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Theorem (Mazur)
E(Q)tors can be one of the following 15 groups:

Z/nZ, n=1,..,10,12,

7)27 & 7.)2nZ, n=1,2,3,4.



Possible torsion subgroups over quadratic fields

Theorem (Kamienny, Kenku, Momose)

E(K)tors, where K = Q(v/d) is a quadratic field, can be one of the
following 26 groups:

Z/nZ, n=1,...,16,18
Z]2L®ZL)2nZ, n=1,...,6,
Z)3Z & L/3nZ, n=1,2,
Z/A7. & 7./47.



Possible torsion subgroups over cubic fields

Theorem (Derickx, Etropolski, Hoeij, Morrow, Zureick-Brown)

E(K)tors, where K is a quadratic field, can be one of the following
26 groups:
Z/nZ, n=1,..,16,18,20,21

ZRL®ZL/2nZ, n=1,..,T.

All these groups except Z./217 occur for infinitely many non
isomorphic elliptic curves.



Y1(m, n) - modular curve whose every K—rational point
corresponds to an isomorphism class of an elliptic curve
together with an m—torsion point P, € E(K) and an
n—torsion point P, € E(K) such that P, and P, generate a
subgroup isomorphic to Z/mZ & Z/nZ

Xi(m, n) - compactification of Yi(m, n) (curve 4+ cusps)

Xl(n) = Xl(]., n)



Y1(m, n) - modular curve whose every K—rational point
corresponds to an isomorphism class of an elliptic curve
together with an m—torsion point P, € E(K) and an
n—torsion point P, € E(K) such that P, and P, generate a
subgroup isomorphic to Z/mZ & Z/nZ

Xi(m, n) - compactification of Yi(m, n) (curve 4+ cusps)

y (
X1(16) 1 y? = fi5(x) = X(X + 1)(x +2x—1)
X1(18) 1 y? = fig(x) = x® +2x5 +5x* +10x3 + 10x% + 4x + 1
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A point P € C(K) is called quadratic if [K(P) : K] = 2.



Definition

A point P € C(K) is called quadratic if [K(P) : K] = 2.
Given a model y? = f(x) for C, there is an obvious way of
producing quadratic points:

(x0, Vf(x0)) € C(K), x € K.

Points of this form will be called obvious quadratic points for
the given model.



Lemma (Krumm)

Suppose that C/K has genus 2 and C(K) # (). Let J be the
Jacobian variety of C.

1. The set of non-obvious quadratic points for the model
y? = f(x) is finite if and only if J(K) is finite.



Lemma (Krumm)

Suppose that C/K has genus 2 and C(K) # (). Let J be the
Jacobian variety of C.

1. The set of non-obvious quadratic points for the model
y? = f(x) is finite if and only if J(K) is finite.

2. Suppose that J(K) is finite, and let q denote the number of
non-obvious quadratic points for the given model. Then there
is a relation

q=2j—2+w—c?
where j = #J(K), ¢ = #C(K) and w is the number of points
in C(K) that are fixed by hyperelliptic involution.



Quadratic points on X;(18)

Theorem (Krumm)

1. The only non-obvious quadratic points for the model
y? = fig(x) are the following four cusps:

(w,w—1), (w2,w2 -1),(w,1 —w), (w2, 1-— w2),

—14++v-
where w = +2 is a primitive cube root of unity. In
particular, every non-cuspidal quadratic point on X1(18) is
obvious.

2. If X1(18) has a quadratic point defined over the field
K= Q(ﬂ), with d # —3 squarefree, then:
(a) d> 0 Hence, K is a real quadratic field.
(b) d =1 (mod 8). Hence, the rational prime 2 splits in K.
(c) d 7—é 2 (mod 3). Hence, the prime 3 is not inert in K.



Proof.

1. We apply the Lemma to the curve C = X1(18). Using Magma
we find that j = 21,w = 0,c = 6, and hence q = 4.
Therefore, X1(18) has exactly four non-obvious quadratic
points. Computing Mumford representation for the elements of
J1(18)(Q) we obtain exactly two pairs
(x2+x+1,x —1),(x*> + x + 1, —x + 1). These pairs clearly
give rise to the four non-obvious quadratic points listed above.
Note that these four points are cusps.



2. Every quadratic point defined over K is obvious for the model
y? = fig(x), so there is an xg € Q such that

K = Q(\/ flg(Xo)).

(a) The polynomial function x — fig(x) only takes positive values
for x € R, so f1g(xp) > 0.

(b) Letting xo = n/d with n and d coprime integers, we have that
K =Q(+/g(n,d)), where

g(n,d) = d°fg(n/d) =
=n® +2n°d + 5n*d® + 10n3d* + 10n°d* + 4nd® + d°.

We claim that g(n, d) is congruent to 1 (mod 8). If n and d
are both odd, then

g(n, d) = 142nd+5+10nd+10+4nd+1 = 17+16nd =1 (mod 8).

We deal with other cases (and (c)) similarly. [



Theorem (Kenku, Momose)

Let K be a quadratic number field such that Y1(18)(K) # (). Then
5 and 7 are unramified in K and either 2 splits or 3 does not split in
K. Moreover, 3 is not inert in K.



Quadratic points on X1(13)

Theorem (Momose)

Let K be a quadratic number field such that Y1(13)(K) # (. Then
the rational prime 2 splits in K and 3 is unramified in K.



Theorem (Krumm)

1. All quadratic points on X1(13) are obvious for the model
y? = fi3(x).
2. If X1(13) has a quadratic point defined over the field
K = Q(+/d), with squarefree, then:
(a) d > 0. Hence, K is a real quadratic field.
(b) d =1 (mod 8). Hence, the rational prime 2 splits in K.



Quadratic points on X;(16)

It can be shown that all non-cuspidal quadratic points are obvious,
but unlike with X1(13) and X;(18) we cannot use this description
to prove results about the splitting of rational primes in quadratic

extensions.
However, Krumm has noticed the following property of the ideal

class groups:



Conjecture (Krumm)

Let K # Q(v/—15) be an imaginary quadratic field such that
X1(16) has a quadratic point over K. Then the class number of K
is divisible by 10.
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Conjecture (Krumm)

Let K # Q(v/—15) be an imaginary quadratic field such that
X1(16) has a quadratic point over K. Then the class number of K
is divisible by 10.

Theorem (Krumm)

There are infinitely many imaginary quadratic fields K such that
X1(16) has a quadratic point over K and the class number of K is
divisible by 10.

Conjecture (T.)

There are infinitely many cubic number fields K such that X1(16)
has a cubic point over K and the class number of K is divisible by
10.



Theorem (T.)

Let K be a cubic number field such that Y1(2,14)(K) # (. If the
rational primes 3,5,11,13 and 17 are primes of good reduction, then
they remain prime in K.

Proof.
Since (28,5) = 1, we have

7./27 & 7./147 — E(Ok/P),

where P is a prime lying over 5.



1. 50K =Py - Py Ps

NK/Q(5OK) = /VK/Q(5) =53 = NK/Q(Pl <Py P3) =
N /o(P1) - Nko(P2) - Nk jq(P3).

Hence, Ny o(Pi) =5,/ =1,2,3, and Ok /P = Fs, so we have

7./27.& 7./147 — E(Fs).

Hasse-Weil: |#E(Fs) — (5 + 1)| < 2v/5, so

#E(Fs) < 10.5 < 28.



2. 50k = P? - P,
This cannot happen because the extension is Galois.
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3. 50k = P}

Similar as 1.
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. 50k = P? - P,

This cannot happen because the extension is Galois.

. 50k = P}

Similar as 1.

. 50Kk = P1- P>

This cannot happen because the extension is Galois.

. 50k = P?

Cannot happen because Ny ,q(50k) = 53 = NK/Q(Pl)Z.
.50k =P



Proposition (T.)
Let p be a prime satisfying p = 3 (mod 8)

(g) = —1. Then, rank(X1(15)(Q(y/P)))

p =2 (mod 3) and
0.

Proposition (T.)
Let p be a prime satisfying p = 3 (mod 8) and (g) = 1. Then,
rank(X1(14)(Q(y/p))) = 0.



Denote X = Xo(15). Then

rank(X(Q(/p))) = rank(X(Q)) + rank(X"(Q)).

Let X’ be the curve that is 2—isogenous to X, ¢ a 2—isogeny from
X to X/, and 1 its dual isogeny. Then

rank(X(K)) < loga(|Sy(X)] - [S4(X')]) — 2.



N? = —M* + 41pM?e? — 400p2e*

Reducing modulo 3 and noticing that p =2 (mod 3) we get
N2 = —M*+ M?e? —e* =2 (mod 3),

which is not a quadratic residue modulo 3.



