Orbifold deconstruction

P. Bantay

Dubrovnik, June 2019

Introduction

Common formulations of dynamics (EOM, variational principles, ...) usually require (quasi-)trivial topology \rightsquigarrow realize configuration space as either a submanifold or a quotient of some nice geometric structure: constrained dynamics vs gauge symmetries.

Dynamics formulated on covering space \rightsquigarrow state identifications.

covering (deck) transformations = gauge transformations

New superselection sectors from 'twisted' boundary conditions.

Difficult computations (mostly numerical, e.g. lattice QCD).

Best understood for 2D conformal models (orbifolding).

Basic problems: structure of twisted sectors and fixed point resolution (usually require *ad hoc* techniques).

Under control only in special cases:

- toroidal orbifolds (compactified free bosons, i.e. lattice models);
- holomorphic orbifolds (self-dual models);
- permutation orbifolds (permutation symmetries).

Moore's 'conjecture': all rational conformal models are GKO cosets or orbifolds thereof.

Can one reverse orbifolding?

Orbifolds

2D conformal model characterized by chiral symmetry algebra \mathbb{V} (nice VOA) and L-R coupling (partition functions).

Primary fields (simple V-modules, aka. superselection sectors) characterized by their conformal weight h_p (lowest eigenvalue of L_0) and chiral character (trace function)

$$\chi_p(q) = \operatorname{Tr}_p\left(q^{L_0 - c/24}\right)$$

describing the spectrum of L_0 .

Fusion rules: composition of superselection sectors (tensor products).

Fusion rules related to modular properties via Verlinde's formula.

For $G < \operatorname{Aut}(\mathbb{V})$, the chiral algebra of the *G*-orbifold is the fixed point subalgebra $\mathbb{V}^G = \{v \in \mathbb{V} \mid gv = v \text{ for all } g \in G\}.$

Primaries of the G-orbifold from G-twisted modules of \mathbb{V} .

G permutes the G-twisted modules (outer action), with $h \in G$ taking a g-twisted module to a hgh^{-1} -twisted module $\rightsquigarrow G$ -orbits organized into twisted sectors labeled by conjugacy classes.

Twisted modules in the same G-orbit identified with each other ('state identification').

Stabilizer $G_M = \{g \in G \mid gM = M\}$ of the twisted module M represented projectively on M (with associated 2-cocycle ϑ_M) $\rightsquigarrow M$ splits into isotypic components M_{ϕ} labeled by irreps $\phi \in \operatorname{Irr}(G_M | \vartheta_M)$. isotypic components $\leftrightarrow \rightarrow$ primaries of the orbifold

G-orbits of (twisted) modules $\leftrightarrow \rightarrow blocks$ of primaries

number of primaries =
$$\frac{1}{|G|} \sum_{xy=yx} \sum_{M \in \operatorname{Fix}(x,y)} \frac{\vartheta_M(x,y)}{\vartheta_M(y,x)}$$

number of blocks = $\sum_M \frac{1}{[G:G_M]}$

Each block \mathfrak{b} characterized by inertia subgroup $I_{\mathfrak{b}}$ (stabilizer G_M of any module M in the orbit corresponding to \mathfrak{b}) and 2-cocycle $\vartheta_{\mathfrak{b}} \in Z^2(I_{\mathfrak{b}}, \mathbb{C})$. Integrally spaced L_0 spectrum for untwisted modules \rightsquigarrow the conformal weights of primaries from a block in the untwisted sector differ by integers. Vacuum block \mathfrak{b}_0 (untwisted sector) has trivial cocyle \rightsquigarrow all elements of \mathfrak{b}_0 have integer conformal weights, and correspond to (ordinary) irreps of G, with matching fusion rules and (quantum) dimensions.

The vacuum block is a twister: a set of primaries with integer conformal weights (and quantum dimensions) closed under fusion.

Question: can we identify the orbifold from its vacuum block?

Braiding restricted to a twister is involutive \rightsquigarrow elements of the twister \mathfrak{g} are the simple objects of a symmetric monoidal category.

Deligne's theorem: the subring of the fusion ring generated by a twister is isomorphic to the character ring of some finite group.

Fusion matrices

For a primary p define the fusion matrix

$$[\mathbf{N}(p)]_{qr} = N_{pq}^r$$

Span a commutative matrix algebra (the Verlinde algebra \mathcal{V})

$$\mathbf{N}(p)\,\mathbf{N}(q) = \sum_r N^r_{pq}\mathbf{N}(r)$$

Commuting matrices with non-negative elements \rightsquigarrow common Perron-

Frobenius eigenvector (quantum dimension) $d_p \ge 1$.

$$\sum_{r} N_{pq}^{r} \mathbf{d}_{r} = \mathbf{d}_{p} \mathbf{d}_{q}$$

Modular S-matrix

$$S_{pq} = \frac{1}{\sqrt{\sum_{r} \mathbf{d}_{r}^{2}}} \sum_{r} N_{pq}^{r} \mathbf{d}_{r} \exp\{2\pi \mathbf{i}(\mathbf{h}_{p} + \mathbf{h}_{q} - \mathbf{h}_{r})\}$$

Verlinde's theorem:

$$\mathbf{\rho}_p(\mathbf{N}(q)) = \frac{S_{qp}}{S_{\mathbf{0}p}}$$

is an irrep of \mathcal{V} for each primary p, where \circ denotes the vacuum primary.

irreducible representations of $\mathcal{V} \iff$ primary fields

Perron's theorem \rightsquigarrow

$$|\mathbf{\rho}_p(\mathbf{N}(q))| \leq \mathbf{\rho}_\mathbf{0}(\mathbf{N}(q)) = \mathbf{d}_q$$

Twisters

A set \mathfrak{g} of primaries is fusion closed if $N_{pq}^r > 0$ for $p, q \in \mathfrak{g}$ implies $r \in \mathfrak{g}$. Form a modular (even Arguesian) lattice \mathscr{L} .

 $\widehat{\mathfrak{g}}$: subalgebra of \mathcal{V} spanned by the fusion matrices $\mathbb{N}(\alpha)$ for $\alpha \in \mathfrak{g}$.

Primaries p and q belong to the same twist class if the restrictions to $\hat{\mathfrak{g}}$ of the irreps ρ_p and ρ_q coincide.

twist classes \iff irreducible representations of $\widehat{\mathfrak{g}}$

 \rightsquigarrow the number of twist classes equals the cardinality of \mathfrak{g} .

Notation: for a class C and $\alpha \in \mathfrak{g}$ let $\alpha(C) = \rho_p(\alpha)$ for any $p \in C$.

Orthogonality relations: for $\alpha, \beta \in \mathfrak{g}$

$$\sum_{\mathbf{C}} \frac{\alpha(\mathbf{C}) \,\overline{\beta(\mathbf{C})}}{\|\mathbf{C}\|} = \begin{cases} 1 & \text{if } \alpha = \beta; \\ 0 & \text{otherwise} \end{cases}$$

where

$$\|\mathbf{C}\| = \frac{1}{\sum\limits_{p \in \mathbf{C}} S_{\mathbf{0}p}^2}$$

Second orthogonality: for twist classes C_1 and C_2

$$\sum_{\alpha \in \mathfrak{g}} \alpha(\mathbf{C}_1) \,\overline{\alpha(\mathbf{C}_2)} = \begin{cases} \|\mathbf{C}_1\| & \text{if } \mathbf{C}_1 = \mathbf{C}_2; \\ 0 & \text{otherwise.} \end{cases}$$

Trivial class \mathfrak{g}^{\perp} : twist class containing the vacuum primary o.

Remark: $p \in \mathfrak{g}^{\perp}$ iff $h_q - h_p - h_{\alpha} \in \mathbb{Z}$ whenever $N_{\alpha p}^q > 0$ for some $\alpha \in \mathfrak{g}$.

Product rule: If $p \in \mathfrak{g}^{\perp}$ and $N_{pq}^r > 0$, then q and r belong to the same twist class.

Consequence: $\mathfrak{g}^{\perp} \in \mathscr{L}$ and $(\mathfrak{g}^{\perp})^{\perp} = \mathfrak{g}$, hence the lattice \mathscr{L} is self-dual.

Blocks of \mathfrak{g} = twist classes of \mathfrak{g}^{\perp} (number of blocks = cardinality of \mathfrak{g}^{\perp}).

Blocks partition the set of primaries: p and q belong to the same block iff $N_{\alpha p}^q > 0$ for some $\alpha \in \mathfrak{g}$ (\mathfrak{g} is the trivial block). Restriction of fusion matrices to the elements of a block \mathfrak{b} provides an integral representation $N_{\mathfrak{b}}$ of $\widehat{\mathfrak{g}}$.

classes: irreducible		roprogentations of a
blocks: integral	Ĵ	representations of g

Overlap $\langle \mathfrak{b}, \mathfrak{C} \rangle$: multiplicity of irrep $\rho_{\mathfrak{C}}$ in $\mathbb{N}_{\mathfrak{b}}$ (non-negative integer)

$$\left<\mathfrak{b}, \mathbf{C}\right> = \sum_{p \in \mathfrak{b}} \sum_{q \in \mathbf{C}} |S_{pq}|^2$$

 $|\mathfrak{b}| = \sum_{C} \langle \mathfrak{b}, C \rangle$ and $|C| = \sum_{\mathfrak{b}} \langle \mathfrak{b}, C \rangle$.

Note: $\langle \mathfrak{b}, \mathfrak{C} \rangle = 0$ implies $S_{pq} = 0$ for all $p \in \mathfrak{b}$ and $q \in \mathfrak{C}$.

 $\langle \mathfrak{g}, \mathfrak{C} \rangle = 1$ for every class \mathfrak{C} and $\langle \mathfrak{b}, \mathfrak{g}^{\perp} \rangle = 1$ for every block \mathfrak{b} .

Integrality theorem: $\mathfrak{g} \subseteq \mathfrak{g}^{\perp}$ implies $\mathfrak{d}_{\alpha} \in \mathbb{Z}$ and $\mathfrak{h}_{\alpha} \in \frac{1}{2}\mathbb{Z}$ for all $\alpha \in \mathfrak{g}$.

 $\mathfrak{g} \subseteq \mathfrak{g}^{\perp}$ iff $N_{\alpha\beta}^{\gamma} > 0$ for $\alpha, \beta, \gamma \in \mathfrak{g}$ implies $h_{\gamma} - h_{\alpha} - h_{\beta} \in \mathbb{Z}$ iff every class is a union of blocks.

 $\mathfrak{g} \in \mathscr{L}$ is a twister if $h_{\alpha} \in \mathbb{Z}$ for all $\alpha \in \mathfrak{g}$ (consequently $\mathfrak{g} \subseteq \mathfrak{g}^{\perp}$).

Every $\mathfrak{g} \subseteq \mathfrak{g}^{\perp}$ is a twister or a \mathbb{Z}_2 -extension thereof ('swister'?).

If $\mathfrak{g} \in \mathscr{L}$ is a twister, then

- 1. a block is contained in the trivial class \mathfrak{g}^{\perp} iff the conformal weights of its elements differ by integers;
- 2. to each block \mathfrak{b} corresponds an algebraic integer $\mathcal{D}_{\mathfrak{b}}$ ('block dimension') such that $\frac{d_p}{\mathcal{D}_{\mathfrak{b}}} \in \mathbb{Z}_+$ for all $p \in \mathfrak{b}$.

A twister determines a Tannakian subcategory of the modular tensor category associated to the conformal model \rightsquigarrow

the ring $\hat{\mathfrak{g}}$ associated to a twister is isomorphic to the representation ring of some finite group G (Deligne's theorem).

Problem: there may exist several nonisomorphic groups with isomorphic representation rings (e.g. \mathbb{D}_8 , the dihedral group of order 8, and Q, the group of unit quaternions). How to distinguish between the different possibilities?

Solution: use the λ -ring structure (exterior powers) of the representation ring, i.e. the Adams operations.

Adams operations

For $n \in \mathbb{Z}$ and elements $\alpha, \beta \in \mathfrak{g}$ of a twister \mathfrak{g} let

$$\mathbf{Z}_n(\alpha,\beta) = \sum_{p,q} N_{\alpha p}^q S_{\beta p} S_{0q} \mathbf{e}^{2\pi \mathbf{i} n(\mathbf{h}_\alpha + \mathbf{h}_p - \mathbf{h}_q)}$$

There exists an endomorphism $\Psi^n \in \operatorname{End}(\widehat{\mathfrak{g}})$ such that

•
$$\Psi^n(\alpha) = \sum_{\beta \in \mathfrak{g}} Z_n(\alpha, \beta) \beta$$
 for $\alpha \in \mathfrak{g}$;

- $\Psi^{n}(\alpha) = \alpha^{n}$ for invertible elements $\alpha \in \widehat{\mathfrak{g}}$;
- Ψ^n is functorial;
- $\Psi^n \circ \Psi^m = \Psi^{nm}$.

 $\Psi^n \in \operatorname{End}(\widehat{\mathfrak{g}})$ is the n^{th} Adams operation on $\widehat{\mathfrak{g}}$, endowing the latter with the structure of a λ -ring, able to distinguish (but for Brauer pairs) nonisomorphic groups with identical fusion rules, e.g. \mathbb{D}_8 and \mathbb{Q} .

 Ψ^n permutes the characteristic functions of the twist classes \rightsquigarrow existence of power maps $C \mapsto C^n$ for each $n \in \mathbb{Z}$.

Order of the twist class C = least positive integer n such that $C^n = \mathfrak{g}^{\perp}$.

If a block \mathfrak{b} is contained in a twist class of order n, then the conformal weights inside \mathfrak{b} can only differ by integer multiples of $\frac{1}{n}$.

Orbifold deconstruction

vacuum block	twister
irrep of twist group	element of twister
twisted sectors	twist classes
orbits of twisted modules	blocks
stabilizer of orbit	inertia subgroup

Step 1: select a twister.

Step 2: determine the corresponding twist classes and blocks.

Step 3: compute the character table and the power maps.

Step 4: identify the twist group G (up to possible Brauer pairs).

Step 5: for each block \mathfrak{b} contained in the trivial class determine the inertia subgroup $I_{\mathfrak{b}}$ and associated 2-cocycle $\vartheta_{\mathfrak{b}} \in Z^2(I_{\mathfrak{b}}, \mathbb{C}^{\times})$.

Remark. For most applications it is enough to know the order $\mathbf{e}_{\mathfrak{b}}$ of (the cohomology class of) $\vartheta_{\mathfrak{b}}$ and the index $[G: \mathbf{I}_{\mathfrak{b}}]$ of the inertia subgroup.

Step 6: compute the spectrum of the deconstructed model.

Remark. To each block $\mathfrak{b} \subseteq \mathfrak{g}^{\perp}$ correspond $[G: \mathfrak{I}_{\mathfrak{b}}]$ different primaries of respective conformal weights $h_{\mathfrak{b}} = \min \{h_p \mid p \in \mathfrak{b}\}$, quantum dimensions

$$\mathsf{d}_{\mathfrak{b}} = \frac{\mathcal{D}_{\mathfrak{b}}}{\mathsf{e}_{\mathfrak{b}}\left[G:\mathtt{I}_{\mathfrak{b}}\right]}$$

and chiral characters

$$\boldsymbol{\chi}_{\boldsymbol{\mathfrak{b}}}(\tau) = \frac{\mathbf{e}_{\boldsymbol{\mathfrak{b}}}}{\mathcal{D}_{\boldsymbol{\mathfrak{b}}}} \sum_{p \in \boldsymbol{\mathfrak{b}}} \mathbf{d}_p \chi_p(\tau)$$

Step 7: if the above did not single out the deconstructed model, compute the block-fusion coefficients

$$\mathcal{N}_{\mathfrak{a}\mathfrak{b}}^{\mathfrak{c}} = \frac{\mathsf{e}_{\mathfrak{a}}\mathsf{e}_{\mathfrak{b}}\mathsf{e}_{\mathfrak{c}}}{|\mathsf{I}_{\mathfrak{a}}||\mathsf{I}_{\mathfrak{b}}|} \sum_{p \in \mathfrak{a}} \sum_{q \in \mathfrak{b}} \sum_{r \in \mathfrak{c}} N_{pq}^{r} \frac{\mathsf{d}_{p}\mathsf{d}_{q}\mathsf{d}_{r}}{\mathcal{D}_{\mathfrak{a}}\mathcal{D}_{\mathfrak{b}}\mathcal{D}_{\mathfrak{c}}}$$
(1)

that characterize the fusion rules of the deconstructed model (but for fixed-point resolution).

A permutation orbifold example

 \mathbf{D} = transitive permutation group of degree 4 generated by the cyclic permutations (1, 2, 3, 4) and (2, 4) (isomorphic to the dihedral group of order 8, the symmetry group of a square).

Permutation orbifold $\mathbb{V}^{\natural} \wr \mathbf{D}$: conformal model of central charge c = 96, with 22 primaries of known conformal weights, chiral characters, etc. Moonshine module is self-dual \rightsquigarrow fusion rules and modular properties described by the (untwisted) double of \mathbf{D} .

45 fusion closed sets (of which 22 twisters), with Hasse-diagram

7 maximal twisters, all self-dual \sim corresponding deconstructions are

self-dual too (with only one primary).

twist group	trace function
\mathbb{D}_8	$\mid J(q)^4$
\mathbb{D}_8	$\int J(q)^4 - 590652J(q)^2 - 64481280J(q) + 55552950252$
\mathbb{D}_8	$\int J(q)^4 - 590652J(q)^2 - 64481280J(q) + 55552359600$
\mathbb{D}_8	$\int J(q)^4 - 590652J(q)^2 - 64481277J(q) + 55552950252$
\mathbb{D}_8	$J(q)^{4} - 393768J(q)^{2} + 38763309456 = (J(q)^{2} - 196884)^{2}$
\mathbb{D}_8	$\int J(q)^4 - 393768J(q)^2 - 42987519J(q) - 1728009288$
\mathbb{Z}_2^3	$\int J(q)^4 - 393768J(q)^2 - 42987519J(q) + 37035300168$

Table 1. Maximal deconstructions of $\mathbb{V}^{\natural} \wr \mathbf{D}$

Maximal deconstructions have different trace functions \rightsquigarrow they all differ from each other.

Lessons:

- 1. one and the same conformal model can have several different maximal deconstructions, possibly with non-isomorphic twist groups;
- 2. one needs to know the power maps in order to identify the twist group;
- 3. maximal deconstructions of a permutation orbifold related to replication identities, e.g. (from deconstruction no. 7)

$$J(2\tau)^2 + J\left(\frac{\tau}{2}\right)^2 + J\left(\frac{\tau+1}{2}\right)^2$$

 $= J(\tau)^4 - 787536J(\tau)^2 - 85975038J(\tau) + 74070600336$

Addendum: $L\left(\frac{1}{2},0\right) \wr \mathbb{S}_3$ (aka. $\mathcal{F}(3)^{\mathbb{S}_3}$, cf. Penn's talk) has 49 primaries, but only 3 (non-trivial) twisters. The corresponding decompositions are

twist group	deconstructed model
\mathbb{Z}_2	$L\left(\frac{1}{2},0 ight)\wr\mathbb{Z}_{3}$
\mathbb{S}_3	$L\left(\frac{1}{2},0\right)^{\otimes 3}$
\mathbb{S}_4	$\mathrm{SU}\left(2\right)_{2}$

Each deconstruction is N=1 superconformal, with $L\left(\frac{1}{2},0\right) \wr \mathbb{Z}_3$ and (the trivial) $L\left(\frac{1}{2},0\right) \wr \mathbb{S}_3$ isolated in the moduli space of $c=\frac{3}{2}$ superconformal models (Cappelli and d'Appollonio, JHEP0208:039, 2002).

Summary

- \bullet effective procedure for orbifold deconstruction
- lattice structure of fusion closed sets
- Adams-operations for twisters
- integrality of quantum dimensions
- structure of twisted modules

and open questions

- characterization of primitive models?
- Moore's conjecture?
- relation between different maximal deconstructions?
- generalized deconstruction using swisters?
- Brauer characters?