Modularity of elliptic curves over totally real cubic

fields

Filip Najman
University of Zagreb

joint with Maarten Derickx (MIT) and Samir Siksek (Warwick)

Representation theory XVI,
Dubrovnik, June 24th 2019.

Filip Najman Modularity over totally real cubic fields



Funding

Funding

This work was supported by the QuantiXLie Centre of Excellence, a project co-financed by
the Croatian Government and European Union through the European Regional Development
Fund - the Competitiveness and Cohesion Operational Program (Grant KK.01.1.1.01.0004).

Za vide informacija posjetite: Formore informati
http://bela.phy.hriquantixiie/hr/ http://bela.phy.hriqual
https:/istrukturnifondovi.hr/ https:/istrukturnifondovi.hr/
Sadrzaj ove prezentacije iskljuéivaje The contentof this presentation is
odgovornostPrirodoslovi
e Svi iStau of Science University of Zagreb and
Zagrebute ne predstavijanuzno does notrepresentopinion ofthe
stajaliste Europske unije. European Union
**x ] .
* * EUROPSKA UNIJA lI Operativni program
* e =
L Zajedno do fond. EU EUROPSKI STRUKTURNI KONKURENTNOST
*x ajedno o fondova Bl e Foooui WM 1 KOHEZIA
Projekt sufinancira Europska unija iz Europskog fonda Project co-financed by European Union through the
za regionalni razvoj European Regional Development Fund

p Najman Modularity over totally real cubic fields




Modularity over Q

Definition

An elliptic curve E over Q is modular if there exists a modular
form f of weight 2 such that

L(E,s) = L(f,s).
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Proof of Fermat’s last theorem

Theorem (Fermat'’s last theorem)

All solutions of x" + y" = z" in Z for n > 3 satisfy xyz = 0.
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Proof of Fermat’s last theorem

Theorem (Fermat'’s last theorem)

All solutions of x" + y" = z" in Z for n > 3 satisfy xyz = 0.

O Suffices to consider n = 4 (Fermat) or n = p prime.
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Proof of Fermat’s last theorem

Theorem (Fermat'’s last theorem)

All solutions of x" + y" = z" in Z for n > 3 satisfy xyz = 0.

O Suffices to consider n = 4 (Fermat) or n = p prime.

@ (Frey) To a solution (a, b, c) one can associate the
(semistable) elliptic curve y? = x(x — aP)(x + bP).

Filip Najman Modularity over totally real cubic fields



Proof of Fermat’s last theorem

Theorem (Fermat'’s last theorem)

All solutions of x" + y" = z" in Z for n > 3 satisfy xyz = 0.

O Suffices to consider n = 4 (Fermat) or n = p prime.

@ (Frey) To a solution (a, b, c) one can associate the
(semistable) elliptic curve y? = x(x — aP)(x + bP).

© (Wiles - modularity) The Frey curve corresponds to a modular
form f of level

H q and weight 2.

qlabc and g prime
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Proof of Fermat’s last theorem

Theorem (Fermat'’s last theorem)

All solutions of x" + y" = z" in Z for n > 3 satisfy xyz = 0.

O Suffices to consider n = 4 (Fermat) or n = p prime.

@ (Frey) To a solution (a, b, c) one can associate the
(semistable) elliptic curve y? = x(x — aP)(x + bP).

© (Wiles - modularity) The Frey curve corresponds to a modular
form f of level

H q and weight 2.

qlabc and g prime

O (Ribet) This form is congruent mod p to one of level 2 and
weight 2.
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Proof of Fermat’s last theorem

Theorem (Fermat'’s last theorem)

All solutions of x" + y" = z" in Z for n > 3 satisfy xyz = 0.

O Suffices to consider n = 4 (Fermat) or n = p prime.

@ (Frey) To a solution (a, b, c) one can associate the
(semistable) elliptic curve y? = x(x — aP)(x + bP).

© (Wiles - modularity) The Frey curve corresponds to a modular
form f of level

H q and weight 2.

qlabc and g prime

O (Ribet) This form is congruent mod p to one of level 2 and
weight 2.

@ There are no modular forms of level 2 and weight 2.
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Modularity over Q

Theorem (Wiles, Taylor & Wiles, 1995.)

All semistable elliptic curves over Q are modular.
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Modularity over Q

Theorem (Wiles, Taylor & Wiles, 1995.)

All semistable elliptic curves over Q are modular.

Corollary (Wiles, 1995.)

Fermat’s last theorem Jis true.
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Modularity over Q

Theorem (Wiles, Taylor & Wiles, 1995.)

All semistable elliptic curves over Q are modular.

Corollary (Wiles, 1995.)

Fermat’s last theorem Jis true.

Theorem (Breuil, Conrad, Diamond & Taylor 2001.)

All elliptic curves over Q are modular.
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Modularity over totally real number fields

Hilbert modular forms are generalizations of classical modular
forms. They are "defined" over totally real number fields.
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Modularity over totally real number fields

Hilbert modular forms are generalizations of classical modular
forms. They are "defined" over totally real number fields.

As with classical modular forms, one can define the L-function
L(f,s) of a Hilbert modular form f.

Filip Najman Modularity over totally real cubic fields



Modularity over totally real number fields

Hilbert modular forms are generalizations of classical modular
forms. They are "defined" over totally real number fields.

As with classical modular forms, one can define the L-function
L(f,s) of a Hilbert modular form f.

Definition

An elliptic curve E over a totally real number field K is modular if
there exists a Hilbert modular form f over K of parallel weight 2

such that
L(E,s) = L(f,s).

Filip Najman Modularity over totally real cubic fields



A conjecture and known results

All elliptic curves over all totally real number fields are modular.
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A conjecture and known results

All elliptic curves over all totally real number fields are modular.

Theorem (Jarvis and Manoharmayum 2008.)

Semistable elliptic curves over Q(v/2) and Q(+/17) are modular.
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A conjecture and known results

All elliptic curves over all totally real number fields are modular.

Theorem (Jarvis and Manoharmayum 2008.)
Semistable elliptic curves over Q(v/2) and Q(+/17) are modular.

Theorem (Freitas, Le Hung, Siksek 2015.)

All elliptic curves over all real quadratic fields are modular.
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Our result

Theorem (Derickx, N., Siksek 2018.)

All elliptic curves over all totally real cubic fields are modular.
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Some definitions

Let K be a number field, Gk := Gal(K/K), E/K an elliptic curve
and p a prime.
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Some definitions

Let K be a number field, Gk := Gal(K/K), E/K an elliptic curve
and p a prime.

Elp] := {P € E(K) : [p]P = O} = ker[p].
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Some definitions

Let K be a number field, Gk := Gal(K/K), E/K an elliptic curve
and p a prime.

Elp] := {P € E(K) : [p]P = O} = ker[p].

Gk acts on E[p] inducing a group homomorphism

PEp: Gk — Aut(E[p]) ~ GLQ(FP)

called the mod p Galois representation attached to E.
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Images of Galois

Let E/K and define Ge(p) := pg ,(Gk) < GL2(Fp). Then one of
the following is true:

(i) Ge(p) 2 SLx(Fp).
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Images of Galois

Let E/K and define Ge(p) := pg ,(Gk) < GL2(Fp). Then one of
the following is true:

(i) Ge(p) 2 SLa(F,).
(II) The image GE(P) in PGLQ(FP) is A4,54 or A5.
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Images of Galois

Let E/K and define Ge(p) := pg ,(Gk) < GL2(Fp). Then one of
the following is true:

(i) Ge(p) 2 SLa(F,).
(II) The image GE(P) in PGLQ(FP) is A4,54 or A5.

(iii) Ge(p) is conjugate to a subgroup of the Borel subgroup B(p),
the subgroup of upper triangular matrices.
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Images of Galois

Let E/K and define Ge(p) := pg ,(Gk) < GL2(Fp). Then one of

the following is true:

(i) Ge(p) 2 SL2(Fp).

(II) The image GE(P) in PGLQ(FP) is A4,54 or A5.

(iii) Ge(p) is conjugate to a subgroup of the Borel subgroup B(p),
the subgroup of upper triangular matrices.

(iv) Ge(p) is conjugate to a subgroup of the normalizer of the split
Cartan subgroup C; (p).
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Images of Galois

Let E/K and define Ge(p) := pg ,(Gk) < GL2(Fp). Then one of
the following is true:

(i) Gelp) 2 SLaF,).

(II) The image GE(P) in PGLQ(FP) is A4,54 or A5.

(iii) Ge(p) is conjugate to a subgroup of the Borel subgroup B(p),
the subgroup of upper triangular matrices.

(iv) Ge(p) is conjugate to a subgroup of the normalizer of the split
Cartan subgroup C; (p).

(v) Gg(p) is conjugate to a subgroup of the normalizer of the
non-split Cartan subgroup C.(p).
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Images of Galois

Let E/K and define Ge(p) := pg ,(Gk) < GL2(Fp). Then one of
the following is true:
(i) Ge(p) 2 SLa(F,).
(II) The image GE(P) in PGLQ(FP) is A4,54 or A5.
(iii) Ge(p) is conjugate to a subgroup of the Borel subgroup B(p),
the subgroup of upper triangular matrices.

(iv) Ge(p) is conjugate to a subgroup of the normalizer of the split
Cartan subgroup C; (p).

(v) Gg(p) is conjugate to a subgroup of the normalizer of the
non-split Cartan subgroup C.(p).

The K-points on the modular curves Xp(p), Xs(p) and Xas(p)
correspond to elliptic curves K for which Gg(p) is in the cases (iii),
(iv) and (v), respectively.
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Modularity lifting theorems

Theorem (Wiles, Breuil, Diamond, Kisin,

Barnett—-Lamb-Gee-Geraghty + Langlands-Tunnel)

Let K be a totally real number field and E an elliptic curve over K.
Suppose that

® pg s is irreducible, and

® pe3(Gk) is not contained in the normaliser of a split Cartan
subgroup.
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Modularity lifting theorems

Theorem (Wiles, Breuil, Diamond, Kisin,

Barnett—-Lamb-Gee-Geraghty + Langlands-Tunnel)

Let K be a totally real number field and E an elliptic curve over K.
Suppose that

® pg s is irreducible, and

® pe3(Gk) is not contained in the normaliser of a split Cartan
subgroup.

Then E is modular.
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Modularity lifting theorems

Theorem (Wiles, Breuil, Diamond, Kisin,

Barnett—-Lamb-Gee-Geraghty + Langlands-Tunnel)

Let K be a totally real number field and E an elliptic curve over K.
Suppose that

® pg s is irreducible, and

® pe3(Gk) is not contained in the normaliser of a split Cartan
subgroup.

Then E is modular.

So if E/K is not modular then Gg(3) is contained in B(3) or
G 3).
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Modularity lifting theorems

Theorem (Thorne 2016)

Let E be an elliptic curve over a totally real number field K and

suppose b is not a square in K and pg 5 is irreducible. Then E is
modular.
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Modularity lifting theorems

Theorem (Thorne 2016)

Let E be an elliptic curve over a totally real number field K and
suppose b is not a square in K and pg 5 is irreducible. Then E is
modular.

So if E/K is not modular then Gg(5) is contained in B(5).
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Modularity lifting theorems

Theorem (Thorne 2016)

Let E be an elliptic curve over a totally real number field K and
suppose b is not a square in K and pg 5 is irreducible. Then E is
modular.

So if E/K is not modular then Gg(5) is contained in B(5).
Theorem (Kalyanswamy 2016)

Let K be a totally real number field and E an elliptic curve over K
and

° KNQ(&7) =Q.

® pg 7 is irreducible.

o pe7(Gk) is not conjugate to a subgroup of C{(7).
Then E is modular.
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Modularity lifting theorems

Theorem (Thorne 2016)

Let E be an elliptic curve over a totally real number field K and
suppose b is not a square in K and pg 5 is irreducible. Then E is
modular.

So if E/K is not modular then Gg(5) is contained in B(5).
Theorem (Kalyanswamy 2016)

Let K be a totally real number field and E an elliptic curve over K
and

o KNQ(&) = Q.

® pg 7 is irreducible.

o pe7(Gk) is not conjugate to a subgroup of C{(7).
Then E is modular.
So if K # Q(¢7)t, and E/K is not modular the Gg(7) is contained
in B(7) or CL(7).




Points on modular curves

It follows that: if E is not modular it gives rise to a K-point on
Xu(3) X x5(1) X0(5) X xo(1) Xv(7) for some v € {0, s} and
v € {0, ns}.
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Points on modular curves

It follows that: if E is not modular it gives rise to a K-point on
Xu(3) X x5(1) X0(5) X xo(1) Xv(7) for some v € {0, s} and
v € {0, ns}.

We denote X(u3, b5, w7) := Xy(3) X x,(1) Xb(5) X xo(1) Xw(7),
with the convention that we write "b" instead of "0", i.e.

)(([737 b5, ns?) = X0(3) XXo(l) X0(5) ><X0(1) X,-,S(7).
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Points on modular curves

It follows that: if E is not modular it gives rise to a K-point on
Xu(3) X x5(1) X0(5) X xo(1) Xv(7) for some v € {0, s} and

v € {0, ns}.

We denote X(u3, b5, w7) := Xy(3) X x,(1) Xb(5) X xo(1) Xw(7),
with the convention that we write "b" instead of "0", i.e.

)(([737 b5, ns?) = X0(3) XXo(l) X0(5) ><X0(1) X,-,S(7).

Obviously, if one finds all the points of degree d on for example
X (b5, w7) for some w € {0, ns}, then those will contain all the
points of degree d on X(u3, b5, w7), for any u.
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Modularity over quadratic fields

Freitas, Le Hung, Siksek needed to finding all quadratic points on 7
modular curves of genera 3,3,4,73,97,113 and 153, as the
modularity lifting results known then were weaker.
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Modularity over quadratic fields

Freitas, Le Hung, Siksek needed to finding all quadratic points on 7
modular curves of genera 3,3,4,73,97,113 and 153, as the
modularity lifting results known then were weaker.

Remarkably, they manage to show that all the quadratic points on
these curves correspond to modular elliptic curves.
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The modular curves we need to consider

By the modularity lifting results, we need to consider the modular
curves
X(u3, b5, v7) for u € {b,s},v € {b, ns}.
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The modular curves we need to consider

By the modularity lifting results, we need to consider the modular
curves
X(u3, b5, v7) for u € {b,s},v € {b, ns}.

We will prove
(1) All elliptic curves over Q(¢7)* are modular.

(2) The modular curve X (b5, b7) has no totally real non-cuspidal
cubic points.

(3) The modular curve X (b5, ns7) has no totally real non-cuspidal
cubic points.
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Dealing with K = Q(&7)*

The modular curves X(b3, b5) and X(s3, b5) are elliptic curves of
conductor 15.
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Dealing with K = Q(¢7) ™"

The modular curves X(b3, b5) and X(s3, b5) are elliptic curves of
conductor 15.

It is easy to check that their rank over K is 0, find all the elliptic
curves corresponding to K-rational points on E.
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Dealing with K = Q(¢7) ™"

The modular curves X(b3, b5) and X(s3, b5) are elliptic curves of
conductor 15.

It is easy to check that their rank over K is 0, find all the elliptic
curves corresponding to K-rational points on E.

It turns out that all such curves are twists of elliptic curves defined
over Q, which are known to be modular.
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The modular curve Xp(35)

The modular curve X := X(b5, b7) = Xp(35) is a hyperelliptic
curve of genus 3.
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The modular curve Xp(35)

The modular curve X := X(b5, b7) = Xp(35) is a hyperelliptic
curve of genus 3.

Theorem (Castelnuovo-Severi inequality)

Let k be a perfect field, and X, Y, Z curves over k. Let
7wy : X = Y and vz : X — Z be morphisms of degree m and n
respectively, and assume that there is no morphism X — X' of
degree > 1 through which both my and w7 factor. Then

gX)<m-g(Y)+n-g(Z)+(m—1)(n—1).
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The modular curve Xp(35)

The modular curve X := X(b5, b7) = Xp(35) is a hyperelliptic
curve of genus 3.

Theorem (Castelnuovo-Severi inequality)

Let k be a perfect field, and X, Y, Z curves over k. Let
7wy : X = Y and vz : X — Z be morphisms of degree m and n
respectively, and assume that there is no morphism X — X' of
degree > 1 through which both my and w7 factor. Then

gX)<m-g(Y)+n-g(Z)+(m—1)(n—1).

v

Taking Y =Z = P!, m =2, n=3, we see that if X has a maps of
both degree 2 and 3 to P!, then g(X) < 2.
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The modular curve Xp(35)

The modular curve X := X(b5, b7) = Xp(35) is a hyperelliptic
curve of genus 3.

Theorem (Castelnuovo-Severi inequality)

Let k be a perfect field, and X, Y, Z curves over k. Let
7wy : X = Y and vz : X — Z be morphisms of degree m and n
respectively, and assume that there is no morphism X — X' of
degree > 1 through which both my and w7 factor. Then

gX)<m-g(Y)+n-g(Z)+(m—1)(n—1).

Taking Y =Z = P!, m =2, n=3, we see that if X has a maps of
both degree 2 and 3 to P!, then g(X) < 2.

So X has no degree 3 maps to P! or to an elliptic curve of positive
rank, so it follows that there are only finitely many cubic points on
Xo(35).
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The modular curve Xp(35)

X has 4 cusps, all defined over @, and has the following model:

Xy =(x*4+x—-1)(x* —5x® —9x* —5x —1).
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The modular curve Xp(35)

X has 4 cusps, all defined over @, and has the following model:
Xy =(x*4+x—-1)(x* —5x® —9x* —5x —1).

Denote J := J(X). We have J(Q) ~ Z/27Z x Z/247.
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The modular curve Xp(35)

Let K be a totally real cubic field, and for a point P € X(K), let
P1, Py, P3 be the conjugates of P given by the embeddings of K
into Q.
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The modular curve Xp(35)

Let K be a totally real cubic field, and for a point P € X(K), let
P1, Py, P3 be the conjugates of P given by the embeddings of K
into Q.

Then D = Py + Py + Ps is an irreducible Q-divisor of degree 3.
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The modular curve Xp(35)

Let K be a totally real cubic field, and for a point P € X(K), let
P1, Py, P3 be the conjugates of P given by the embeddings of K

into Q.
Then D = Py + Py + Ps is an irreducible Q-divisor of degree 3.

Let Di, ..., Dyg be Q-divisors of degree 0 representing the 48
classes in J(Q), and let T; = D; + 300
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The modular curve Xp(35)

Let K be a totally real cubic field, and for a point P € X(K), let
P1, Py, P3 be the conjugates of P given by the embeddings of K

into Q.
Then D = Py + Py + Ps is an irreducible Q-divisor of degree 3.

Let Di, ..., Dyg be Q-divisors of degree 0 representing the 48
classes in J(Q), and let T; = D; + 300

Hence D ~ T;, for some J.
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The modular curve Xp(35)

Let K be a totally real cubic field, and for a point P € X(K), let
P1, Py, P3 be the conjugates of P given by the embeddings of K

into Q.
Then D = Py + Py + Ps is an irreducible Q-divisor of degree 3.

Let Di, ..., Dyg be Q-divisors of degree 0 representing the 48
classes in J(Q), and let T; = D; + 300

Hence D ~ T;, for some J.

Let L(T;) be the Riemann—Roch space corresponding to T;, ¢(T;)
it's dimension, and |T;| be the corresponding complete linear
system.
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The modular curve Xp(35)

Let K be a totally real cubic field, and for a point P € X(K), let
P1, Py, P3 be the conjugates of P given by the embeddings of K

into Q.
Then D = Py + Py + Ps is an irreducible Q-divisor of degree 3.

Let Di, ..., Dyg be Q-divisors of degree 0 representing the 48
classes in J(Q), and let T; = D; + 300

Hence D ~ T;, for some J.

Let L(T;) be the Riemann—Roch space corresponding to T;, ¢(T;)
it's dimension, and |T;| be the corresponding complete linear
system.

Clifford’s theorem on special divisors implies ¢(T;) =1 or 2.
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The modular curve Xp(35)

Of the 48 possible Tj, 4 have ¢(T;) = 2.
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The modular curve Xp(35)

Of the 48 possible Tj, 4 have ¢(T;) = 2.

If £(T;) = 2, then |T;| contains a base point, so cannot contain an
irreducible divisor.
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The modular curve Xp(35)

Of the 48 possible Tj, 4 have ¢(T;) = 2.

If £(T;) =2, then | T;| contains a base point, so cannot contain an
irreducible divisor.

Let now ¢(T;) = 1. Then L(T;) = Qf; for some f; in Q(X), and
D~ T;+divf.
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The modular curve Xp(35)

Of the 48 possible Tj, 4 have ¢(T;) = 2.

If £(T;) =2, then | T;| contains a base point, so cannot contain an
irreducible divisor.

Let now ¢(T;) = 1. Then L(T;) = Qf; for some f; in Q(X), and
D~ T;+divf.

We explicitly compute these R-R spaces using an algorithm of Hess.
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The modular curve Xp(35)

Of the 48 possible Tj, 4 have ¢(T;) = 2.

If £(T;) =2, then | T;| contains a base point, so cannot contain an
irreducible divisor.

Let now ¢(T;) = 1. Then L(T;) = Qf; for some f; in Q(X), and
D~ T;+divf.

We explicitly compute these R-R spaces using an algorithm of Hess.

We get that 28 of the remaining 44 T; are irreducible, and all of the
irreducible ones split over cubic fields with complex embeddings.
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The modular curve X (b5, ns7)

Let from now on X := X (b5, ns7), J := J(X).
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The modular curve X (b5, ns7)

Let from now on X := X (b5, ns7), J := J(X).
X is non-hyperelliptic of genus 6.
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The modular curve X (b5, ns7)

Let from now on X := X (b5, ns7), J := J(X).
X is non-hyperelliptic of genus 6.

We prove that the gonality (the smallest degree of a map to P!) of
X is 4 and that there will be only finitely many cubic points.
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The modular curve X (b5, ns7)

Let from now on X := X (b5, ns7), J := J(X).
X is non-hyperelliptic of genus 6.

We prove that the gonality (the smallest degree of a map to P!) of
X is 4 and that there will be only finitely many cubic points.

X has the following model:
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The modular curve X (b5, ns7)

Let from now on X := X (b5, ns7), J := J(X).
X is non-hyperelliptic of genus 6.

We prove that the gonality (the smallest degree of a map to P!) of
X is 4 and that there will be only finitely many cubic points.

X has the following model:

5u% — 500V + 206u*v? — 408u3v3 + 32102 v* + 10uv® — 100v8 4+ 9u*w?—

603 vw? + 80u2v2w? + 48uv3w? + 15v*w? + 3uPw? — 10uww® + 6v2w* — w® = 0.
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The modular curve X (b5, ns7)

Let from now on X := X (b5, ns7), J := J(X).
X is non-hyperelliptic of genus 6.

We prove that the gonality (the smallest degree of a map to P!) of
X is 4 and that there will be only finitely many cubic points.

X has the following model:

5u% — 500V + 206u*v? — 408u3v3 + 32102 v* + 10uv® — 100v8 4+ 9u*w?—

603 vw? + 80u2v2w? + 48uv3w? + 15v*w? + 3uPw? — 10uww® + 6v2w* — w® = 0.

Le Hung (2014): J ~ A; X Ay x As, where A; are absolutely simple
modular abelian surfaces defined over Q.
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The modular curve X (b5, ns7)

Let from now on X := X (b5, ns7), J := J(X).
X is non-hyperelliptic of genus 6.

We prove that the gonality (the smallest degree of a map to P!) of
X is 4 and that there will be only finitely many cubic points.

X has the following model:

5u% — 500V + 206u*v? — 408u3v3 + 32102 v* + 10uv® — 100v8 4+ 9u*w?—

603 vw? + 80u2v2w? + 48uv3w? + 15v*w? + 3uPw? — 10uww® + 6v2w* — w® = 0.

Le Hung (2014): J ~ A; X Ay x As, where A; are absolutely simple
modular abelian surfaces defined over Q.

We compute that the analytic ranks of A, Ay, Az over QQ are
2,0,0, respectively, so by results of Kolyvagin and Logachev, these
are their ranks over Q.
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The modular curve X (b5, ns7)

The cusps of X form two Galois orbits of size 3. Denote by cg, cso
divisors obtained by summing the cusps in each orbit.
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The modular curve X (b5, ns7)

The cusps of X form two Galois orbits of size 3. Denote by cg, cso
divisors obtained by summing the cusps in each orbit.

Proposition
AUtQX = <W5> & Z/QZ
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The modular curve X (b5, ns7)

The cusps of X form two Galois orbits of size 3. Denote by cg, cso
divisors obtained by summing the cusps in each orbit.

Proposition
AUtQX = <W5> & Z/QZ

The involution ws interchanges ¢y and coo.
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The modular curve X (b5, ns7)

Proposition

A:=im(ws — 1) C J is a subabelian variety of dimension 4 with
AQ) = ([0 — o)) = Z/TZ.
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The modular curve X (b5, ns7)

Proposition

A:=im(ws — 1) C J is a subabelian variety of dimension 4 with
AQ) = ([0 — o)) = Z/TZ.

Proof: We show that A ~ A, x As, so the rank of A(Q) is zero.

Filip Najman Modularity over totally real cubic fields



The modular curve X (b5, ns7)

Proposition

A:=im(ws — 1) C J is a subabelian variety of dimension 4 with
AQ) = ([0 — o)) = Z/TZ.

Proof: We show that A ~ A, x As, so the rank of A(Q) is zero.

We compute that the order of [cp — ¢o] is 7 and

(ws — 1)([3c0 — 3¢x0]) = 6[coo — @] = [0 — Coo)-

Therefore [cp — cx] € A(Q).
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The modular curve X (b5, ns7)

Proposition

A:=im(ws — 1) C J is a subabelian variety of dimension 4 with
AQ) = ([0 — o)) = Z/TZ.

Proof: We show that A ~ A, x As, so the rank of A(Q) is zero.

We compute that the order of [cp — ¢o] is 7 and

(ws — 1)([3c0 — 3¢x0]) = 6[coo — @] = [0 — Coo)-
Therefore [cp — cx] € A(Q).

Also,
J(F3) = Z/T7 x Z/(T - 23)Z,

and
J(F17) 2 7)27 x 7./(2? - 7% - 31 - 271)Z.
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Formal immersions

Definition

A morphism 7 : X — Y of Noetherian schemes is a formal
immersion at x € X if

F: OY,f(x) — 5)-(?

is surjective.
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Formal immersions

A morphism 7 : X — Y of Noetherian schemes is a formal
immersion at x € X if

F: OY,f(x) — 5)-(?

is surjective.

Let K be a number field, o a prime ideal of K. We define

Res,,(x) == {x' € X(K,) : x=x" (mod p)}.
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Formal immersions

A morphism 7 : X — Y of Noetherian schemes is a formal
immersion at x € X if

F: OY,f(x) — 5)-(?

is surjective.

Let K be a number field, o a prime ideal of K. We define
Res,,(x) == {x' € X(K,) : x=x" (mod p)}.
If f: X — Y is a formal immersion at x then
f : Resy,(x) = Y(K,)

is an injection.
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Formal immersions

Proposition

Let K be a number field, p a prime ideal not dividing 2, f : X =Y
a morphism of schemes, where Y is an abelian variety of rank 0
over K, and X, Y have good reduction at p, and let f be a formal
immersion at x € X(Ok /). Then

X(K) N Resy(x) = {x}.

Filip Najman Modularity over totally real cubic fields



Completing the proof

Let x € X3)(Q).
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Completing the proof

Let x € X3)(Q).
Since A(Q) = ([co — co]) =~ Z/TZ, it follows that

(1 —ws)[x — coo] = {[co — €0, for some ¢ € Z/TZ.
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Completing the proof

Let x € X3)(Q).
Since A(Q) = ([co — co]) =~ Z/TZ, it follows that

(1 —ws)[x — coo] = {[co — €0, for some ¢ € Z/TZ.

We have ws(cs) = ¢p, SO we can rewrite the equation above as
(x — ws(x)) ~ k- (co — coo),

for some k € {-3,...,3}.
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Completing the proof

Let x € X3)(Q).
Since A(Q) = ([co — co]) =~ Z/TZ, it follows that

(1 —ws)[x — coo] = {[co — €0, for some ¢ € Z/TZ.

We have ws(cs) = ¢p, SO we can rewrite the equation above as
(x — ws(x)) ~ k- (co — coo),

for some k € {-3,...,3}.

Let X, Coo, Co € X(3)(IF3) be the reductions of x, ¢, cg mod 3. So,

(% — ws(%)) ~ k- (& — co0).
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Completing the proof

Let x € X3)(Q).
Since A(Q) = ([co — co]) =~ Z/TZ, it follows that

(1 —ws)[x — coo] = {[co — €0, for some ¢ € Z/TZ.

We have ws(cs) = ¢p, SO we can rewrite the equation above as
(x — ws(x)) ~ k- (co — coo),

for some k € {-3,...,3}.

Let X, Coo, Co € X(3)(IF3) be the reductions of x, ¢, cg mod 3. So,

(% — ws(%)) ~ k- (& — co0).

We tested the above relation and get that it holds for only x = ¢
and k=1and x = c and k = —1.
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Completing the proof

Suppose WLOG that x = ¢. We want to show that x = ¢.
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Completing the proof

Suppose WLOG that x = ¢. We want to show that x = ¢.

To that we prove that £ : X(3) — A defined as the composition of

the Abel-Jacobi map f: X(®) — Jand (1 —ws): J — A'is a formal
immersion at ¢y using a criterion of Derrickx, Kamienny, Stein and

Stoll.
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Thank you for your attention!
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