pi}{d(k+h^{\vee})}}$, $h^{\vee} =$ dual Coxeter number, d = 1 if \mathfrak{g} is ADE, d = 2 if \mathfrak{g} is BCF and d = 3 if \mathfrak{g} is G_2 .

- It was shown by Wenzl and Xu (1998) that $\operatorname{Rep}(G_q)$ is tensor equivalent to a unitary fusion category.
- As a consequence we get that $\operatorname{Rep}^{u}(V_{\mathfrak{g}_{k}})$ admits an essentially unique structure of unitary fusion category.
- An equivalent result has been proved by Gui in a series of papers appeared in the arXiv between 2017 and 2018 for the Lie types *A*, *B*, *C*, *D*, *G*₂, by a completely different method based on Connes fusions for bimodules and a deep analysis of the analytic properties of the smeared intertwiners operators for VOA modules. Besides these unitarity results Gui also proved Conjecture 3 in a remarkable class of examples (including unitary affine VOAs for Lie types *A*, *C*, *G*₂).
- Our method works also for many other VOAs such as e.g. lattice VOAs, holomorphic orbifolds, We hope that it could be useful in order to prove Conjecture 3 in the cases not covered in the work of Gui.

- Let V be strongly rational. In 1998 Zhu introduced a finite-dimensional semisimple algebra A(V) gave a linear equivalence $\mathscr{F}_V : \operatorname{Rep}(V) \to \operatorname{Rep}(A(V))$.
- If $D_V([M]) := \dim(\mathscr{F}_V(M))$ defines a weak dimension function then, it follows from the previously described Tannakian results that A(V) can be upgraded to a weak-quasi Hopf algebra and $\mathscr{F}_V : \operatorname{Rep}(V) \to \operatorname{Rep}(A(V))$ to an equivalence of fusion categories.
- D_V is not always a weak dimension function. A counterexample is given e.g. by the Ising VOA ($c = \frac{1}{2}$ Virasoro). However D_V is a weak dimension function in many interesting cases e.g. if V is a unitary affine VOA.

- As another application of the theory of weak quasi-Hopf algebra we give classification of pseudo-unitary type A fusion categories.
- The starting point is the work of Kazhdan and Wenzl (1993) on the classification of type A tensor categories.
- As a consequence of our results we have in particular the following: Let C be a modular fusion category with modular matrices S, T coinciding with the Kac-Peterson matrices for the $\mathfrak{sl}(n)$ affine Lie algebra at positive integer level k. Then C is ribbon equivalent to $\operatorname{Rep}(V_{\mathfrak{sl}(n)_k})$

- Consequence 1. Conjecture 3 is true for unitary affine VOAs of type
 A. In fact we have a unitary ribbon equivalence
 𝔅 : Rep(V_{sl(n)k}) → Rep(𝔄_{V_{sl(n)k}}). As already mentioned the same result has been independently obtained by Bin Gui by different methods (direct analytic proof instead of classification).
- Consequence 2. We have a proof of Finkelberg equivalence in the type A case.

イロト 不得 トイヨト イヨト ヨー わらの

THANK YOU!