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Let p be an odd prime and k a non-negative integer. We
consider the Pellian equation

x2 − (p2k+2 + 1)y2 = −p2l+1, l ∈ {0, 1, . . . , k}. (1)

The main result of this section is the following theorem:

THEOREM 1.
The equation (1) has no solutions in positive integers x and y.

PROOF: The proof is organized through the three cases.
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x2 − (p2k+2 + 1)y2 = −p2l+1 (1)

Case 1. Let 2l + 1 ≤ k + 1, i.e. l ≤ k
2

.

Y. FUJITA, The non-extensibility of D(4k)-triples
{1, 4k(k− 1), 4k2 + 1}, with |k| prime, Glas. Mat. Ser. III 41 (2006),
205–216.

LEMMA 1 [Lemma 2, F.].
Let N and K be integers with 1 < |N| ≤ K. Then the Pellian equation

X2 − (K2 + 1)Y2 = N

has no primitive solution.
The solution (X0,Y0) is called primitive if gcd(X0,Y0) = 1.
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x2 − (p2k+2 + 1)y2 = −p2l+1 (1)

By Lemma 1, we know that the equation (1) has no primitive
solutions. Assume that there exists a non-primitive solution
(x, y). Then p|x and p|y, so there exist 0 < i ≤ l, x1, y1 ≥ 0,
gcd(x1, y1) = 1 such that x = pix1, y = piy1. After dividing
equation (1) by p2i, we obtain

x2
1 − (p2k+2 + 1)y2

1 = −p2l−2i+1, 0 < 2l− 2i + 1 ≤ k + 1.

But such x1, y1 do not exist according to Lemma 1, so we
obtained a contradiction.
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x2 − (p2k+2 + 1)y2 = −p2l+1 (1)

Case 2. Let 2l + 1 = 2k + 1, i.e. l = k.

Firstly we proved

LEMMA 2
If (x, y) is a solution of the equation

x2 − (p2k+2 + 1)y2 = −p2k+1, (2)

and y ≥ p
2k+1

2 , then the inequality√
p2k+2 + 1 +

x
y
> 2pk+1

holds.
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If we suppose that there exists a solution (x, y) of the equation
(1) such that y ≥ p

2k+1
2 , then by applying Lemma 2 we obtained

|
√

p2k+2 + 1− x
y
| < pk

2y2 . (3)

Assume that x = ptx1, y = pty1, where t, x1, y1 are non-negative
integers and gcd(x1, y1) = 1. Now the equation (1) is
equivalent to

x2
1 − (p2k+2 + 1)y2

1 = −p2k−2t+1. (4)

Since y ≥ y1, from (3) we obtain

|
√

p2k+2 + 1− x1

y1
| < pk

2y2
1
.
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R. T. WORLEY, Estimating |α− p/q|, J. Austral. Math. Soc.
Ser. A 31 (1981), 202–206.

THEOREM 2 [Theorem, W.].
Let α be a real number and let a and b be coprime non-zero integers,
satisfying the inequality ∣∣∣α− a

b

∣∣∣ < c
b2 ,

where c is a positive real number. Then
(a, b) = (rpm+1 ± upm, rqm+1 ± uqm), for some m ≥ −1 and
non-negative integers r and u such that ru < 2c. Here pm/qm denotes
the m-th convergent of continued fraction expansion od α.
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Now, Theorem 2 implies that

(x1, y1) = (rpm+1 ± upm, rqm+1 ± uqm), (5)

for some m ≥ −1 and non-negative integers r and u such that

ru < pk. (6)

Since x1 and y1 are coprime, we have gcd(r,u) = 1.
The terms pm/qm are convergents of the continued fraction
expansion of

√
p2k+2 + 1.
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A. DUJELLA, B. JADRIJEVIĆ, A family of quartic Thue
inequalities, Acta Arith. 111 (2004), 61–76.

LEMMA 3 [Lemma 2, D., J.]
Let α, β be positive integers such that αβ is not a perfect square, and
let pn/qn denotes the n-th convergent of continued fraction expansion
of
√

α
β . Let the sequences (sn) and (tn) arises from continued fraction

expression of the quadratic irrational
√
αβ
β . Then

α(rqn+1 + uqn)
2 − β(rpn+1 + upn)

2 = (−1)n(u2tn+1 + 2rusn+2 − r2tn+2),

for any real numbers r,u.
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In our case √
p2k+2 + 1 = [pk+1, 2pk+1],

the period of that continued fraction expansion (and also of the
corresponding sequences (sn) and (tn)) is equal to 1, according
to Lemma 3, we have to consider only the case m = 0. We
obtain

(p2k+2 + 1)(rq1 ± uq0)
2 − (rp1 ± up0)

2 = u2 − r2 ± 2rupk+1. (7)

Therefore we have to study the solvability of the equation

u2 − r2 ± 2rupk+1 = p2k−2t+1. (8)

We proved that such r,u does not exists.
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It remains to consider the case y < p
2k+1

2 . Assume that there
exists a solution of the equation (1) with this property. In that
case we can generate increasing sequence of infinitely many
solutions of the equation (1). Therefore, a solution (x, y) such
that y ≥ p

2k+1
2 will appear. This contradicts with the first part of

the proof of this case.
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x2 − (p2k+2 + 1)y2 = −p2l+1 (1)

Case 3. Let k + 1 < 2l + 1 < 2k + 1, i.e.
k
2
< l < k.

In this case, if we suppose that the equation (1) has a solution,
then multiplying that solution by pk−l we obtain the solution of
the equation

x2 − (p2k+2 + 1)y2 = −p2k+1,

which is not solvable by Case 2. That is the contradiction, and
this completes the proof of Theorem 1.
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x2 − (p2k+2 + 1)y2 = −p2l+1 (1)

PROPOSITION 1.
Let p = 2.

(i) If k ≡ 0 (mod 2), then the equation (1) has no solutions.
(ii) If k ≡ 1 (mod 2), then in case of l > k

2 the equation (1) has
a solution

(x, y) = (2
2l−k−1

2 (2k+1 − 1), 2
2l−k−1

2 ),

and in case of l ≤ k
2 it has no solutions.

PROOF: (i) The equation (1) is not solvable modulo 5.
(ii) If l ≤ k

2 , then 2l + 1 ≤ k + 1 and we can proceed as in Case 1
of Theorem 1 and conclude that the equation (1) has no
solutions.
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DEFINITION 1.
Let n be a non-zero element of a commutative ring R. A Diophantine
m-tuple with the property D(n), or simply a D(n)-m-tuple, is a set of
m non-zero elements of R such that if a, b are any two distinct
elements from this set, then ab + n = k2, for some element k in R.

• Fermat set {1, 3, 8, 120}, i.e., D(1)-quadruple in integers;
• the case of n = −1: it is conjectured that D(−1)-quadruples
do not exist in integers;
• Dujella, Filipin and Fuchs: there are at most finitely many
D(−1)-quadruples; an upper bound for their number was 10903;
• Filipin, Fujita, Bonciocat, Cipu, Mignotte, Elsholtz;
• At present, the best known bound for the number of
D(−1)-quadruples is 3.677 · 1058 due to Lapkova.
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I. SOLDO, D(−1)-triples of the form {1, b, c} in the ring
Z[
√
−t], t > 0, Bull. Malays. Math. Sci. Soc. 39 (2016),

1201-–1224.

THEOREM 3 [Theorem 2.2, S.]
Let t > 0 and {1, b, c} be D(−1)-triple in the ring Z[

√
−t].

(i) If b is a prime, then c ∈ Z.
(ii) If b = 2pk, where p is a prime and k ∈ N, then c ∈ Z.
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REMARK 1.
In the proof of Theorem 3, it was shown that for every t there exists
such c > 0, while the case c < 0 is possible only if t|b− 1 and the
equation

x2 − by2 =
1− b

t
(9)

has an integer solution.
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I b = 2pk, k ∈ N, where p be an odd prime
I D(−1)-triples of the form {1, b, c} in the ring Z[

√
−t], t > 0.

I Since b− 1 = 2pk − 1 has to be a square, to reduce the
number of t’s, we consider the equation of the form

2pk − 1 = q2j, j > 0, (10)

where q is an odd prime.

A. KHOSRAVI, B. KHOSRAVI, A new characterization of some
alternating and symmetric groups (II), Houston J. Math. 30
(2004), 953–967.
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2pk − 1 = q2j, j > 0 (10)

I (k, j) = (2, 1),
(p, q) ∈ {(5, 7), (29, 41), (44560482149, 63018038201),
(13558774610046711780701, 19175002942688032928599)}

I (k, j) = (4, 1), (p, q) = (13, 239).

I k = 1, 2, 4, yields 2pk = q2l
+ 1, l > 0.

A. FILIPIN, Y. FUJITA, M. MIGNOTTE

The non-extendibility of some parametric families of D(−1)-triples,
Q. J. Math. 63(2012), 605–621.

LEMMA 4 [Corollary 1.3., F., F., M.].
Let r be a positive integer and let b = r2 + 1. Assume that b = p
or b = 2pk, for an odd prime p and a positive integer k. Then the
D(−1)-pair {1, b} cannot be extended to D(−1)-quadruple.
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THEOREM 4
If p is an odd prime and k, t positive integers with t ≡ 0 (mod 2),
then there does not exists a D(−1)-quadruple of the form
{1, 2pk, c, d} in Z[

√
−t].

PROOF: Let t ≡ 0 (mod 2). We have that t - 2pk − 1. Therefore,
if we suppose that {1, 2pk, c, d} is a D(−1)-quadruple in Z[

√
−t],

then according to Remark 1 we obtain c, d ∈ N. This means that
there exist integers x1, y1,u1, v1,w1, such that

c− 1 = x2
1, d− 1 = y2

1, 2pkc− 1 = u2
1, 2pkd− 1 = v2

1, cd− 1 = w2
1,

or at least one of c− 1, d− 1, 2pkc− 1, 2pkd− 1, cd− 1 is equal to
−tw2

2, for an integer w2.
The first possibility leads to contradiction with Lemma 4, i.e., a
D(−1)-pair {1, 2pk}, cannot be extended to a D(−1)-quadruple
in integers, while the second one contradicts to c, d ∈ N.
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The case of t ≡ 1 (mod 2).

A. DUJELLA On the size of Diophantine m-tuples, Math. Proc.
Cambridge Philos. Soc. 132(2002), 23–33.

LEMMA 5 [Lemma 3, D.].
If {a, b, c} is a Diophantine triple with the property D(l) and
ab + l = r2, ac + l = s2, bc + l = t2, then there exist integers
e, x, y, z such that

ae + l2 = x2, be + l2 = y2, ce + l2 = z2

and
c = a + b +

e
l
+

2
l2
(abe + rxy).

Moreover, e = l(a + b + c) + 2abc− 2rst, x = at− rs, y = bs− rt,
z = cr− st.
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We use Lemma 5 for l = −1 and firstly proved the next result:

PROPOSITION 2
Let m,n > 0 and b = n2 + 1. If m|n and t = m2, then there exist
infinitely many D(−1)-quadruples of the form {1, b,−c, d}, c, d > 0
in Z[

√
−t].
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THEOREM 5.
Let 2pk = q2l

+ 1, l > 0, where p and q are odd primes.

(i) If t ∈ {1, q2, . . . , q2l−2, q2l}, then there exist infinitely many
D(−1)-quadruples of the form {1, 2pk,−c, d}, c, d > 0 in
Z[
√
−t].

(ii) If t ∈ {q, q3, . . . , q2l−3, q2l−1}, then there does not exists a
D(−1)-quadruple of the form {1, 2pk, c, d} in Z[

√
−t].
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x2 − by2 =
1− b

t
(9)

PROOF:
(i) Follows directly form Proposition 2.
(ii) Let us assume that t ∈ {q, q3, . . . , q2l−3, q2l−1}. In this case,
the equation (9) is equivalent to

x2 − (q2l
+ 1)y2 = −qs, (11)

where s is an odd integer and 0 < s ≤ 2l − 1. Theorem 1 implies
that the equation (11) has no integer solutions. Therefore, if
{1, 2pk, c, d} is D(−1)-quadruple in Z[

√
−t], then c, d > 0. By the

same argumentation as in Theorem 4 we conclude that such
quadruple does not exist.
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LEMMA 6 [Theorem 2.2, S.]
If t > 0, p is a prime and {1, p, c} is a D(−1)-triple in the ring
Z[
√
−t], then c ∈ Z. Moreover, for every t there exists c > 0, while

the case of c < 0 is possible if and only if t|p− 1 and the equation

x2 − py2 =
1− p

t

has an integer solution.

I the existence of D(−1)-quadruples of the form {1, p, c, d} in
Z[
√
−t], t > 0;

I the case of p = 2 is already proven;
I conjecture p− 1 = q2j, j ∈ N leads us to the form

p = 22n
+ 1,n ∈ N;

I considering Fermat prime greater then 3 (since 2 is not a
square in Z[

√
−t]).
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So far, the only known such primes are p = 5, 17, 257, 65537,
corresponding to n = 1, 2, 3, 4, respectively. The cases of
n = 1, 2 which correspond to p = 5, 17 are solved in

I. SOLDO, On the extensibility of D(−1)-triples {1, b, c} in the ring
Z[
√
−t], t > 0, Studia Sci. Math. Hungar., 50 (2013), 296–330.

The remaining cases are recently solved and presented in the
paper

M. JUKIĆ BOKUN, I. SOLDO, On the extensibility of D(−1)-pairs
containing Fermat primes, to appear in Acta Math. Hungar.
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The results for so far known Fermat primes can be expressed in
the form of the following theorem:

THEOREM 6.
Let n ∈ {1, 2, 3, 4} and let p be the n-th Fermat prime. Let t > 0.
If t ∈ {1, 22, . . . , 22n−2, 22n}, then there exist infinitely many
D(−1)-quadruples of the form {1, p, c, d} in Z[

√
−t]. In all other

cases of t, in Z[
√
−t] does not exist D(−1)-quadruple of the

previous form.

The proof of the above theorem is separated in few parts. The
main steps are as follows:
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In the research, whenever it was possible we proved some of
our results on extendibility of a D(−1)-pair {1, p} to a
D(−1)-quadruple in Z[

√
−t], t > 0 for an arbitrary Fermat

prime p. By using previous results we immediately have:

PROPOSITION 3
Let n ≥ 1, p be the n-th Fermat prime, and let t ∈ {1, 22, . . . ,
22n−2, 22n}. There exist infinitely many D(−1)-quadruples of the
form {1, p,−c, d}, c, d > 0 in Z[

√
−t].
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Suppose that there exists a D(−1)-quadruple of the form
{1, p, c, d}, in Z[

√
−t], t > 0.

For t - 22n
(= p− 1), we conclude that c, d > 0 and similarly

obtain the contradiction with results in integers.

Keeping in mind the statement of Proposition 3, it remains to
consider the cases of t ∈ {2, 23, . . . , 22n−3, 22n−1}. They all satisfy
the condition t | 22n

, so we have to consider weather the
equations

x2 − (22n
+ 1)y2 = −22l+1, l ∈ {0, 1, . . . , 2n−1 − 1}. (12)

has an integer solution.

a) If n = 1 the only possibility is l = 0, i.e., t = 2 and the
equation (12) has no solutions.
b) If n ≥ 2, the solution does not exists for
l∈{0, 1, . . . , 2n−2 − 1}, i.e., in case of
t∈{22n−1+1, 22n−1+3, . . . , 22n−1}.
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PROPOSITION 4
Let n ≥ 1 and let p be the n-th Fermat prime. There does not
exist D(−1)-quadruple of the form {1, p, c, d} in Z[

√
−t], t > 0 in

the following cases:
a) t - 22n

;
b) n = 1 and t = 2;
c) n ≥ 2 and t∈{22n−1+1, 22n−1+3, . . . , 22n−1}.

It remains to consider the case of n ≥ 2 and
l ∈ {2n−2, . . . , 2n−1 − 1}, i.e., t ∈ {2, 23, . . . , 22n−1−1}. Here the
integer solution of (12) exists and in that case at least one of c, d
has to be negative integer (otherwise, we have the
contradiction with extension in integers).
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Since Z[
√
−22l+1] ⊆ Z[

√
−2], it is enough to prove the

nonexistence of such D(−1)-quadruple in the ring Z[
√
−2].

Therefore, if s̃, t̃, x, y, z ∈ Z, we will consider the existence of
D(−1)-quadruples of the form {1, p,−c,−d} and {1, p,−c, d},
where c, d > 0, corresponding to the following systems,
respectively:

(i) −c− 1 = −2s̃2, −pc− 1 = −2̃t2, −d− 1 = −2x2,
−pd− 1 = −2y2, cd− 1 = z2,

(ii) −c− 1 = −2s̃2, −pc− 1 = −2̃t2, d− 1 = x2,
pd− 1 = y2, −cd− 1 = −2z2.
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PROPOSITION 5
Let n ≥ 2 and let p be the n-th Fermat prime. There does not
exist a D(−1)-quadruple of the form {1, p, c, d}, cd > 0 in
Z[
√
−t], t ∈ {2, 23, . . . , 22n−1−1}.

PROPOSITION 6
Let n = 3, 4 and let p be the n-th Fermat prime. There does not
exist a D(−1)-quadruple of the form {1, p,−c, d}, c, d > 0 in
Z[
√
−t], t ∈ {2, 23, . . . , 22n−1−1}.
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Thank you for your attention!
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