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Introduction

Common formulations of dynamics (EOM, variational principles, ...)

usually require (quasi-)trivial topology  realize con�guration space as

either a submanifold or a quotient of some nice geometric structure:

constrained dynamics vs gauge symmetries.

Dynamics formulated on covering space  state identi�cations.

covering (deck) transformations = gauge transformations

New superselection sectors from 'twisted' boundary conditions.

Di�cult computations (mostly numerical, e.g. lattice QCD).



Best understood for 2D conformal models (orbifolding).

Basic problems: structure of twisted sectors and �xed point resolution

(usually require ad hoc techniques).

Under control only in special cases:

• toroidal orbifolds (compacti�ed free bosons, i.e. lattice models);

• holomorphic orbifolds (self-dual models);

• permutation orbifolds (permutation symmetries).

Moore's 'conjecture': all rational conformal models are GKO cosets or

orbifolds thereof.

Can one reverse orbifolding?



Orbifolds
2D conformal model characterized by chiral symmetry algebra V (nice

VOA) and L-R coupling (partition functions).

Primary �elds (simple V-modules, aka. superselection sectors) characteri-

zed by their conformal weight hp (lowest eigenvalue of L0) and chiral

character (trace function)

χp(q) = Trp

(
qL0−c/24

)
describing the spectrum of L0.

Fusion rules: composition of superselection sectors (tensor products).

Fusion rules related to modular properties via Verlinde's formula.



For G<Aut(V), the chiral algebra of the G-orbifold is the �xed point

subalgebra VG={v∈V | gv=v for all g∈G}.

Primaries of the G-orbifold from G-twisted modules of V.

G permutes the G-twisted modules (outer action), with h∈G taking a

g-twisted module to a hgh -1-twisted module  G-orbits organized into

twisted sectors labeled by conjugacy classes.

Twisted modules in the same G-orbit identi�ed with each other ('state

identi�cation').

Stabilizer GM ={g∈G | gM=M} of the twisted module M represented

projectively onM (with associated 2-cocycle ϑM ) M splits into isotypic

components Mφ labeled by irreps φ∈Irr(GM |ϑM ).



isotypic components! primaries of the orbifold

G-orbits of (twisted) modules! blocks of primaries

number of primaries =
1

|G|
∑
xy=yx

∑
M∈Fix(x,y)

ϑM (x, y)

ϑM (y, x)

number of blocks =
∑
M

1

[G : GM ]

Each block b characterized by inertia subgroup Ib (stabilizer GM of any

module M in the orbit corresponding to b) and 2-cocycle ϑb∈Z2(Ib,C).

Integrally spaced L0 spectrum for untwisted modules  the conformal

weights of primaries from a block in the untwisted sector di�er by integers.



Vacuum block b0 (untwisted sector) has trivial cocyle  all elements of

b0 have integer conformal weights, and correspond to (ordinary) irreps

of G, with matching fusion rules and (quantum) dimensions.

The vacuum block is a twister: a set of primaries with integer

conformal weights (and quantum dimensions) closed under fusion.

Question: can we identify the orbifold from its vacuum block?

Braiding restricted to a twister is involutive  elements of the twister g

are the simple objects of a symmetric monoidal category.

Deligne's theorem: the subring of the fusion ring generated by a twister

is isomorphic to the character ring of some �nite group.



Fusion matrices
For a primary p de�ne the fusion matrix

[N(p)]qr = Nr
pq

Span a commutative matrix algebra (the Verlinde algebra V)

N(p) N(q) =
∑
r

Nr
pqN(r)

Commuting matrices with non-negative elements  common Perron-

Frobenius eigenvector (quantum dimension) dp≥1.

∑
r

Nr
pqdr = dpdq



Modular S-matrix

Spq =
1√∑
r d

2
r

∑
r

Nr
pqdr exp{2πi(hp+hq−hr)}

Verlinde's theorem:

ρp(N(q)) =
Sqp
S0p

is an irrep of V for each primary p, where 0 denotes the vacuum primary.

irreducible representations of V! primary �elds

Perron's theorem  

|ρp(N(q)) | ≤ ρ0(N(q)) = dq



Twisters
A set g of primaries is fusion closed if Nr

pq>0 for p, q∈g implies r∈g.

Form a modular (even Arguesian) lattice L .



ĝ: subalgebra of V spanned by the fusion matrices N(α) for α∈g.

Primaries p and q belong to the same twist class if the restrictions to ĝ

of the irreps ρp and ρq coincide.

twist classes! irreducible representations of ĝ

 the number of twist classes equals the cardinality of g.

Notation: for a class C and α∈g let α(C)=ρp(α) for any p∈C.

Orthogonality relations: for α, β∈g

∑
C

α(C)β(C)

‖C‖
=

{
1 if α=β;

0 otherwise

where

‖C‖ = 1∑
p∈C

S2
0p



Second orthogonality: for twist classes C1 and C2

∑
α∈g

α(C1)α(C2) =

{
‖C1‖ if C1=C2;

0 otherwise.

Trivial class g⊥: twist class containing the vacuum primary 0.

Remark : p∈g⊥ i� hq − hp − hα∈Z whenever Nq
αp>0 for some α∈g.

Product rule: If p ∈ g⊥ and Nr
pq > 0, then q and r belong to the

same twist class.

Consequence: g⊥∈L and (g⊥)⊥=g, hence the lattice L is self-dual.

Blocks of g = twist classes of g⊥ (number of blocks = cardinality of g⊥).

Blocks partition the set of primaries: p and q belong to the same block

i� Nq
αp>0 for some α∈g (g is the trivial block).



Restriction of fusion matrices to the elements of a block b provides an

integral representation Nb of ĝ.

classes: irreducible

blocks: integral

}
representations of ĝ

Overlap
〈
b, C
〉
: multiplicity of irrep ρC in Nb (non-negative integer)〈

b, C
〉
=
∑
p∈b

∑
q∈C
|Spq|2

|b|=
∑

C

〈
b, C
〉
and |C|=

∑
b

〈
b, C
〉
.

Note:
〈
b, C
〉
=0 implies Spq=0 for all p∈b and q∈C.〈

g, C
〉
=1 for every class C and

〈
b, g⊥

〉
=1 for every block b.



Integrality theorem: g⊆g⊥ implies dα∈Z and hα∈ 1
2Z for all α∈g.

g⊆g⊥ i� Nγ
αβ>0 for α, β, γ∈g implies hγ−hα−hβ∈Z i� every class is

a union of blocks.

g∈L is a twister if hα∈Z for all α∈g (consequently g⊆g⊥).

Every g⊆g⊥ is a twister or a Z2-extension thereof ('swister'?).

If g∈L is a twister, then

1. a block is contained in the trivial class g⊥ i� the conformal

weights of its elements di�er by integers;

2. to each block b corrresponds an algebraic integer Db ('block

dimension') such that
dp

Db
∈Z+ for all p∈b.



A twister determines a Tannakian subcategory of the modular tensor

category associated to the conformal model  

the ring ĝ associated to a twister is isomorphic to the representation

ring of some �nite group G (Deligne's theorem).

Problem: there may exist several nonisomorphic groups with isomorphic

representation rings (e.g. D8, the dihedral group of order 8, and Q, the

group of unit quaternions). How to distinguish between the di�erent

possibilities?

Solution: use the λ-ring structure (exterior powers) of the representation

ring, i.e. the Adams operations.



Adams operations
For n∈Z and elements α, β∈g of a twister g let

Zn(α, β) =
∑
p,q

Nq
αpSβpS0qe

2πin(hα+hp−hq)

There exists an endomorphism Ψn∈End(ĝ) such that

• Ψn (α)=
∑
β∈g

Zn(α, β)β for α∈g;

• Ψn (α)=αn for invertible elements α∈ ĝ;

• Ψn is functorial;

• Ψn ◦ Ψm=Ψnm.



Ψn∈End(ĝ) is the nth Adams operation on ĝ, endowing the latter with

the structure of a λ-ring, able to distinguish (but for Brauer pairs) non-

isomorphic groups with identical fusion rules, e.g. D8 and Q.

Ψn permutes the characteristic functions of the twist classes existence

of power maps C 7→Cn for each n∈Z.

Order of the twist class C = least positive integer n such that Cn=g⊥.

If a block b is contained in a twist class of order n, then the conformal

weights inside b can only di�er by integer multiples of 1
n .



Orbifold deconstruction

vacuum block twister

irrep of twist group element of twister

twisted sectors twist classes

orbits of twisted modules blocks

stabilizer of orbit inertia subgroup

Step 1: select a twister.

Step 2: determine the corresponding twist classes and blocks.

Step 3: compute the character table and the power maps.



Step 4: identify the twist group G (up to possible Brauer pairs).

Step 5: for each block b contained in the trivial class determine the

inertia subgroup Ib and associated 2-cocycle ϑb∈Z2(Ib,C×).

Remark. For most applications it is enough to know the order eb of (the

cohomology class of) ϑb and the index [G :Ib] of the inertia subgroup.

Step 6: compute the spectrum of the deconstructed model.

Remark. To each block b⊆g⊥ correspond [G :Ib] di�erent primaries of

respective conformal weights hb=min {hp | p∈b}, quantum dimensions

db =
Db

eb [G :Ib]



and chiral characters

χb(τ) =
eb

Db

∑
p∈b

dpχp(τ)

Step 7: if the above did not single out the deconstructed model, compute

the block-fusion coe�cients

N c
ab =

eaebec

|Ia||Ib|
∑
p∈a

∑
q∈b

∑
r∈c

Nr
pq

dpdqdr

DaDbDc
(1)

that characterize the fusion rules of the deconstructed model (but for

�xed-point resolution).



A permutation orbifold example

D = transitive permutation group of degree 4 generated by the cyclic

permutations (1, 2, 3, 4) and (2, 4) (isomorphic to the dihedral group of

order 8, the symmetry group of a square).

Permutation orbifold V\ oD: conformal model of central charge c=96,

with 22 primaries of known conformal weights, chiral characters, etc.

Moonshine module is self-dual  fusion rules and modular properties

described by the (untwisted) double of D.

45 fusion closed sets (of which 22 twisters), with Hasse-diagram





7 maximal twisters, all self-dual  corresponding deconstructions are

self-dual too (with only one primary).

twist group trace function

D8 J(q)
4

D8 J(q)
4 − 590652J(q)

2 − 64481280J(q) + 55552950252

D8 J(q)
4 − 590652J(q)

2 − 64481280J(q) + 55552359600

D8 J(q)
4 − 590652J(q)

2 − 64481277J(q) + 55552950252

D8 J(q)
4 − 393768J(q)

2
+ 38763309456 =

(
J(q)

2 − 196884
)2

D8 J(q)
4 − 393768J(q)

2 − 42987519J(q)− 1728009288

Z3
2 J(q)

4 − 393768J(q)
2 − 42987519J(q) + 37035300168

Table 1. Maximal deconstructions of V\ oD

Maximal deconstructions have di�erent trace functions  they all di�er

from each other.



Lessons:

1. one and the same conformal model can have several di�erent maxi-

mal deconstructions, possibly with non-isomorphic twist groups;

2. one needs to know the power maps in order to identify the twist

group;

3. maximal deconstructions of a permutation orbifold related to repli-

cation identities, e.g. (from deconstruction no. 7)

J(2τ)
2
+ J

(τ
2

)2
+ J

(
τ+1

2

)2

= J(τ)
4 − 787536J(τ)

2 − 85975038J(τ) + 74070600336



Addendum: L
(
1
2 , 0
)
o S3 (aka. F(3)S3 , cf. Penn's talk) has 49 primaries,

but only 3 (non-trivial) twisters. The corresponding decompositions are

twist group deconstructed model

Z2 L
(
1
2 , 0
)
o Z3

S3 L
(
1
2 , 0
)⊗3

S4 SU (2)2

Each deconstruction is N=1 superconformal, with L
(
1
2 , 0
)
oZ3 and (the

trivial) L
(
1
2 , 0
)
o S3 isolated in the moduli space of c= 3

2 superconformal

models (Cappelli and d'Appollonio, JHEP0208:039, 2002).



Summary

• e�ective procedure for orbifold deconstruction

• lattice structure of fusion closed sets

• Adams-operations for twisters

• integrality of quantum dimensions

• structure of twisted modules



and open questions

• characterization of primitive models?

• Moore's conjecture?

• relation between di�erent maximal deconstructions?

• generalized deconstruction using swisters?

• Brauer characters?


