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E - elliptic curve
K - number field
E (K ) - the set of all K -rational points on E
Then

E (K ) ∼= Zr ⊕ E (K )tors

Theorem (Mazur)
E (Q)tors can be one of the following 15 groups:

Z/nZ, n = 1, ..., 10, 12,

Z/2Z⊕ Z/2nZ, n = 1, 2, 3, 4.
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Possible torsion subgroups over quadratic fields

Theorem (Kamienny, Kenku, Momose)
E (K )tors , where K = Q(

√
d) is a quadratic field, can be one of the

following 26 groups:

Z/nZ, n = 1, ..., 16, 18

Z/2Z⊕ Z/2nZ, n = 1, ..., 6,

Z/3Z⊕ Z/3nZ, n = 1, 2,

Z/4Z⊕ Z/4Z.



Possible torsion subgroups over cubic fields

Theorem (Derickx, Etropolski, Hoeij, Morrow, Zureick-Brown)
E (K )tors , where K is a quadratic field, can be one of the following
26 groups:

Z/nZ, n = 1, ..., 16, 18, 20, 21

Z/2Z⊕ Z/2nZ, n = 1, ..., 7.

All these groups except Z/21Z occur for infinitely many non
isomorphic elliptic curves.



Y1(m, n) - modular curve whose every K−rational point
corresponds to an isomorphism class of an elliptic curve
together with an m−torsion point Pm ∈ E (K ) and an
n−torsion point Pn ∈ E (K ) such that Pm and Pn generate a
subgroup isomorphic to Z/mZ⊕ Z/nZ

X1(m, n) - compactification of Y1(m, n) (curve + cusps)

X1(n) = X1(1, n)

X1(13) : y2 = f13(x) = x6 − 2x5 + x4 − 2x3 + 6x2 − 4x + 1
X1(16) : y2 = f16(x) = x(x2 + 1)(x2 + 2x − 1)
X1(18) : y2 = f18(x) = x6 +2x5 +5x4 +10x3 +10x2 +4x +1
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Definition
A point P ∈ C (K̄ ) is called quadratic if [K (P) : K ] = 2.

Given a model y2 = f (x) for C, there is an obvious way of
producing quadratic points:

(x0,
√

f (x0)) ∈ C (K̄ ), x0 ∈ K .

Points of this form will be called obvious quadratic points for
the given model.
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Lemma (Krumm)
Suppose that C/K has genus 2 and C (K ) 6= ∅. Let J be the
Jacobian variety of C .
1. The set of non-obvious quadratic points for the model

y2 = f (x) is finite if and only if J(K ) is finite.

2. Suppose that J(K ) is finite, and let q denote the number of
non-obvious quadratic points for the given model. Then there
is a relation

q = 2j − 2 + w − c2,

where j = #J(K ), c = #C (K ) and w is the number of points
in C (K ) that are fixed by hyperelliptic involution.
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Quadratic points on X1(18)

Theorem (Krumm)

1. The only non-obvious quadratic points for the model
y2 = f18(x) are the following four cusps:

(ω, ω − 1), (ω2, ω2 − 1), (ω, 1− ω), (ω2, 1− ω2),

where ω =
−1 +

√
−3

2
is a primitive cube root of unity. In

particular, every non-cuspidal quadratic point on X1(18) is
obvious.

2. If X1(18) has a quadratic point defined over the field
K = Q(

√
d), with d 6= −3 squarefree, then:

(a) d > 0. Hence, K is a real quadratic field.
(b) d ≡ 1 (mod 8). Hence, the rational prime 2 splits in K .
(c) d 6≡ 2 (mod 3). Hence, the prime 3 is not inert in K .



Proof.

1. We apply the Lemma to the curve C = X1(18). Using Magma
we find that j = 21,w = 0, c = 6, and hence q = 4.
Therefore, X1(18) has exactly four non-obvious quadratic
points. Computing Mumford representation for the elements of
J1(18)(Q) we obtain exactly two pairs
(x2 + x + 1, x − 1), (x2 + x + 1,−x + 1). These pairs clearly
give rise to the four non-obvious quadratic points listed above.
Note that these four points are cusps.



2. Every quadratic point defined over K is obvious for the model
y2 = f18(x), so there is an x0 ∈ Q such that
K = Q(

√
f18(x0)).

(a) The polynomial function x 7→ f18(x) only takes positive values
for x ∈ R, so f18(x0) > 0.

(b) Letting x0 = n/d with n and d coprime integers, we have that
K = Q(

√
g(n, d)), where

g(n, d) = d6f18(n/d) =

= n6 + 2n5d + 5n4d2 + 10n3d4 + 10n2d4 + 4nd5 + d6.

We claim that g(n, d) is congruent to 1 (mod 8). If n and d
are both odd, then

g(n, d) ≡ 1+2nd+5+10nd+10+4nd+1 = 17+16nd ≡ 1 (mod 8).

We deal with other cases (and (c)) similarly.



Theorem (Kenku, Momose)
Let K be a quadratic number field such that Y1(18)(K ) 6= ∅. Then
5 and 7 are unramified in K and either 2 splits or 3 does not split in
K . Moreover, 3 is not inert in K .



Quadratic points on X1(13)

Theorem (Momose)
Let K be a quadratic number field such that Y1(13)(K ) 6= ∅. Then
the rational prime 2 splits in K and 3 is unramified in K .



Theorem (Krumm)

1. All quadratic points on X1(13) are obvious for the model
y2 = f13(x).

2. If X1(13) has a quadratic point defined over the field
K = Q(

√
d), with squarefree, then:

(a) d > 0. Hence, K is a real quadratic field.
(b) d ≡ 1 (mod 8). Hence, the rational prime 2 splits in K .



Quadratic points on X1(16)

It can be shown that all non-cuspidal quadratic points are obvious,
but unlike with X1(13) and X1(18) we cannot use this description
to prove results about the splitting of rational primes in quadratic
extensions.
However, Krumm has noticed the following property of the ideal
class groups:



Conjecture (Krumm)
Let K 6= Q(

√
−15) be an imaginary quadratic field such that

X1(16) has a quadratic point over K . Then the class number of K
is divisible by 10.

Theorem (Krumm)
There are infinitely many imaginary quadratic fields K such that
X1(16) has a quadratic point over K and the class number of K is
divisible by 10.

Conjecture (T.)
There are infinitely many cubic number fields K such that X1(16)
has a cubic point over K and the class number of K is divisible by
10.
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Theorem (T.)
Let K be a cubic number field such that Y1(2, 14)(K ) 6= ∅. If the
rational primes 3,5,11,13 and 17 are primes of good reduction, then
they remain prime in K .

Proof.
Since (28, 5) = 1, we have

Z/2Z⊕ Z/14Z ↪→ E (OK/P),

where P is a prime lying over 5.



1. 5OK = P1 · P2 · P3

NK/Q(5OK ) = NK/Q(5) = 53 = NK/Q(P1 · P2 · P3) =
NK/Q(P1) · NK/Q(P2) · NK/Q(P3).

Hence, NK/Q(Pi ) = 5, i = 1, 2, 3, and OK/P = F5, so we have

Z/2Z⊕ Z/14Z ↪→ E (F5).

Hasse-Weil: |#E (F5)− (5 + 1)| ≤ 2
√
5, so

#E (F5) ≤ 10.5 < 28.



2. 5OK = P2
1 · P2

This cannot happen because the extension is Galois.

3. 5OK = P3
1

Similar as 1.
4. 5OK = P1 · P2

This cannot happen because the extension is Galois.
5. 5OK = P2

1
Cannot happen because NK/Q(5OK ) = 53 = NK/Q(P1)2.

6. 5OK = P1
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Proposition (T.)
Let p be a prime satisfying p ≡ 3 (mod 8), p ≡ 2 (mod 3) and(p
5

)
= −1. Then, rank(X1(15)(Q(

√
p))) = 0.

Proposition (T.)
Let p be a prime satisfying p ≡ 3 (mod 8) and

(p
7

)
= 1. Then,

rank(X1(14)(Q(
√
p))) = 0.



Denote X = X0(15). Then

rank(X (Q(
√
p))) = rank(X (Q)) + rank(X p(Q)).

Let X ′ be the curve that is 2−isogenous to X , φ a 2−isogeny from
X to X ′, and ψ its dual isogeny. Then

rank(X (K )) ≤ log2(|Sψ(X )| · |Sφ(X ′)|)− 2.



N2 = −M4 + 41pM2e2 − 400p2e4

Reducing modulo 3 and noticing that p ≡ 2 (mod 3) we get

N2 ≡ −M4 + M2e2 − e4 ≡ 2 (mod 3),

which is not a quadratic residue modulo 3.


