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Feigin-Frenkel duality of W -algebras

g: complex simple Lie algebra

W k(g): the (principal) W -algebra associated with g at level k

([Zamolodchikov, Fateev-Lukuyakov, Feigin-Frenkel])

• W k(g) can be considered as an affinization of the center Z(g)

of U(g) in the sense that Zhu(W k(g)) ∼= Z(g);

• For k = −h∨ (critical level), W k(g) is isomorphic to the

Feigin-Frenkel center of the affine Kac-Moody algebra

ĝ = g[t, t−1]⊕ CK associated with g; For non-critical k ,

W k(g) is (highly) non-commutative. (commutation relations

are not known)
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Feigin-Frenkel duality of W -algebras

Lg: Langlands dual Lie algebra of g

Feigin-Frenkel’92 lifted the isomorphism Z(g) ∼= Z(Lg) to the

isomorphism

W k(g) ∼= W
Lk(Lg).

Here, Lk is the complex number defined by

r∨(k + h∨)(Lk + Lh∨) = 1,

where r∨ is the lacing number of g.

By taking limit k → ∞, we get the isomorphism

W ∞(g) ∼= FunOpg(D),

which plays an important role in the classical geometric Langlands

program.
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Feigin-Frenkel duality of W -algebras

The proof of the Feigin-Frenkel duality uses the Miura map

Υ : W k(g) ↪→ πk ,

which is a lifting of the map

Z(g)
Harish-Chandra

∼→ S(h)W ↪→ S(h).

Here πk is the Heisenberg vertex algebra associated with h at level

k .
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Feigin-Frenkel duality of W -algebras

Example:

Let g = sln.

The image of W k(sln) by the Miura map is generated

by fields W2(z),W3(z), . . . ,Wn(z) defined by

n∑
i=0

Wi (z)(α0∂z)
n−1

=: (α0∂z + b1(z))(α0∂z + b2(z)) . . . (α0∂z + bn(z)) :,

where α0 =
√
k + n + 1√

k+n
and bi (z) is the generating fields of

πk satisfying the OPE

bi (z)bj(w) ∼


1−1/n
(z−w)2

(i = j)

−1/m
(z−w)2

(i ̸= j).
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Feigin-Frenkel duality of W -algebras

It is natural to ask the following

Question

Under the Feigin-Frenkel isomorphism W k(g) ∼= W
Lk(Lg), how

are their modules identified?

It turned out this is an important problem even for an irrational k,

which plays an essential role in quantum geometric Langlands

program.
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Quantum geometric Langlands program

Let X be a smooth projective curve over C, G connected,

simply-connected simple algebraic group over C, BunG the moduli

stack of principal G -bundles on X , D -modk(BunG ) the derived

category of k-twisted D-modules on BunG .

Quantum geometric Langlands program (Stoyanovsky’94,

Gaitsgory’16) states that there should be an equivalence of derived

categories

D -modk(BunG ) ∼= D -mod−Lk−2Lh∨(BunLG )

for an irrational k , where LG is the Langlands dual group. (−2h∨

corresponds to the canonical line bundle on BunG .)

(A similar, but more subtle, equivalence is expected for rational k

as well.)
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Quantum geometric Langlands program

More precisely, we should have the following commutative diagram:

KL(ĝ)k
FLEk //

Loc
��

WhitLk(GrLG )

Poinc
��

D -modk(BunG ) //

��

D -mod−Lk−2Lh∨(BunLG )

Γ
��

Whit−k−2h∨(GrG )
FLE−1

−Lk−2Lh
// KL(L̂g)−Lk−2Lhvee ,

where KL(ĝ)k is the Kazhdan-Lusztig parabolic category O of ĝ at

level k , Whitk(GrG ) is the Whittaker category on the affine

Grassmannian GrG = G ((t))/G [[t]] at level k , and FLEk is the

equivalence KL(ĝ)k
∼→ WhitLk(GrLG ) of chiral categories

(fundamental local equivalence proved by Gatisgory).
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level k , Whitk(GrG ) is the Whittaker category on the affine

Grassmannian GrG = G ((t))/G [[t]] at level k , and FLEk is the

equivalence KL(ĝ)k
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Master chiral algebra

According to Dennis Gaistgory, one can obtain a desired

equivalence using the Master chiral algebra, which is a certain

vertex algerba. However, to define such a vertex algebra one needs

to check a compatibility condition, and this compatibility condition

was stated as a conjecture on the isomorphism between certain

representations of W -algebras under the Feigin-Frenkel duality.
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Family of modules appearing Gaitsgory’s conjecture

Let P+, P̌+ be the set of dominant weights and dominant

coweights of g, respectively.

Under the isomorphism h∗ ∼= Lh, they

are identified with the set of dominant coweights and dominant

coweights of g, Lg, respectively.

We are going to define a family of W k(g)-modules

T k
λ,µ̌, (λ, µ̌) ∈ P+ × P̌+.
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Drinfeld-Sokolov reduction

Recall that

W k(g) = H0
DS(V

k(g)).

Here H0
DS(?) is the Drinfeld-Sokolov reduction functor:

H•
DS(M) = H∞/2+•(n[t, t−1],M ⊗ CΨ),

where Ψ : n[t, t−1] → C is the character defined by

Ψ(xαt
n) =

δn,−1 if α is simple

0 otherwise.

We have a functor

{smooth ĝ-modules of level k} → W k(g) -Mod,

M 7→ H0
DS(M).
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Twisted Drinfeld-Sokolov reduction

For µ̌ ∈ P̌+, define the character Ψµ : n[t, t−1] → C by

Ψµ̌(xαt
n) =

δn,−1−α(µ̌) if α is simple,

0 otherwise,

and set

H•
DS,µ̌(M) = H∞/2+•(n[t, t−1],M ⊗ CΨµ̌).
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Twisting and Spectral Flow

One finds that

H•
DS,µ̌(M) = H•(σµ̌C (M), σµ̌(dΨ)),

where (C (M), dΨ) is the standard complex for calculating the

usual DS reduction: H•
DS(M) = H•(C (M), dΨ), and σµ̌ is the

spectral flow (affine Weyl group action) associated with µ̌ ∈ P̌+.

It follows that H•
DS ,µ̌(M) is naturally a W k(g)-module.

Remark

Spectral flows do not preserve the category O.
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Family of modules

For λ ∈ P+, let Vλ be the irreducible finite-dimensional

representation of g with highest weight λ,

and set

Vk
λ := U(ĝ)⊗U(g[t]⊕CK) Vλ,

where Vλ is considered as a g[t]⊕ CK -module on which g[t] acts

via the projection g[t] → g and K = k id.

Definition

For (λ, µ̌) ∈ P+ × P̌+, we set

T k
λ,µ̌ := H0

DS,µ̌(Vk
λ).

One can define the W
Lk(Lg)-module Ť ǩ

µ̌,λ = H0
DS,λ(V

Lk
µ ) as well.
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λ := U(ĝ)⊗U(g[t]⊕CK) Vλ,

where Vλ is considered as a g[t]⊕ CK -module on which g[t] acts

via the projection g[t] → g and K = k id.

Definition

For (λ, µ̌) ∈ P+ × P̌+, we set

T k
λ,µ̌ := H0

DS,µ̌(Vk
λ).

One can define the W
Lk(Lg)-module Ť ǩ
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Main Results

Theorem (A.-Frenkel, conjectured by Gaitsgory)

Let (λ, µ̌) ∈ P+ × P̌+.

i). We have H i ̸=0
DS ,µ̌(V

k
λ) = 0.

ii). Let k be irrational. Then T k
λ,µ is an irreducible highest weight

representation of W k(g), and we have

T k
λ,µ̌

∼= Ť ǩ
µ̌,λ

under the Feigin-Frenkel duality isomorphism

W k(g) ∼= W ǩ(Lg).
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Some remarks

Remark

The modules T k
λ,µ̌ appears also in the coset construction of

W -algebras:

For a simply laced g and an irrational k, we have

Vk
µ ⊗ L1

ν
∼=

⊕
λ∈P+

λ−µ−ν∈Q+

Vk+1
λ ⊗ T ℓ

µ,λ,

where ℓ = k+h∨

k+h∨+1 ([A.-Creutzig-Linshaw 2019]).

Remark

T k
λ,µ also appear in the higher rank triplet algebras ([Shoma

Sugimoto]).
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Back to Master chiral algebra

Using FLE, we have to functors

KLk(ĝ)⊗ KLLk(
L̂g) → W k(g) -Mod

given by

M ⊗ N 7→ H0
DS(M ⋆ FLELk(N)),

M ⊗ N 7→ H0
DS(FLEk(M) ⋆ N),

where ⋆ is the convolution product defined by Frenkel-Gaitsgory.

We have H0
DS(Vk

λ ⋆ FLELk(V
Lk
µ̌ )) = T k

λ,µ̌ and

H0
DS(FLEk(Vk

λ) ⋆ V
Lk
µ̌ )) = T

Lk
µ̌,λ.

So the previous theorem says that these two functors coincide.

Let P denote this functor.
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Back to Master chiral algebra

The Master chiral algebra is defined as

M = (id⊗P ⊗ id)(Dch
G ,k ⊗Dch

LG ,−Lk−2Lh∨),

where Dch
G ,k =

⊕
λ∈P+

Vk
λ ⊗ V−k−2h∨

λ∗ is the chiral differential

operators on G defined by Malikov-Schechtman-Vaintrob and

Beilinson-Drinfeld, where λ∗ = −w0(λ).

We have

M ∼=
⊕

(λ,µ̌)∈P+×P̌+

Vk
λ∗ ⊗ T−k−2h∨

λ,µ̌ ⊗ V
Lk
µ̌∗ .

According to Gaisgory, the Ran space version of our theorem can

be used to prove the quantum geometric Langlands

correspondence.
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Thank you!
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