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Elementary congruences

Denote by

F (n) =
n∑

k=0

(−1)k8n−k
(

n

k

) k∑
j=0

(
k

j

)3

.

Theorem (K.)

For all primes p > 2 we have

F

(
p − 1

2

)
≡

{
2(a2 − 6b2) (mod p) if p = a2 + 6b2

0 (mod p) if p ≡ 5, 11, 13, 17, 19, 23 (mod 24).
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Apéry’s proof of the irrationality of ζ(3)

In 1978 Roger Apéry proved that

ζ(3) =
∞∑
n=1

1

n3
= 1.2020569031 . . .

is irrational.

For that he defined sequences an and a′n as a solutions of recursion

(n + 1)3un+1 − (34n3 + 51n2 + 27n + 5)un + n3un−1 = 0,

with initial conditions (a0, a1) = (1, 5) and (a′0, a
′
1) = (0, 6).

He showed that for n sufficiently large relative to ε

|ζ(3)− pn

qn
| < 1

qn
θ+ε

,where
pn

qn
=

a′n
an

and θ = 1.080529 . . . ,

which implies that ζ(3) is irrational.
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ζ(3) =
∞∑
n=1

1

n3
= 1.2020569031 . . .

is irrational.

For that he defined sequences an and a′n as a solutions of recursion

(n + 1)3un+1 − (34n3 + 51n2 + 27n + 5)un + n3un−1 = 0,

with initial conditions (a0, a1) = (1, 5) and (a′0, a
′
1) = (0, 6).

He showed that for n sufficiently large relative to ε

|ζ(3)− pn

qn
| < 1

qn
θ+ε

,where
pn

qn
=

a′n
an

and θ = 1.080529 . . . ,

which implies that ζ(3) is irrational.



Introduction Method ASD congruences
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ζ(3) =
∞∑
n=1

1

n3
= 1.2020569031 . . .

is irrational.

For that he defined sequences an and a′n as a solutions of recursion

(n + 1)3un+1 − (34n3 + 51n2 + 27n + 5)un + n3un−1 = 0,

with initial conditions (a0, a1) = (1, 5) and (a′0, a
′
1) = (0, 6).

He showed that for n sufficiently large relative to ε

|ζ(3)− pn

qn
| < 1

qn
θ+ε

,where
pn

qn
=

a′n
an

and θ = 1.080529 . . . ,

which implies that ζ(3) is irrational.



Introduction Method ASD congruences

Apéry’s proof of the irrationality of ζ(3) cont.

One thing that is remarkable here is that an’s are integers, i.e.

an =
∑n

k=0

(n
k

)2(n+k
k

)2
.

Similarly for the proof of irrationality of ζ(2) he introduced

numbers bn =
∑n

k=0

(n
k

)2(n+k
k

)
as a solutions of recursion

(n + 1)2un+1 − (11n2 + 11n + 3)un − n2un−1 = 0.
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Zagier’s sporadic sequences

Zagier performed a computer search on first 100 million triples
(A,B,C ) ∈ Z3 and found that the recursive relation generalizing bn

(n + 1)2un+1 − (An2 + An + B)un + Cn2un−1 = 0,

with the initial conditions u−1 = 0 and u0 = 1 has (non-degenerate
i.e. C (A2 − 4C ) 6= 0) integral solution for only six more triples
(whose solutions are so called sporadic sequences)

(0, 0,−16), (7, 2,−8), (9, 3, 27), (10, 3, 9), (12, 4, 32) and (17, 6, 72).

The sequence F (n) corresponds to the triple (17, 6, 72).
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The previous work

Stienstra and Beukers proved congruences analogous to the one in
the first slide for Apery numbers (and for two more sporadic
sequences). Recently Osburn and Straub proved them for all
sequences except for F (n) - for which they made a conjecture.
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Connection with geometry

Stienstra and Beukers showed that the generating functions of
Apéry’s numbers bn (and Zagier for other sporadic sequences) are
holomorphic solutions of Picard-Fuchs differential equation of some
elliptic surface.
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Picard-Fuchs differential equations for the Legendre family
of elliptic curves

For t ∈ C let
Et : y 2 = x(x − 1)(x − t),

be Legendre’s family of elliptic curve with period integrals

Ω1(t) =

∫ 1

t

dx√
x(x − 1)(x − t)

, Ω2(t) =

∫ ∞
1

dx√
x(x − 1)(x − t)

.

They satisfy Picard-Fuchs differential equation

t(t − 1)Ω′′(t) + (2t − 1)Ω′(t) +
1

4
Ω(t) = 0,

whose unique holomorphic solution at t = 0 is hyperelliptic
function

−πΩ2(t) =
∞∑
n=0

((1/2)n)2

n!
tn.
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Modular elliptic surface and sequence F (n)

Consider modular rational elliptic surface for Γ1(6)

W : (x + y)(x + z)(y + z)− 8xyz =
1

t
xyz ,

with fibration φ :W → P1, (x , y , z , t) 7→ t.

Picard-Fuchs differential equation associated to this elliptic surface

(8t + 1)(9t + 1)P(t)′′ + t(144t + 17)P(t)′ + 6t(12t + 1)P(t) = 0,

has a holomorphic solution around t = 0

P(t) =
∞∑
n=0

(−1)nF (n)tn.
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Modular forms

We can identify t with a modular function (for Γ0(6))

t(τ) =
η(2τ)η(6τ)5

η(τ)5η(3τ)
, τ ∈ H

then P(τ) :=
∑∞

n=0(−1)nF (n)t(τ)n is a weight one modular form
for Γ1(6).
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The main idea

Proposition (Beukers)

Let p be a prime and ω(t) =
∑∞

n=1 bntn−1dt a differential form
with bn ∈ Zp. Let t(q) =

∑∞
n=1 Anqn,An ∈ Zp, and suppose

ω(t(q)) =
∞∑
n=1

cnqn−1dq.

Suppose there exist αp, βp ∈ Zp with p|βp such that

bmpr − αpbmpr−1 + βpbmpr−2 ≡ 0 (mod pr ), ∀m, r ∈ N.

Then

cmpr − αpcmpr−1 + βpcmpr−2 ≡ 0 (mod pr ), ∀m, r ∈ N.
Moreover, if A1 is p-adic unit then the second congruence implies
the first, and we have that bp ≡ αpb1 (mod p).
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Congruences for F (n)

Now consider a two cover S of W, a K3-surface given by the
equation

S : (x + y)(x + z)(y + z)− 8xyz =
1

s2
xyz ,

where t = s2. Then s(τ) =
√

η(2τ)η(6τ)5

η(τ)5η(3τ)
is a corresponding

modular function for index two genus zero subgroup Γ2 ⊂ Γ1(6)
Given prime p > 2, we apply the previous proposition to the
differential form

ω(s) =
∞∑
n=1

(−1)nF (n)s2nds,

and s(q) - the q-expansion of modular function s(τ) (where
q = eπiτ ).
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Congruences for F (n) cont.

We obtain that

ω(s(q)) =
∞∑
n=0

cnqn−1dq,

where cn are Fourier coefficients of weight 3 cusp form
g(τ) ∈ S3(Γ2)

g(q) = P(q)q
d

dq
s(q) = q+

3

2
q3−9

8
q5−85

16
q7−981

128
q9+· · · =

∞∑
n=1

cnqn.
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It is enought to prove that g(τ) satisfy three term Atkin and
Swinnerton-Dyer (ASD) congruence relation.

Proposition (K.)

Let p > 3 be a prime. Then for all m, r ∈ N, we have that

cmpr −
(
−1

p

)
γ(p)cmpr−1 +

(
−6

p

)
p2cmpr−2 ≡ 0 (mod p2r ),

where

γ(p) =

{
2(a2 − 6b2) (mod p) if p = a2 + 6b2

0 (mod p) if p ≡ 5, 11, 13, 17, 19, 23 (mod 24).
.

For m = 1 and r = 1, it follows cp ≡
(
−1
p

)
γ(p) (mod p), hence

by the Theorem of Beukers

(−1)
p−1

2 F

(
p − 1

2

)
≡
(
−1

p

)
γ(p) (mod p).
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Atkin and Swinnerton-Dyer congruences

For a finite index noncongruece subgroup Γ ⊂ SL2(Z) and a prime
p, we say that weight k cusp form f (τ) =

∑∞
n=0 anqn ∈ Sk(Γ,Zp)

satisfy Atkin and Swinnerton-Dyer (ASD) congruence at p if there
exist an algebraic integer Ap and a root of unity µp such that for
all non-negative integers m and r we have

ampr − Apampr−1 + µppk−1ampr−2 ≡ 0 (mod p(k−1)r ). (1)

(In our example an
′s and Ap

′s are rational integers, and µp = ±1.)
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Result of Scholl

In the case when the space of cusp forms is one dimensional and
generated by f (τ) (which is the case for S3(Γ2) and g(τ)), Scholl
proved that the ASD congruence holds for all but finitely many p.
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Action of Frobenius - de Rham cohomology

The congruences were obtained by embedding the module of cusp
forms (in our case of weight 3) into certain de Rham cohomology
group DR(Γ) which is the de Rham realization of the motive
associated to the relevant space of modular forms.

At a good prime p, crystalline theory endows DR(Γ)⊗ Zp with a
Frobenius endomorphism whose action on q-expansion gives rise to
Atkin and Swinnerton-Dyer congruences, i.e. congruence (1) holds,
if

T 2 − ApT + µpp2

is a characteristic polynomial of Frobenius acting on DR(Γ)⊗ Zp.
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Action of Frobenius - `-adic cohomology

To calculate the trace of Frobenius Ap, following Scholl, we
associate to the subgroup Γ2 a strictly compatible family of `-adic
Galois representations of Gal(Q̄/Q), ρ̃`, that is isomorphic to
`-adic realization of the motive associated to the space of cusp
forms S3(Γ2). Then

Ap = trace(ρ̃2(Frobp)) and µp = det(ρ̃2(Frobp)).
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Explicit description

Let X (Γ2)0 be the complement in X (Γ2) of the cusps. Denote by i
the inclusion of X (Γ2)0 into X (Γ2), and by h′ : S → X (Γ2)0 the
restriction of elliptic surface h : S → X (Γ2) to X (Γ2)0. For a prime
` we obtain a sheaf

F` = R1h′∗Q`

on X (Γ2)0, and also sheaf i∗F` on X (Γ2) (here Q` is the constant
sheaf on the elliptic surface S, and R1 is derived functor). The
action of Gal(Q̄/Q) on the Q`-vector space

W = H1
et(X (Γ2)⊗Q, i∗F`)

defines `-adic representation ρ`.
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The third family of `-adic representation
For τ ∈ H and q = e2πiτ let

f (τ) =
∞∑
n=0

= q−2q2+3q3+· · · =
∞∑
n=0

γ(n)qn ∈ S3

(
Γ0(24),

(
−6

·

))
be a newform. Then for prime p

γ(p) =

{
2(a2 − 6b2) if p = a2 + 6b2

0 (mod p) if p ≡ 3, 11, 13, 17, 19, 23 (mod 24).
.

Denote by ρ′` a two dimensional `-adic Galois representation of
Gal(Q̄/Q) attached to the newform f (τ)⊗

(−1
·
)

by the work of
Deligne. Hence,

trace(ρ′`(Frobp)) =

(
−1

p

)
γ(p) and det(ρ′`(Frobp)) =

(
−24

p

)
p2,

for prime p 6= 2, 3 and `.
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ρ` ∼= ρ̃` and ρ` ∼= ρ′`

To prove ASD congruence for g(τ) it is enough to show that
representations ρ′` and ρ̃` are isomorphic. We prove that by
showing that both of them are isomorphic to ρ`.
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Serre-Faltings method → ρ` ∼= ρ′`

Theorem (Serre, Scholl)

For a finite set of primes S of Q, let χ1, . . . , χr be a maximal
independent set of quadratic characters of Gal(Q/Q) unramified
outside S, and G a subset of Gal(Q/Q) such that the map
(χ1, . . . , χr ) : G → (Z/2Z)r is surjective.
Let σ, σ′ : Gal(Q/Q)→ GL2(Q2) be continuous semisimple
representation unramified away from S, whose images are
pro-2-groups. If for every g ∈ G

tr(σ(g)) = tr(σ′(g)) and det(σ(g)) = det(σ′(g)),

then σ and σ′ are isomorphic.
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Point counting

Theorem

Let q = ps be a power of prime p 6= 2, 3, `. The following are true:

(1) We have that

tr(Frobq|W ) = −
∑

t∈X (Γj )(Fq)

tr(Frobq|(i∗F`)t).

(2) If the fiber Et := h−1(t) is smooth, then

tr(Frobq|(i∗F`)t) = tr(Frobq|H1(Et ,Q`)) = q + 1−#Et(Fq).

(3) If the fiber E j
t is singular, then

tr(Frobq|(i∗F`)t) =


1 fiber is split multiplicative,

−1 fiber is nonsplit multiplicative,

0 fiber is additive.
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Explicit calculation

K3 surface

S : (x + y)(x + z)(y + z)− 8xyz =
1

s2
xyz ,

has Weierstrass model

y 2 = x3 + (6s4 + 3s2 + 1/4)x2 + (9s8 + s6)x .

We apply the previous theorem to S = {2, 3}, characters

χ1(Frobp) =
(
−1
p

)
, χ2(Frobp) =

(
2
p

)
, χ3(Frobp) =

(
3
p

)
,and

G = {Frobp : 31 ≤ p ≤ 73, for p prime}.
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ρ` ∼= ρ̃`

A priori we know that ρ` and ρ̃` are isomorphic up to a quadratic
character unramified outside 2 and 3.

For every such nontrivial χ,
we can find a prime p > 3 such that χ(p) = −1, and numerically
check that ASD congruence relation for the Fourier coefficients of
g(τ)

cmpr −χ(p)

(
−1

p

)
γ(p)cmpr−1 +

(
−6

p

)
p2cmpr−2 ≡ 0 (mod p2r ),

does not hold for some choice of m and r .

Hence the main theorem follows.
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g(τ)

cmpr −χ(p)
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γ(p)cmpr−1 +
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p

)
p2cmpr−2 ≡ 0 (mod p2r ),

does not hold for some choice of m and r .
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Work in progress

Considering three covers of the starting elliptic surface W, we
study congruences for F (p−1

3 ) when p ≡ 1 (mod 3).

Let h(τ) = q − a
3 q2 − 2q4 + aq5 − 7q7 + 2a

3 q8 + 6q10 − aq11 + · · ·
be a weight three newform of level 486 (a2 = −18).

Conjecture

For prime p ≡ 1 (mod 3) we have

F

(
p − 1

3

)
≡ A(p) · 1 +

√
−3

2
(mod p),

where A(p) = −Trace(ch(p))/2 or Trace(ch(p)), depending on the
splitting behavior of p in Q(

√
−3, 3
√

3).
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Thank you for your attention!
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