A Pellian equation with primes and its applications

Ivan Soldo

Department of Mathematics, University of Osijek, Croatia

Representation Theory XVI, June 23-29, 2019, Inter-University Centre Dubrovnik, Croatia

A. DUJELLA, M. JUKIĆ BOKUN, I. SOLDO, A Pellian equation with primes and applications to D(-1)-quadruples, Bull. Malays. Math. Sci. Soc., to appear.

Let p be an odd prime and k a non-negative integer. We consider the Pellian equation

$$x^{2} - (p^{2k+2} + 1)y^{2} = -p^{2l+1}, \quad l \in \{0, 1, \dots, k\}.$$
 (1)

The main result of this section is the following theorem:

THEOREM 1.

The equation (1) has no solutions in positive integers x and y.

PROOF: The proof is organized through the three cases.

$$x^2 - (p^{2k+2} + 1)y^2 = -p^{2l+1}$$
 (1)

Case 1. Let $2l + 1 \le k + 1$, i.e. $l \le \frac{k}{2}$.

Y. FUJITA, The non-extensibility of D(4k)-triples $\{1,4k(k-1),4k^2+1\}$, with |k| prime, Glas. Mat. Ser. III **41** (2006), 205–216.

LEMMA 1 [Lemma 2, F.].

Let N and K be integers with $1 < |N| \le K$. Then the Pellian equation

$$X^2 - (K^2 + 1)Y^2 = N$$

has no primitive solution.

The solution (X_0, Y_0) is called primitive if $gcd(X_0, Y_0) = 1$.

$$x^2 - (p^{2k+2} + 1)y^2 = -p^{2l+1} \quad (1)$$

By Lemma 1, we know that the equation (1) has no primitive solutions. Assume that there exists a non-primitive solution (x,y). Then p|x and p|y, so there exist $0 < i \le l, x_1, y_1 \ge 0$, $\gcd(x_1,y_1)=1$ such that $x=p^ix_1,y=p^iy_1$. After dividing equation (1) by p^{2i} , we obtain

$$x_1^2 - (p^{2k+2} + 1)y_1^2 = -p^{2l-2i+1}, \quad 0 < 2l - 2i + 1 \le k + 1.$$

But such x_1 , y_1 do not exist according to Lemma 1, so we obtained a contradiction.

$$x^2 - (p^{2k+2} + 1)y^2 = -p^{2l+1} \quad (1)$$

Case 2. Let 2l + 1 = 2k + 1, i.e. l = k.

Firstly we proved

LEMMA 2

If (x, y) is a solution of the equation

$$x^{2} - (p^{2k+2} + 1)y^{2} = -p^{2k+1}, (2)$$

and $y \ge p^{\frac{2k+1}{2}}$, then the inequality

$$\sqrt{p^{2k+2}+1} + \frac{x}{y} > 2p^{k+1}$$

holds.

If we suppose that there exists a solution (x, y) of the equation (1) such that $y \ge p^{\frac{2k+1}{2}}$, then by applying Lemma 2 we obtained

$$|\sqrt{p^{2k+2}+1} - \frac{x}{y}| < \frac{p^k}{2y^2}.$$
(3)

Assume that $x = p^t x_1, y = p^t y_1$, where t, x_1, y_1 are non-negative integers and $gcd(x_1, y_1) = 1$. Now the equation (1) is equivalent to

$$x_1^2 - (p^{2k+2} + 1)y_1^2 = -p^{2k-2t+1}. (4)$$

Since $y \ge y_1$, from (3) we obtain

$$|\sqrt{p^{2k+2}+1}-\frac{x_1}{y_1}|<\frac{p^k}{2y_1^2}.$$

R. T. WORLEY, *Estimating* $|\alpha - p/q|$, J. Austral. Math. Soc. Ser. A **31** (1981), 202–206.

THEOREM 2 [Theorem, W.].

Let α be a real number and let a and b be coprime non-zero integers, satisfying the inequality

$$\left|\alpha - \frac{a}{b}\right| < \frac{c}{b^2},$$

where c is a positive real number. Then

 $(a,b)=(rp_{m+1}\pm up_m,rq_{m+1}\pm uq_m)$, for some $m\geq -1$ and non-negative integers r and u such that ru<2c. Here p_m/q_m denotes the m-th convergent of continued fraction expansion od α .

Now, Theorem 2 implies that

$$(x_1, y_1) = (rp_{m+1} \pm up_m, rq_{m+1} \pm uq_m), \tag{5}$$

for some $m \ge -1$ and non-negative integers r and u such that

$$ru < p^k. (6)$$

Since x_1 and y_1 are coprime, we have gcd(r, u) = 1. The terms p_m/q_m are convergents of the continued fraction expansion of $\sqrt{p^{2k+2} + 1}$. A. DUJELLA, B. JADRIJEVIĆ, *A family of quartic Thue inequalities*, Acta Arith. **111** (2004), 61–76.

LEMMA 3 [Lemma 2, D., J.]

Let α , β be positive integers such that $\alpha\beta$ is not a perfect square, and let p_n/q_n denotes the n-th convergent of continued fraction expansion of $\sqrt{\frac{\alpha}{\beta}}$. Let the sequences (s_n) and (t_n) arises from continued fraction expression of the quadratic irrational $\frac{\sqrt{\alpha\beta}}{\beta}$. Then

$$\alpha (rq_{n+1} + uq_n)^2 - \beta (rp_{n+1} + up_n)^2 = (-1)^n (u^2 t_{n+1} + 2rus_{n+2} - r^2 t_{n+2}),$$
for any real numbers r, u .

In our case

$$\sqrt{p^{2k+2}+1} = [p^{k+1}, \overline{2p^{k+1}}],$$

the period of that continued fraction expansion (and also of the corresponding sequences (s_n) and (t_n)) is equal to 1, according to Lemma 3, we have to consider only the case m = 0. We obtain

$$(p^{2k+2}+1)(rq_1 \pm uq_0)^2 - (rp_1 \pm up_0)^2 = u^2 - r^2 \pm 2rup^{k+1}.$$
 (7)

Therefore we have to study the solvability of the equation

$$u^2 - r^2 \pm 2rup^{k+1} = p^{2k-2t+1}. (8)$$

We proved that such r, u does not exists.

It remains to consider the case $y < p^{\frac{2k+1}{2}}$. Assume that there exists a solution of the equation (1) with this property. In that case we can generate increasing sequence of infinitely many solutions of the equation (1). Therefore, a solution (x,y) such that $y \ge p^{\frac{2k+1}{2}}$ will appear. This contradicts with the first part of the proof of this case.

$$x^2 - (p^{2k+2} + 1)y^2 = -p^{2l+1} \quad (1)$$

Case 3. Let
$$k + 1 < 2l + 1 < 2k + 1$$
, i.e. $\frac{k}{2} < l < k$.

In this case, if we suppose that the equation (1) has a solution, then multiplying that solution by p^{k-l} we obtain the solution of the equation

 $x^2 - (p^{2k+2} + 1)y^2 = -p^{2k+1},$

which is not solvable by Case 2. That is the contradiction, and this completes the proof of Theorem 1.

$$x^2 - (p^{2k+2} + 1)y^2 = -p^{2l+1} \quad (1)$$

Proposition 1.

Let p = 2.

- (i) If $k \equiv 0 \pmod{2}$, then the equation (1) has no solutions.
- (ii) If $k \equiv 1 \pmod{2}$, then in case of $l > \frac{k}{2}$ the equation (1) has a solution

$$(x,y) = (2^{\frac{2l-k-1}{2}}(2^{k+1}-1), 2^{\frac{2l-k-1}{2}}),$$

and in case of $l \leq \frac{k}{2}$ it has no solutions.

PROOF: (i) The equation (1) is not solvable modulo 5.

(ii) If $l \le \frac{k}{2}$, then $2l + 1 \le k + 1$ and we can proceed as in Case 1 of Theorem 1 and conclude that the equation (1) has no solutions.

DEFINITION 1.

Let n be a non-zero element of a commutative ring R. A Diophantine m-tuple with the property D(n), or simply a D(n)-m-tuple, is a set of m non-zero elements of R such that if a, b are any two distinct elements from this set, then $ab + n = k^2$, for some element k in R.

- Fermat set {1,3,8,120}, i.e., *D*(1)-quadruple in integers;
- the case of n = -1: it is conjectured that D(-1)-quadruples do not exist in integers;
- ullet Dujella, Filipin and Fuchs: there are at most finitely many D(-1)-quadruples; an upper bound for their number was 10^{903} ;
- Filipin, Fujita, Bonciocat, Cipu, Mignotte, Elsholtz;
- At present, the best known bound for the number of D(-1)-quadruples is $3.677 \cdot 10^{58}$ due to Lapkova.

I. SOLDO, D(-1)-triples of the form $\{1, b, c\}$ in the ring $\mathbb{Z}[\sqrt{-t}], t > 0$, Bull. Malays. Math. Sci. Soc. **39** (2016), 1201–1224.

THEOREM 3 [Theorem 2.2, S.]

Let t > 0 and $\{1, b, c\}$ be D(-1)-triple in the ring $\mathbb{Z}[\sqrt{-t}]$.

- (i) If b is a prime, then $c \in \mathbb{Z}$.
- (ii) If $b = 2p^k$, where p is a prime and $k \in \mathbb{N}$, then $c \in \mathbb{Z}$.

REMARK 1.

In the proof of Theorem 3, it was shown that for every t there exists such c>0, while the case c<0 is possible only if t|b-1 and the equation

$$x^2 - by^2 = \frac{1 - b}{t} (9)$$

has an integer solution.

- ▶ $b = 2p^k, k \in \mathbb{N}$, where p be an odd prime
- ▶ D(-1)-triples of the form $\{1, b, c\}$ in the ring $\mathbb{Z}[\sqrt{-t}], t > 0$.
- ► Since $b 1 = 2p^k 1$ has to be a square, to reduce the number of t's, we consider the equation of the form

$$2p^k - 1 = q^{2j}, \quad j > 0, \tag{10}$$

where q is an odd prime.

A. KHOSRAVI, B. KHOSRAVI, A new characterization of some alternating and symmetric groups (II), Houston J. Math. **30** (2004), 953–967.

- ▶ (k,j) = (2,1), $(p,q) \in \{(5,7), (29,41), (44560482149, 63018038201), (13558774610046711780701, 19175002942688032928599)\}$
- (k,j) = (4,1), (p,q) = (13,239).
- ► k = 1, 2, 4, yields $2p^k = q^{2^l} + 1, l > 0$.

A. FILIPIN, Y. FUJITA, M. MIGNOTTE

The non-extendibility of some parametric families of D(-1)-triples, Q. J. Math. **63**(2012), 605–621.

LEMMA 4 [Corollary 1.3., F., F., M.].

Let r be a positive integer and let $b = r^2 + 1$. Assume that b = p or $b = 2p^k$, for an odd prime p and a positive integer k. Then the D(-1)-pair $\{1,b\}$ cannot be extended to D(-1)-quadruple.

THEOREM 4

If p is an odd prime and k, t positive integers with $t \equiv 0 \pmod{2}$, then there does not exists a D(-1)-quadruple of the form $\{1,2p^k,c,d\}$ in $\mathbb{Z}[\sqrt{-t}]$.

PROOF: Let $t \equiv 0 \pmod 2$. We have that $t \nmid 2p^k - 1$. Therefore, if we suppose that $\{1, 2p^k, c, d\}$ is a D(-1)-quadruple in $\mathbb{Z}[\sqrt{-t}]$, then according to Remark 1 we obtain $c, d \in \mathbb{N}$. This means that there exist integers x_1, y_1, u_1, v_1, w_1 , such that

$$c-1 = x_1^2, d-1 = y_1^2, 2p^kc - 1 = u_1^2, 2p^kd - 1 = v_1^2, cd - 1 = w_1^2,$$

or at least one of c-1, d-1, $2p^kc-1$, $2p^kd-1$, cd-1 is equal to $-tw_2^2$, for an integer w_2 .

The first possibility leads to contradiction with Lemma 4, i.e., a D(-1)-pair $\{1,2p^k\}$, cannot be extended to a D(-1)-quadruple in integers, while the second one contradicts to $c,d \in \mathbb{N}$.

The case of $t \equiv 1 \pmod{2}$.

A. DUJELLA *On the size of Diophantine m-tuples*, Math. Proc. Cambridge Philos. Soc. **132**(2002), 23–33.

LEMMA 5 [Lemma 3, D.].

If $\{a, b, c\}$ is a Diophantine triple with the property D(l) and $ab + l = r^2$, $ac + l = s^2$, $bc + l = t^2$, then there exist integers e, x, y, z such that

$$ae + l^2 = x^2, be + l^2 = y^2, ce + l^2 = z^2$$

and

$$c = a + b + \frac{e}{1} + \frac{2}{12}(abe + rxy).$$

Moreover, e = l(a + b + c) + 2abc - 2rst, x = at - rs, y = bs - rt, z = cr - st.

We use Lemma 5 for l = -1 and firstly proved the next result:

PROPOSITION 2

Let m, n > 0 and $b = n^2 + 1$. If m|n and $t = m^2$, then there exist infinitely many D(-1)-quadruples of the form $\{1, b, -c, d\}$, c, d > 0 in $\mathbb{Z}[\sqrt{-t}]$.

THEOREM 5.

Let $2p^k = q^{2^l} + 1, l > 0$, where p and q are odd primes.

- (i) If $t \in \{1, q^2, \dots, q^{2^l-2}, q^{2^l}\}$, then there exist infinitely many D(-1)-quadruples of the form $\{1, 2p^k, -c, d\}$, c, d > 0 in $\mathbb{Z}[\sqrt{-t}]$.
- (ii) If $t \in \{q, q^3, \dots, q^{2^l-3}, q^{2^l-1}\}$, then there does not exists a D(-1)-quadruple of the form $\{1, 2p^k, c, d\}$ in $\mathbb{Z}[\sqrt{-t}]$.

$$x^2 - by^2 = \frac{1 - b}{t} \tag{9}$$

Proof:

- (i) Follows directly form Proposition 2.
- (ii) Let us assume that $t \in \{q, q^3, \dots, q^{2^l-3}, q^{2^l-1}\}$. In this case, the equation (9) is equivalent to

$$x^2 - (q^{2^l} + 1)y^2 = -q^s, (11)$$

where s is an odd integer and $0 < s \le 2^l - 1$. Theorem 1 implies that the equation (11) has no integer solutions. Therefore, if $\{1, 2p^k, c, d\}$ is D(-1)-quadruple in $\mathbb{Z}[\sqrt{-t}]$, then c, d > 0. By the same argumentation as in Theorem 4 we conclude that such quadruple does not exist.

LEMMA 6 [Theorem 2.2, S.]

If t > 0, p is a prime and $\{1, p, c\}$ is a D(-1)-triple in the ring $\mathbb{Z}[\sqrt{-t}]$, then $c \in \mathbb{Z}$. Moreover, for every t there exists c > 0, while the case of c < 0 is possible if and only if t|p-1 and the equation

$$x^2 - py^2 = \frac{1-p}{t}$$

has an integer solution.

- ▶ the existence of D(-1)-quadruples of the form $\{1, p, c, d\}$ in $\mathbb{Z}[\sqrt{-t}], t > 0$;
- the case of p = 2 is already proven;
- ► conjecture $p-1=q^{2j}, j \in \mathbb{N}$ leads us to the form $p=2^{2^n}+1, n \in \mathbb{N}$;
- ▶ considering Fermat prime greater then 3 (since 2 is not a square in $\mathbb{Z}[\sqrt{-t}]$).

So far, the only known such primes are p = 5, 17, 257, 65537, corresponding to n = 1, 2, 3, 4, respectively. The cases of n = 1, 2 which correspond to p = 5, 17 are solved in

I. SOLDO, *On the extensibility of* D(-1)*-triples* $\{1, b, c\}$ *in the ring* $\mathbb{Z}[\sqrt{-t}], t > 0$, Studia Sci. Math. Hungar., **50** (2013), 296–330.

The remaining cases are recently solved and presented in the paper

M. JUKIĆ BOKUN, I. SOLDO, On the extensibility of D(-1)-pairs containing Fermat primes, to appear in Acta Math. Hungar.

The results for so far known Fermat primes can be expressed in the form of the following theorem:

THEOREM 6.

Let $n \in \{1, 2, 3, 4\}$ and let p be the n-th Fermat prime. Let t > 0. If $t \in \{1, 2^2, \dots, 2^{2^n - 2}, 2^{2^n}\}$, then there exist infinitely many D(-1)-quadruples of the form $\{1, p, c, d\}$ in $\mathbb{Z}[\sqrt{-t}]$. In all other cases of t, in $\mathbb{Z}[\sqrt{-t}]$ does not exist D(-1)-quadruple of the previous form.

The proof of the above theorem is separated in few parts. The main steps are as follows:

In the research, whenever it was possible we proved some of our results on extendibility of a D(-1)-pair $\{1,p\}$ to a D(-1)-quadruple in $\mathbb{Z}[\sqrt{-t}], t>0$ for an arbitrary Fermat prime p. By using previous results we immediately have:

Proposition 3

Let $n \ge 1$, p be the n-th Fermat prime, and let $t \in \{1, 2^2, \ldots, 2^{2^n-2}, 2^{2^n}\}$. There exist infinitely many D(-1)-quadruples of the form $\{1, p, -c, d\}$, c, d > 0 in $\mathbb{Z}[\sqrt{-t}]$.

Suppose that there exists a D(-1)-quadruple of the form $\{1, p, c, d\}$, in $\mathbb{Z}[\sqrt{-t}], t > 0$.

For $t \nmid 2^{2^n} (= p - 1)$, we conclude that c, d > 0 and similarly obtain the contradiction with results in integers.

Keeping in mind the statement of Proposition 3, it remains to consider the cases of $t \in \{2, 2^3, \dots, 2^{2^n-3}, 2^{2^n-1}\}$. They all satisfy the condition $t \mid 2^{2^n}$, so we have to consider weather the equations

$$x^{2} - (2^{2^{n}} + 1)y^{2} = -2^{2l+1}, \quad l \in \{0, 1, \dots, 2^{n-1} - 1\}.$$
 (12)

has an integer solution.

- a) If n = 1 the only possibility is l = 0, i.e., t = 2 and the equation (12) has no solutions.
- b) If $n \ge 2$, the solution does not exists for $l \in \{0, 1, \dots, 2^{n-2} 1\}$, i.e., in case of $t \in \{2^{2^{n-1}+1}, 2^{2^{n-1}+3}, \dots, 2^{2^n-1}\}$.

Proposition 4

Let $n \ge 1$ and let p be the n-th Fermat prime. There does not exist D(-1)-quadruple of the form $\{1, p, c, d\}$ in $\mathbb{Z}[\sqrt{-t}], t > 0$ in the following cases:

- a) $t \nmid 2^{2^n}$;
- b) n = 1 and t = 2;
- c) $n \ge 2$ and $t \in \{2^{2^{n-1}+1}, 2^{2^{n-1}+3}, \dots, 2^{2^n-1}\}.$

It remains to consider the case of $n \ge 2$ and $l \in \{2^{n-2}, \dots, 2^{n-1} - 1\}$, i.e., $t \in \{2, 2^3, \dots, 2^{2^{n-1} - 1}\}$. Here the integer solution of (12) exists and in that case at least one of c, d has to be negative integer (otherwise, we have the contradiction with extension in integers).

Since $\mathbb{Z}[\sqrt{-2^{2l+1}}] \subseteq \mathbb{Z}[\sqrt{-2}]$, it is enough to prove the nonexistence of such D(-1)-quadruple in the ring $\mathbb{Z}[\sqrt{-2}]$. Therefore, if $\tilde{s}, \tilde{t}, x, y, z \in \mathbb{Z}$, we will consider the existence of D(-1)-quadruples of the form $\{1, p, -c, -d\}$ and $\{1, p, -c, d\}$, where c, d > 0, corresponding to the following systems, respectively:

(i)
$$-c - 1 = -2\tilde{s}^2$$
, $-pc - 1 = -2\tilde{t}^2$, $-d - 1 = -2x^2$, $-pd - 1 = -2y^2$, $cd - 1 = z^2$,

(ii)
$$-c - 1 = -2\tilde{s}^2$$
, $-pc - 1 = -2\tilde{t}^2$, $d - 1 = x^2$, $pd - 1 = y^2$, $-cd - 1 = -2z^2$.

Proposition 5

Let $n \ge 2$ and let p be the n-th Fermat prime. There does not exist a D(-1)-quadruple of the form $\{1, p, c, d\}$, cd > 0 in $\mathbb{Z}[\sqrt{-t}], t \in \{2, 2^3, \dots, 2^{2^{n-1}-1}\}$.

Proposition 6

Let n = 3,4 and let p be the n-th Fermat prime. There does not exist a D(-1)-quadruple of the form $\{1,p,-c,d\}$, c,d>0 in $\mathbb{Z}[\sqrt{-t}], t \in \{2,2^3,\ldots,2^{2^{n-1}-1}\}.$

Thank you for your attention!