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1. Radix representation in number fields

Let g, h ≥ 2. Denote (n)g the sequence of digits of the g-ary
representation of n, e.g. (2018)10 = 2018, (2018)5 = 31033.

Let K an algebraic number field with ring of integers ZK.

L a finite extension of K with ring of integers ZL.

The pair (γ,D), where γ ∈ ZL and D is a complete residue system
modulo γ, in ZK is called a GNS in ZL if for any 0 6= β ∈ ZL there
exist an integer ` ≥ 0 and a0, . . . , a` ∈ D, a` 6= 0 such that

β = a`γ
` + · · ·+ a1γ + a0. (1)

Denote the sequence or word of the digits a` . . . a1a0 by (β)γ.

The GNS concept was initiated by D. Knuth, and developed
further by Penney, I. Kátai, J. Szabó, B. Kovács, etc.



Not all (γ,D) is a GNS! For example
(
−1+

√
−7

2 , {0.1}
)

is, but(
1+
√
−7

2 , {0.1}
)

is not a GNS in Z[
√
−7].

This GNS is a special case of GNS in polynomial ring over an or-
der, i.e., a commutative ring with unity, whose additive structure
is a free Z-module of finite rank. To avoid technical difficulties
we restrict ourself to maximal orders of number fields. The GNS
property is decidable in the general setting.

Problem 1. Let D ⊂ ZK be given. How many γ ∈ ZL exist such
that (γ,D) is a GNS in ZL?

For K = Q the answer is: at most one! If D ⊂ Z ⊂ ZK then there
are only finitely many, effectively computable. (Idea of the proof
later.) In general the problem is open.



2. A theme of K. Mahler

K. Mahler, 1981, proved that the number 0.(1)g(h)g(h2)g . . . is

irrational, equivalently: the infinite word (1)g(h)g(h2)g . . . is not

periodic. Refinements, generalizations and new methods by

• P. Bundschuh, 1984

• H. Niederreiter, 1986

• Z. Shan, 1987

• Z. Shan and E. Wang, 1989: Let (ni)
∞
i=1 be a strictly increas-

ing sequence of integers. Then 0.(gn1)h(gn2)h . . . is irrational. In

the proof they used the theory of Thue equations.



Generalizations for numeration systems based on linear recursive

sequences:

• P.G. Becker, 1991

• P.G. Becker and J. Sander 1995

• G. Barat, R. Tichy and R. Tijdeman, 1997

• G. Barat, C. Frougny and A. Pethő, 2005



3.1. Results on power sums

Let 0 /∈ A,B ⊂ ZL be finite, and Γ,Γ+ be the semigroup, group

generated by B. Put

S(A,B, s) = {α1µ1 + · · ·+ αsµs : αj ∈ A, µj ∈ Γ}.

Example: L = Q,A = {1},B = {2,3} then

S(A,B,2) = {2a3b + 2c3d : a, b, c, d ≥ 0}.



Theorem 1. Let s ≥ 1 and A,B as above. Let (cn) be such that

cn ∈ S(A,B, s). If (γ,D) is a GNS in ZL, γ /∈ Γ+ and (cn) has

infinitely many distinct terms then the infinite word (c1)γ(c2)γ . . .

is not periodic.

Let (c1)γ(c2)γ . . . = f0f1 . . .. Then

g =
∞∑
j=0

fjγ
−j

is a well defined complex number. A result of B. Kovács and I.

Környei, 1992 implies g /∈ Q. We expect at least g /∈ L, but we

are unable to prove this.

The proof of Theorem 1 is based on the following



Lemma 1. For any w ∈ D∗ there are only finitely many U ∈
S(A,B, s) such that (U)γ = w1w

k, where w1 is a suffix of w.

Proof. Let w = d0 . . . dh−1. If (U)γ = w1w
k then w1 = λ or

w1 = dt . . . dh−1. Set q0 = 0 if w1 = λ, and q0 = dt+dt+1γ+ . . .+

dh−1γ
h−t−1 otherwise. Further let q = d0 + d1γ+ . . .+ dh−1γ

h−1.

We also have U = α1µ1 + · · ·+ αsµs. Then

α1µ1 + · · ·+ αsµs = q0 + γh−t
k−1∑
i=0

qγih

= q0 + qγh−t
γhk − 1

γh − 1

=
qγh−t

γh − 1
γhk + q0 −

qγh−t

γh − 1
.



Setting

αs+1 =
qγh−t

γh − 1
, αs+2 = q0 −

qγh−t

γh − 1

we get the equation

α1µ1 + · · ·+ αsµs = αs+1γ
hk + αs+2. (2)

As (γ,D) is a GNS |γ| > 1, hence γh 6= 1 and αs+1, αs+2 are well

defined. Plainly αj ∈ L, j = 1, . . . , s + 2 and αj 6= 0, k = 1, . . . , s

by assumption. It is easy to see that αs+1 6= 0 holds too.



Taking Γ1 the multiplicative semigroup generated by γ and b ∈
B (2) is a Γ1-unit equation. If there are infinitely many U ∈
S(A,B, s) such that (U)γ = w1w

k then k can take arbitrary large

values and (2) has infinitely many solutions in (µ1, . . . , µs, γ
hk) ∈

Γs+1
1 . By the theory of weighted S-unit equations the assumption

γ /∈ Γ+ excluded this.



Proof of Theorem 1. Let W = (c1)γ(c2)γ . . . and assume that

it is eventually periodic. Omitting, if necessary, some starting

members of (cn) we may assume that it is periodic, i.e. W = H∞

with H ∈ Dh.

There exist for all n ≥ 1 a suffix cn0 a prefix cn1 of H and an

integer en ≥ 0 such that (cn)γ = cn0H
encn1.

There exist only finitely many, elements of ZK with a (γ,D)-

representation of bounded length. Thus, the length of the words

(cn)γ, n = 1,2, . . . is not bounded. Further, there are only |A|s

possible choices for the s-tuple (an1, . . . , ans). Thus, there exists

an infinite sequence k1 < k2 < . . . of integers such that l((ckn)γ) ≥
h and l((ckn+1

)γ) > l((ckn)γ) and the s-tuples (akn1, . . . , akns) are

the same for all n ≥ 1.



Write (ckn)γ = ckn0H
eknckn1, where ckn0 is a suffix and ckn1 is a

prefix of H for all n ≥ 1. As H has at most h− 1 proper prefixes

and h− 1 proper suffixes there exists an infinite subsequence of

kn, n ≥ 1 such that the corresponding words satisfy ckn0 = C0 and

ckn1 = C1. In the sequel we work only with this subsequence,

therefore we omit the subindexes.

With this simplified notation we have (cn)γ = C0H
enC1, where

C0 denotes a proper suffix, and C1 a proper prefix of H and (en)

tends to infinity. Finally, replacing H by the suffix of length h of

HC1, and denoting it again by H we have (cn)γ = C0H
en. This

contradicts Lemma 1. �



Considering for K = Q the ordinary g-ary representation of inte-

gers we get immediately the following far reaching generalization

of Mahler’s result.

Corollary 1. Let A,B be finite sets of positive integers and g ≥ 2

be a positive integer. Let Γ = Γ(B) and cn = an1un1+· · ·+ansuns

with uni ∈ Γ, ani ∈ A,1 ≤ i ≤ s, n ≥ 1. If g /∈ Γ and (cn) is not

bounded, then 0.(c1)g(c2)g... is irrational.



To illustrate the power of Theorem 1 we formulate a further
corollary.

Corollary 2. Let γ be an algebraic integer, which is neither ra-
tional nor imaginary quadratic. Let K = Q(γ), D be a complete
residue system modulo γ in ZK and (γ,D) be a GNS in Z[γ].
If (cn) is a sequence of elements of Z[γ] of given norm, which
includes infinitely many pairwise different terms, then the word
(c1)γ(c2)γ . . . is not periodic.

Proof. There exists in ZK only finitely many pairwise not asso-
ciated elements with given norm. Let A be such a set. There
exist by Dirichlet’s theorem ε1, . . . , εr such that every unit of in-
finite order of ZK can be written in the form ε

m1
1 · · · εmr

r . Setting
B = {ε1, . . . , εr} apply Theorem 1.



Notice that in the rational and in the imaginary quadratic fields

there are only finitely many elements with given norm, hence

there are cases, when (c1)γ(c2)γ . . . is, and other cases, when it

is not periodic.

Problem 2. Let A > 0 and B ≥ max{2, A}. Establish all re-

punits with respect to the GNS
(
−A+

√
A2−4B

2 , {0,1, . . . , B − 1}
)

for various values of A,B.



3.2. Results on rational integers

We consider analogous questions on rational integers.

Theorem 2. Let [L : Q] = ` ≥ 2 and γ ∈ ZL,D ⊂ Z such that

γ` /∈ Z and D is a complete residue system modulo γ. Assume

that (γ,D) is a GNS in ZL. Let n1, n2, . . . be an unbounded

sequence of rational integers. Then 0.(n1)γ(n2)γ . . . /∈ Q.

Similarly to Theorem 1 the proof is rooted in

Lemma 2. Let [L : Q] = ` ≥ 2 and γ ∈ ZL,D ⊂ Z such that

γ` /∈ Z and D is a complete residue system modulo γ. Assume

that (γ,D) is a GNS in ZL. For any w ∈ D∗ there are only finitely

many n ∈ Z such that (n)γ = w1w
k, where w1 is a suffix of w.



A simple consequence of this lemma is

Corollary 3. Let L, γ,D be as in Lemma 2. There are only finitely

many rational integers, which are repunits in the GNS (γ,D), i.e.,

(n)γ = 1k.

Scats of the proof of Corollary 3. We have Q(γ) = L, thus

the degree of γ is `. Denote γ(j), j = 1, . . . , ` the conjugates of

γ. We have:

• |γ(j)| > 1, j = 1, . . . , ` because (γ,D) is a GNS.

• If 1 ≤ i < j ≤ ` then γ(i) and γ(j) are multiplicatively indepen-

dent by Dobrowolski, 1979.



If n ∈ Z such that (n)γ = 1k with some k then n =
∑k−1
j=0 γ

j =

γk−1
γ−1 . Let γ′ 6= γ be a conjugate of γ. We may assume 1 < |γ′| ≤

|γ|, but γ′/γ is not a root of unity. Then n =
∑k−1
j=0 γ

′j = γ′k−1
γ′−1

too. Thus

γk − 1

γ − 1
=
γ′k − 1

γ′ − 1

or, equivalently, (
γ

γ′

)k
− 1 =

γ′ − γ
γ − 1

1

γ′k
.

If |γ′| < |γ| simply analysis, otherwise Bakery. �



3.3. Solutions of norm form equations

Let K be an algebraic number field of degree k. It has k isomor-

phic images, K(1) = K, . . . ,K(k) in C. Let α1 = 1, α2, . . . , αs ∈ ZK
be Q-linear independent elements and L(X) = α1X1 + · · ·+αsXs.

Plainly s ≤ k. Consider the norm form equation

NK/Q(L(X)) =
k∏

j=1

(α(j)
1 X1 + · · ·+ α

(j)
s Xs) = t, (3)

where 0 6= t ∈ Z, which solutions are searched in Z. Notice

that the polynomial NK/Q(L(X)) is invariant against conjugation,

thus, it has rational integer coefficients.

Now we are in the position to state our Mahler-type result on

the solutions of (3).



Theorem 3. Let (xn) = ((xn1, . . . , xns)) be a sequence of so-

lutions of (3), including infinitely many different ones. Let

1 ≤ j ≤ s be fixed and g ≥ 2. If (xnj) is not ultimately zero

then the infinite word (|x1j|)g(|x2j|)g . . . is not periodic.

Outline of the proof By a deep theorem of W.M. Schmidt there

exist a finite set A ⊂ ZK such that

α1xn1 + · · ·+ αsxns = µun

with µ ∈ A and with a unit un ∈ ZK. Taking conjugates we obtain

the system of linear equations

α
(i)
1 xn1 + · · ·+ α

(i)
s xns = µ(i)u

(i)
n , i = 1, . . . , k,

which implies



xnj = ν1u
(1)
n + · · ·+ νku

(k)
n

with some constants νi belonging to the normal closure of K.

The assumption (xnj) is not ultimately zero implies that (xnj) is

not bounded. Now we can apply Theorem 1.�

Corollary 4. Let g ≥ 2 be an integer. There are only finitely

many g-repunits among the solutions of (3).



Remark 1. If K is a real quadratic number field (3) is called

Pell equation, which solutions can be expressed by the union of

finitely many linear recursive sequences. In this case Theorem 3

is included implicitly in Theorem 1 of Barat, Frougny and Pethő.

Győry, Mignotte and Shorey, 1990 proved with the notation of

Theorem 3 that if the set of the j-th coordinate of the solu-

tions of (3) is not bounded then the greatest prime factor of

them tends to infinity. Our Theorem 3 shows that their assump-

tion always holds if (3) has infinitely many solutions, which j-th

coordinates is non-zero.



4. Families of GNS

B. Kovács, 1981: If K = Q then for any γ ∈ ZL there exists

N1 = N1(γ) such that (γ −m, {0,1, . . . , NL/Q(γ −m)}) is a GNS

in ZL for all m ≥ N1. Moreover there exists N2 = N2(γ) such

that (γ + m, {0,1, . . . , NL/Q(γ + m)}) is not a GNS in ZL for all

m ≥ N2.

Refinements by Akiyama and Rao, Scheicher and Thuswald-

ner. The proofs are based on the principle: Denote by p(x)

the minimal polynomial of γ. For m ∈ N we have p(∓m) =

NL/Q(γ ± m). If m is large enough then p(m) is dominating

among the coefficients of p(x+m) and (γ−m, {0,1, . . . , p(m)−1})
is a GNS, while |p(−m)| ∈ {0,1, . . . , |p(−m − 1)| − 1}, hence

(γ +m, {0,1, . . . , |p(−m)| − 1}) is not a GNS.



In relative extensions we does not have natural ordering of the

elements of the base field! A.P.and Thuswaldner, 2018 found a

way to overcome this difficulty.

Let K be a number field of degree k. Let F be a bounded

fundamental domain for the action of Zk on Rk, i.e., a set that

satisfies Rk = F + Zk without overlaps. Let O be an order in

ZK, ω1 = 1, ω2, . . . , ωk be a Z-basis of O and let α ∈ O be given.

Define

DF ,α =
{
τ ∈ O :

τ

α
=

k∑
j=1

rjωj, (r1, . . . , rk) ∈ F
}
. (4)

Lemma 3. DF ,α is a complete residue system modulo α.



Set e1 = (1,0, . . . ,0) ∈ Rk. int+ is the interior taken w.r.t. the

subspace topology on {(r1, . . . , rk) ∈ Rk : r1 ≥ 0}.

Theorem 4. Let K be a number field of degree k and let O be

an order in K. Let a bounded fundamental domain F for the

action of Zk on Rk be given. Suppose that

• 0 ∈ int(F ∪ (F − e1)) and

• 0 ∈ int+(F).

Let L be a finite extension of K and γ ∈ ZL. Then there is

η > 0 such that (γ + α,DF ,NL/Q(γ+α)) is a GNS whenever α =

m1ω1 + · · ·+mkωk ∈ O satisfies max{1, |m2|, . . . , |mk|} < ηm1.



Remark 2. Note that this implies that for each bounded funda-

mental domain F satisfying

• 0 ∈ int(F ∪ (F − e1)) and

• 0 ∈ int+(F).

the family GF contains infinitely many GNS.



Corollary 5. Let K be a number field of degree k and let O be

an order in K. Let a bounded fundamental domain F for the

action of Zk on Rk be given such that 0 ∈ int(F). Let L be

a finite extension of K and γ ∈ ZL. Then there is η > 0 such

that (γ + α,DF ,NL/Q(γ+α)) has the finiteness property whenever

α = m1ω1+· · ·+mkωk ∈ O satisfies max{1, |m2|, . . . , |mk|} < η|m1|.



4.2. Families on non-GNS

Theorem 5. Let K be a number field and let O be an order in

K. Let a bounded fundamental domain F for the action of Zk

on Rk be given. Suppose that 0 ∈ int−(F − e1). Let L be a

finite extension of K and γ ∈ ZL. There exists M ∈ N such that

(γ +m,DF ,NL/Q(γ+m)) is not a GNS for m ≥M .



4.3. GNS in number fields

Proposition 1 (Kovács and Pethő, 1991). Let O be an order

in the algebraic number field K. There exist α1, . . . , αt ∈ O,

n1, . . . , nt ∈ Z, and N1, . . . , Nt finite subsets of Z, which are all ef-

fectively computable, such that (α, {0,1, . . . , NK/Q(α)}) is a GNS

in O if and only if α = αi− h for some integers i, h with 1 ≤ i ≤ t
and either h ≥ ni or h ∈ Ni.



Pethő and Thuswaldner, 2018 proved that the relation between

power integral bases and GNS is usually stronger, the theorem

of Kovács and Pethő describes a kind of “boundary case” viz. a

case where 0 ∈ ∂F.

Theorem 6. Let O be an order in the algebraic number field

K. Let F be a bounded fundamental domain for the action of

Z on R. If 0 ∈ int(F) then all but finitely many generators of

power integral bases of O form a basis for a GNS. Moreover, the

exceptions are effectively computable.

Evertse, Győry, Pethő and Thuswaldner, 2019 generalized to

étale orders.

Partial answer to Problem 1.



Theorem 7. Let O be an effectively given étale order, and D
a given finite subset of Z containing 0. Then there exist only

finitely many, effectively computable γ ∈ O such that (γ,D) is a

GNS.

Proof. Let γ ∈ O and D ⊂ Z be such that (γ,D) is a GNS.

The set D has to be a complete residue system of O modulo γ,

which is only possible if |N(γ)| = |D|. If there is no such γ then

we are done. Otherwise, if O⊗ZQ = K1 × . . . × K` and Kh are

either the rational or an imaginary quadratic number field for all

h = 1, . . . , ` then there are only finitely many α with |N(γ)| = |D|
and our assertion holds again.



We now assume that there are infinitely many γ ∈ O such that

|N(γ)| = |D|. If (γ,D) is a GNS then there exist for all α ∈ O an

integer L and di ∈ D, i = 0, . . . , L such that

α =
L∑
i=0

diγ
i,

hence O is monogenic. By a deep theorem of Evertse and Győry

there exist only finitely many Z-equivalence classes of β ∈ O such

that O = Z[β]. Hence there is such a β and u ∈ Z with α = β+u.

For fixed β there are only finitely many effectively computable

u ∈ Z with |N(β + u)| = |D|, thus the assertion is proved.



5. Integers with bounded number of non-zero digits

Let g1, g2 ≥ 2 be integers.

• Senge and Straus, 1973: the number of integers, the sum of

whose digits in each of the bases g1 and g2 lies below a fixed

bound, is finite if and only if g1 and g2 are multiplicatively inde-

pendent.

• Stewart, 1980: gave an effective version.

• Schlickewei, 1990: ineffective generalization to more than two

bases.

• Pethő and Tichy, 1993: generalization to numeration systems

based on linear recursive sequences and to GNS.



Theorem 8. Let [L : Q] = ` ≥ 2 and γ ∈ ZL,D ⊂ Z such that

γ` /∈ Z and D is a complete residue system modulo γ. Assume

that (γ,D) is a GNS in ZL. Denote rγ(α) the number of non-zero

digits in the representation of α ∈ ZL in (γ,D). For any c > 0

there are only finitely many n ∈ Z such that rγ(n) ≤ c.



Hvala!

Thank you for your attention!


