Diophantine quadruples in $\mathbb{Z}[i][X]$

Ana Jurasić (joint work with Alan Filipin) The authors were supported by the Croatian Science Foundation under the project no. IP-2018-01-1313.

University of Rijeka, Croatia

ajurasic@math.uniri.hr

Representation Theory XVI

Jun 26, 2019

Long history of the problem

• A set consisting of *m* positive integers such that the product of any two of its distinct elements increased by 1 is a perfect square is called **a Diophantine** *m*-**tuple**.

- Diophantus of Alexandria first studied this problem.
- How large such set can be?

• Rational numbers:

- Diophantus found the first rational Diophantine quadruple $\left\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\right\}$.
- Euler found first quintuple, Gibbs [?] found some sextuples.
- Dujella et al. [2017] proved that there exist infinitely many rational Diophantine sextuples.

• No upper bound for the size of such sets is known.

• Rational numbers:

- Diophantus found the first rational Diophantine quadruple $\left\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\right\}$.
- Euler found first quintuple, Gibbs [?] found some sextuples.
- Dujella et al. [2017] proved that there exist infinitely many rational Diophantine sextuples.
- No upper bound for the size of such sets is known.
- Integers:
 - Fermat found the first such quadruple of integers $\{1, 3, 8, 120\}$.
 - He, Togbé and Ziegler [2019] proved that there does not exist a Diophantine quintuple.

• There is also a stronger conjecture:

• Rational numbers:

- Diophantus found the first rational Diophantine quadruple $\left\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\right\}$.
- Euler found first quintuple, Gibbs [?] found some sextuples.
- Dujella et al. [2017] proved that there exist infinitely many rational Diophantine sextuples.
- No upper bound for the size of such sets is known.
- Integers:
 - Fermat found the first such quadruple of integers $\{1, 3, 8, 120\}$.
 - He, Togbé and Ziegler [2019] proved that there does not exist a Diophantine quintuple.
 - There is also a stronger conjecture:

Conjecture 1

If $\{a, b, c, d\}$ is a Diophantine quadruple of integers and $d > \max\{a, b, c\}$, then $d = d_+ = a + b + c + 2(abc + \sqrt{(ab+1)(ac+1)(bc+1)})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Adding a fixed integer *n* instead of 1 (Brown, Dujella, Luca,...),

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Adding a fixed integer *n* instead of 1 (Brown, Dujella, Luca,...),
- \bullet considering the problem over domains other than $\mathbb Z$ or $\mathbb Q...$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Adding a fixed integer *n* instead of 1 (Brown, Dujella, Luca,...),
- \bullet considering the problem over domains other than $\mathbb Z$ or $\mathbb Q...$

Definition 1

Let $m \ge 2$ and let R be a commutative ring with 1. Let $n \in R$ be a nonzero element and let $\{a_1, \ldots, a_m\}$ be a set of m distinct nonzero elements from R such that $a_ia_j + n$ is a square of an element of R for $1 \le i < j \le m$. The set $\{a_1, \ldots, a_m\}$ is called **a Diophantine** m-tuple with the property D(n) or simply a D(n)-m-tuple in R.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

At least one element of a Diophantine *m*-tuple is non-constant.

At least one element of a Diophantine *m*-tuple is non-constant.

- $R = \mathbb{Z}[X]$:
 - First studied by Jones [?, ?].
 - Dujella and Fuchs [2004] there does not exist a Diophantine quintuple.
 - A lot of other variants of such a polynomial problem (Dujella, Fuchs, Tichy, Walsh, Jurasić, Kazalicki, Mikić, Sziksai, ...).

At least one element of a Diophantine *m*-tuple is non-constant.

- $R = \mathbb{Z}[X]$:
 - First studied by Jones [?, ?].
 - Dujella and Fuchs [2004] there does not exist a Diophantine quintuple.
 - A lot of other variants of such a polynomial problem (Dujella, Fuchs, Tichy, Walsh, Jurasić, Kazalicki, Mikić, Sziksai, ...).

- $R = \mathbb{R}[X]$
 - Filipin and Jurasic there does not exist a Diophantine quintuple.

At least one element of a Diophantine *m*-tuple is non-constant.

- $R = \mathbb{Z}[X]$:
 - First studied by Jones [?, ?].
 - Dujella and Fuchs [2004] there does not exist a Diophantine quintuple.
 - A lot of other variants of such a polynomial problem (Dujella, Fuchs, Tichy, Walsh, Jurasić, Kazalicki, Mikić, Sziksai, ...).
- $R = \mathbb{R}[X]$
 - Filipin and Jurasic there does not exist a Diophantine quintuple.
- $R = \mathbb{K}[X]$ (K algebraically closed field of characteristic 0):
 - Dujella and Jurasić [?] there does not exist a Diophantine 8-tuple.
 - Other similar results (Dujella and Luca [2007], Filipin and Jurasić [2016], ...).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• We consider the case $R = \mathbb{Z}[i][X]$ and n = 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- We consider the case $R = \mathbb{Z}[i][X]$ and n = 1.
- Does there exist a Diophantine quintuple in $R = \mathbb{Z}[i][X]$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $\{a, b, c\}$ be a D(1)-triple in $\mathbb{Z}[i][X]$ such that

$$ab+1=r^2, \ ac+1=s^2, \ bc+1=t^2,$$

where $r, s, t \in \mathbb{Z}[i][X]$.

Definition 2 (Gibbs)

A D(1)-triple $\{a, b, c\}$ in $\mathbb{Z}[i][X]$ is called regular if $(c - b - a)^2 = 4(ab + 1)$. (1)

Let $\{a, b, c\}$ be a D(1)-triple in $\mathbb{Z}[i][X]$ such that

$$ab + 1 = r^2$$
, $ac + 1 = s^2$, $bc + 1 = t^2$,

where $r, s, t \in \mathbb{Z}[i][X]$.

Definition 2 (Gibbs)

A D(1)-triple $\{a, b, c\}$ in $\mathbb{Z}[i][X]$ is called regular if $(c - b - a)^2 = 4(ab + 1)$. (1)

• Equation (1) is symmetric under permutations of *a*, *b*, *c*.

Let $\{a, b, c\}$ be a D(1)-triple in $\mathbb{Z}[i][X]$ such that

$$ab+1=r^2, \ ac+1=s^2, \ bc+1=t^2,$$

where $r, s, t \in \mathbb{Z}[i][X]$.

Definition 2 (Gibbs)

A D(1)-triple $\{a, b, c\}$ in $\mathbb{Z}[i][X]$ is called regular if $(c - b - a)^2 = 4(ab + 1)$. (1)

• Equation (1) is symmetric under permutations of *a*, *b*, *c*.

• From (1), we get

$$c = c_{\pm} = a + b \pm 2r,$$

 $ac_{\pm} + 1 = (a \pm r)^2, \ bc_{\pm} + 1 = (b \pm r)^2,$

A D(1)-quadruple $\{a, b, c, d\}$ in R is called regular if $(d + c - a - b)^2 = 4(ab + 1)(cd + 1).$ (2)

A D(1)-quadruple $\{a, b, c, d\}$ in R is called regular if $(d + c - a - b)^2 = 4(ab + 1)(cd + 1).$ (2)

• An irregular D(1)-quadruple in R is one that is not regular.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A D(1)-quadruple $\{a, b, c, d\}$ in R is called regular if $(d + c - a - b)^2 = 4(ab + 1)(cd + 1).$ (2)

- An irregular D(1)-quadruple in R is one that is not regular.
- Equation (2) is symmetric under permutations of a, b, c, d.

A D(1)-quadruple $\{a, b, c, d\}$ in R is called regular if $(d + c - a - b)^2 = 4(ab + 1)(cd + 1).$ (2)

- An irregular D(1)-quadruple in R is one that is not regular.
- Equation (2) is symmetric under permutations of a, b, c, d.
- It is a quadratic equation in d with roots

$$d = d_{\pm} = a + b + c + 2(abc \pm rst).$$

A D(1)-quadruple $\{a, b, c, d\}$ in R is called regular if $(d + c - a - b)^2 = 4(ab + 1)(cd + 1).$ (2)

- An irregular D(1)-quadruple in R is one that is not regular.
- Equation (2) is symmetric under permutations of a, b, c, d.
- It is a quadratic equation in d with roots $d = d_{\pm} = a + b + c + 2(abc \pm rst).$
- We denote by d₊ the polynomial with larger degree and by d₋ the polynomial with smaller degree among the polynomials d_±.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / の�?

It is known that every D(1)-pair {a, b} in in every ring R can be extended to a regular D(1)-quadruple in R:
{a, b, a + b ± 2r, 4r(a ± r)(b ± r)}.

(日) (日) (日) (日) (日) (日) (日) (日)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Dujella and Fuchs [2004] - every D(1)-quadruple in $\mathbb{Z}[X]$ is regular.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Dujella and Fuchs [2004] - every D(1)-quadruple in $\mathbb{Z}[X]$ is regular.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Filipin and Jurasic - every *D*(1)-quadruple in ℝ[X] is regular.

• Dujella and Fuchs [2004] - every D(1)-quadruple in $\mathbb{Z}[X]$ is regular.

- Filipin and Jurasic every *D*(1)-quadruple in ℝ[X] is regular.
- Our main result:

Theorem 1

Every D(1)-quadruple in $\mathbb{Z}[i][X]$ is regular.

One consequence of the main Theorem

Corolary 1

Every polynomial D(-1)-triple in $\mathbb{Z}[X]$ can be uniquely extended to D(-1; 1)-quadruple in $\mathbb{Z}[X]$.

One consequence of the main Theorem

Corolary 1

Every polynomial D(-1)-triple in $\mathbb{Z}[X]$ can be uniquely extended to D(-1; 1)-quadruple in $\mathbb{Z}[X]$.

A set {a, b, c, d} of four non-zero distinct polynomials from Z[X] is said to have a property D(−1; 1), or that it is polynomial D(−1; 1)-quadruple, if {a, b, c} is a polynomial D(−1)-triple and each of ad + 1, bd + 1 and cd + 1 is a square of polynomial from Z[X].

One consequence of the main Theorem

Corolary 1

Every polynomial D(-1)-triple in $\mathbb{Z}[X]$ can be uniquely extended to D(-1; 1)-quadruple in $\mathbb{Z}[X]$.

- A set {a, b, c, d} of four non-zero distinct polynomials from Z[X] is said to have a property D(−1; 1), or that it is polynomial D(−1; 1)-quadruple, if {a, b, c} is a polynomial D(−1)-triple and each of ad + 1, bd + 1 and cd + 1 is a square of polynomial from Z[X].
- This improves result obtained by Blizanac Trebjesanin, Filipin and Jurasic [2018] under some additional conditions.

Sketch of the proof of Theorem 1

We partially follow the strategies used by Dujella and Fuchs [2004] for $\mathbb{Z}[X]$, by Filipin and Jurasic for $\mathbb{R}[X]$ and by Dujella and Jurasic [2010] for $\mathbb{C}[X]$.

Sketch of the proof of Theorem 1

We partially follow the strategies used by Dujella and Fuchs [2004] for $\mathbb{Z}[X]$, by Filipin and Jurasic for $\mathbb{R}[X]$ and by Dujella and Jurasic [2010] for $\mathbb{C}[X]$.

1 Since we do not have the relation "<" between the elements of $\mathbb{Z}[i][X]$, we use the relation " \leq " between their degrees.
Sketch of the proof of Theorem 1

We partially follow the strategies used by Dujella and Fuchs [2004] for $\mathbb{Z}[X]$, by Filipin and Jurasic for $\mathbb{R}[X]$ and by Dujella and Jurasic [2010] for $\mathbb{C}[X]$.

- 1 Since we do not have the relation "<" between the elements of $\mathbb{Z}[i][X]$, we use the relation " \leq " between their degrees.
- 2 We transform the problem of extending a D(1)-triple $\{a, b, c\}$ to a D(1)-quadruple $\{a, b, c, d\}$ in $\mathbb{Z}[i][X]$ into solving a system of simultaneous Pellian equations, which furthermore transforms to finding intersections of binary recurrent sequences of polynomials.

3 We find a gap principle for degrees of elements in a D(1)-triple $\{a, b, c\}$ in $\mathbb{Z}[i][X]$.

- 3 We find a gap principle for degrees of elements in a D(1)-triple $\{a, b, c\}$ in $\mathbb{Z}[i][X]$.
- 4 We assume that we have an irregular D(1)-quadruple $\{a, b, c, d\}$ in $\mathbb{Z}[i][X]$ with minimal possible degree of d.

- 3 We find a gap principle for degrees of elements in a D(1)-triple $\{a, b, c\}$ in $\mathbb{Z}[i][X]$.
- 4 We assume that we have an irregular D(1)-quadruple $\{a, b, c, d\}$ in $\mathbb{Z}[i][X]$ with minimal possible degree of d.
- 5 We describe all possible initial terms of the observed recurring sequences.
 - For some initial terms we obtain the same elements of sequences, but with shifted indices and with different degrees of polynomials (overlaps "by form").
 - Hence, some cases are reduced to the study of the other ones, which saves some time and which is some improvement from the proofs of previous analogous results.

- 3 We find a gap principle for degrees of elements in a D(1)-triple $\{a, b, c\}$ in $\mathbb{Z}[i][X]$.
- 4 We assume that we have an irregular D(1)-quadruple $\{a, b, c, d\}$ in $\mathbb{Z}[i][X]$ with minimal possible degree of d.
- 5 We describe all possible initial terms of the observed recurring sequences.
 - For some initial terms we obtain the same elements of sequences, but with shifted indices and with different degrees of polynomials (overlaps "by form").
 - Hence, some cases are reduced to the study of the other ones, which saves some time and which is some improvement from the proofs of previous analogous results.
- 6 Finally, we prove the Theorem 1.

• We consider an arbitray extension of a D(1)-triple $\{a, b, c\}$ in $\mathbb{Z}[i][X]$ to a D(1)-quadruple $\{a, b, c, d\}$ in $\mathbb{Z}[i][X]$.

• We consider an arbitray extension of a D(1)-triple $\{a, b, c\}$ in $\mathbb{Z}[i][X]$ to a D(1)-quadruple $\{a, b, c, d\}$ in $\mathbb{Z}[i][X]$.

Notation:

- We consider an arbitray extension of a D(1)-triple $\{a, b, c\}$ in $\mathbb{Z}[i][X]$ to a D(1)-quadruple $\{a, b, c, d\}$ in $\mathbb{Z}[i][X]$.
- Notation:
 - Let α, β, γ denote the degrees of polynomials a, b, c, respectively.

- We consider an arbitray extension of a D(1)-triple $\{a, b, c\}$ in $\mathbb{Z}[i][X]$ to a D(1)-quadruple $\{a, b, c, d\}$ in $\mathbb{Z}[i][X]$.
- Notation:
 - Let α, β, γ denote the degrees of polynomials a, b, c, respectively.

• Assume that $0 \le \alpha \le \beta \le \gamma$ and $\beta, \gamma > 0$.

Let

$$ad + 1 = x^2, \quad bd + 1 = y^2, \quad cd + 1 = z^2,$$
 (3)
where $x, y, z \in \mathbb{Z}[i][X].$

Eliminating d from (3), we get the system of Pellian equations $az^2 - cx^2 = a - c,$ (4) $bz^2 - cy^2 = b - c.$ (5)

Let

$$ad + 1 = x^2, \quad bd + 1 = y^2, \quad cd + 1 = z^2,$$
 (3)
where $x, y, z \in \mathbb{Z}[i][X].$

Eliminating d from (3), we get the system of Pellian equations $az^2 - cx^2 = a - c,$ (4) $bz^2 - cy^2 = b - c.$ (5)

• We look for solutions (z, x) and (z, y) of (4) and (5), respectively.

Estimates of the initial values of recurrent sequences

Lemma1 (Adapted result of Dujella and Luca [2007])

Let (z, x) and (z, y) be solutions, with $x, y, z \in \mathbb{Z}[i][X]$, of (4) and (5), respectively. Then there exist solutions (z_0, x_0) and (z_1, y_1) , with $z_0, x_0, z_1, y_1 \in \mathbb{Z}[i][X]$, of (4) and (5), respectively, such that:

$$\deg(z_0) \leq \frac{3\gamma - lpha}{4}, \qquad \deg(x_0) \leq \frac{lpha + \gamma}{4}, \\ \deg(z_1) \leq \frac{3\gamma - eta}{4}, \qquad \deg(y_1) \leq \frac{eta + \gamma}{4}.$$

There also exist non-negative integers *m* and *n* such that $z\sqrt{a} + x\sqrt{c} = (z_0\sqrt{a} + x_0\sqrt{c})(s + \sqrt{ac})^m,$ $z\sqrt{b} + y\sqrt{c} = (z_1\sqrt{b} + y_1\sqrt{c})(t + \sqrt{bc})^n.$ Most of the statements of Lemma 1 follow directly from Dujella and Luca [2007] (for K[X], where K is algebraically closed field of characteristic 0).

- Most of the statements of Lemma 1 follow directly from Dujella and Luca [2007] (for K[X], where K is algebraically closed field of characteristic 0).
- By Lemma 1, $z = v_m = w_n$, where the sequences (v_m) and (w_n) are, for $m, n \ge 0$, defined by $v_0 = z_0, v_1 = sz_0 + cx_0, v_{m+2} = 2sv_{m+1} - v_m$, (6) $w_0 = z_1, w_1 = tz_1 + cy_1, w_{n+2} = 2tw_{n+1} - w_n$. (7)

- Most of the statements of Lemma 1 follow directly from Dujella and Luca [2007] (for K[X], where K is algebraically closed field of characteristic 0).
- By Lemma 1, $z = v_m = w_n$, where the sequences (v_m) and (w_n) are, for $m, n \ge 0$, defined by $v_0 = z_0, v_1 = sz_0 + cx_0, v_{m+2} = 2sv_{m+1} - v_m$, (6) $w_0 = z_1, w_1 = tz_1 + cy_1, w_{n+2} = 2tw_{n+1} - w_n$. (7)

Hence, we reduced the problem of finding extensions of D(1)-triple {a, b, c} to solving the equation v_m = w_n in m, n ≥ 0.

• We use the expression

$$c = a + b + d_- + 2(abd_- \mp ruv),$$

where $u = at \pm rs$, $v = bs \pm rt$, $w = cr \pm st$ and $ad_{-} + 1 = u^{2}$, $bd_{-} + 1 = v^{2}$, $cd_{-} + 1 = w^{2}$, obtained by Jones [1977] for $\mathbb{Z}[X]$.

We use the expression

$$c = a + b + d_- + 2(abd_- \mp ruv),$$

where $u = at \pm rs$, $v = bs \pm rt$, $w = cr \pm st$ and $ad_{-} + 1 = u^{2}$, $bd_{-} + 1 = v^{2}$, $cd_{-} + 1 = w^{2}$, obtained by Jones [1977] for $\mathbb{Z}[X]$.

• Here, wherever two possibilities \pm occur, we have to observe those from which a polynomial of the lower degree arise.

We use the expression

$$c = a + b + d_- + 2(abd_- \mp ruv),$$

where $u = at \pm rs$, $v = bs \pm rt$, $w = cr \pm st$ and $ad_{-} + 1 = u^{2}$, $bd_{-} + 1 = v^{2}$, $cd_{-} + 1 = w^{2}$, obtained by Jones [1977] for $\mathbb{Z}[X]$.

- Here, wherever two possibilities \pm occur, we have to observe those from which a polynomial of the lower degree arise.
- For d₋ ≠ 0, by Dujella, Fuchs and Luca [2008], we have deg(d₋) ≤ γ − α − β, i.e. γ ≥ α + β. We prove:

Lemma 2

Let $\{a, b, c\}$ be a D(1)-triple in $\mathbb{Z}[i][X]$. Then $d_{-} = 0$ or $\deg(d_{-}) = \gamma - \alpha - \beta$.

• By the proof of Lemma 2, if $\beta = \gamma$ then $d_{-} = 0$ or $d_{-} = a = \pm i$.

- By the proof of Lemma 2, if $\beta = \gamma$ then $d_{-} = 0$ or $d_{-} = a = \pm i$.
 - By Dujella and Luca [2007], there is at most one constant in a D(1)-m-tuple in C[X], so if a and d_− are non-zero constants, then d_− = a.

- By the proof of Lemma 2, if $\beta = \gamma$ then $d_{-} = 0$ or $d_{-} = a = \pm i$.
 - By Dujella and Luca [2007], there is at most one constant in a D(1)-m-tuple in C[X], so if a and d_− are non-zero constants, then d_− = a.

• In this case $\{a, b, c\} = \{\pm i, \pm ti \pm i, \mp ti \pm i\}.$

- By the proof of Lemma 2, if $\beta = \gamma$ then $d_{-} = 0$ or $d_{-} = a = \pm i$.
 - By Dujella and Luca [2007], there is at most one constant in a D(1)-m-tuple in C[X], so if a and d_− are non-zero constants, then d_− = a.
 - In this case $\{a, b, c\} = \{\pm i, \pm ti \pm i, \mp ti \pm i\}.$
 - Such an example is a D(1)-triple

$$\{\pm i,\pm 4iX^2 \mp 4X, \mp 4iX^2 \pm 4X \pm 2i\}.$$

• We assume that $\{a, b, c, d'\}$, with $\deg(d') = \delta$ and $\gamma \leq \delta$, is an irregular D(1)-quadruple with minimal δ among all irregular D(1)-quadruples in $\mathbb{Z}[i][X]$ and we try to prove that such quadruple does not exist.

• We assume that $\{a, b, c, d'\}$, with $\deg(d') = \delta$ and $\gamma \leq \delta$, is an irregular D(1)-quadruple with minimal δ among all irregular D(1)-quadruples in $\mathbb{Z}[i][X]$ and we try to prove that such quadruple does not exist.

• By Dujella and Jurasić [2010], $\deg(d') \geq \frac{3\beta+5\gamma}{2}$.

• We prove that that if $m, n \in \{0, 1\}$ then from $v_m = w_n$ we can obtain polynomial D(1)-quadruples:

a) $\{a, b, c, d_{-}\},\$ b) $\{0, a, b, c\},\$ c) $\{\pm i, \pm i, b, c\},\$ d) $\{a, b, c, d_{+}\}$ and $\gamma \ge \alpha + 2\beta.$

- We prove that that if $m, n \in \{0, 1\}$ then from $v_m = w_n$ we can obtain polynomial D(1)-quadruples:
 - a) $\{a, b, c, d_{-}\},\$
 - b) $\{0, a, b, c\}$,
 - c) $\{\pm i, \pm i, b, c\}$,
 - d) $\{a, b, c, d_+\}$ and $\gamma \ge \alpha + 2\beta$.
 - A D(1)-quadruple with a relaxed condition that its elements need not be distinct and need not be non-zero is called (regular or irregular) **improper** D(1)-**quadruple**.

- We prove that that if $m, n \in \{0, 1\}$ then from $v_m = w_n$ we can obtain polynomial D(1)-quadruples:
 - a) { a, b, c, d_- },
 - b) $\{0, a, b, c\}$,
 - c) $\{\pm i, \pm i, b, c\}$,
 - d) $\{a, b, c, d_+\}$ and $\gamma \ge \alpha + 2\beta$.
 - A D(1)-quadruple with a relaxed condition that its elements need not be distinct and need not be non-zero is called (regular or irregular) improper D(1)-quadruple.

• We use this result in our proofs.

- We prove that that if $m, n \in \{0, 1\}$ then from $v_m = w_n$ we can obtain polynomial D(1)-quadruples:
 - a) $\{a, b, c, d_{-}\}$,
 - b) $\{0, a, b, c\}$,
 - c) $\{\pm i, \pm i, b, c\}$,
 - d) $\{a, b, c, d_+\}$ and $\gamma \ge \alpha + 2\beta$.
 - A D(1)-quadruple with a relaxed condition that its elements need not be distinct and need not be non-zero is called (regular or irregular) improper D(1)-quadruple.
- We use this result in our proofs.
 - By the minimality assumption, whenever we get d such that deg(d) < δ then we may conclude that d = d_− or d = 0 ≠ d_− or d = ±i ≠ d_−.

• In the following lemma we consider all possibilities for d_{-} .

- In the following lemma we consider all possibilities for d_{-} .
 - Similar gap principle is known in classical case and in a polynomial variants of the problem of Diophantus, but we obtained more information about possible polynomial D(1)-triples.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
- In the following lemma we consider all possibilities for d_{-} .
 - Similar gap principle is known in classical case and in a polynomial variants of the problem of Diophantus, but we obtained more information about possible polynomial D(1)-triples.
 - We consider $d_0, d_1 \in \mathbb{Z}[i][X]$, where

$$ad_0 + 1 = x_0^2$$
, $cd_0 + 1 = z_0^2$

and

$$bd_1 + 1 = y_1^2$$
, $cd_1 + 1 = z_1^2$.

Gap principle for degrees of polynomials a, b and c

We describe all possible relations between α , β and γ .

Lemma 3

Let $\{a, b, c\}$ be a D(1)-triple in $\mathbb{Z}[i][X]$. We have:

1. If $d_{-} = 0$, then $z_0 = z_1 = \pm 1$. In this case $c = a + b \pm 2r$ and $\beta = \gamma$.

- 2. a) If $d_- = a = \pm i$, then $(z_0, z_1) = (\pm s, \pm s)$, $\alpha = 0$, $\beta = \gamma$ and $c = -b \pm 2i$. b) If $d_- \in \mathbb{Z}[i] \setminus \{0, a\}$, then $z_0 = z_1 = \pm cr \pm st$, $\alpha > 0$ and $\gamma = \alpha + \beta$.
- 3. If $deg(d_{-}) > 0$, then we have the following possibilities:
 - a) $z_0 = z_1 = \pm cr \pm st$, with $\deg(d_-) \le \alpha$, $\alpha > 0$ and $\alpha + \beta < \gamma \le 2\alpha + \beta$,
 - b) $(z_0, z_1) = (\pm cr \pm st, \pm s)$, where $\alpha \leq \deg(d_-) \leq \beta$, $\alpha \geq 0$ and $2\alpha + \beta < \gamma < \alpha + 2\beta$,
 - c) $(z_0, z_1) = (\pm t, \pm cr \pm st)$, with $\deg(d_-) = \alpha$, $\alpha = \beta$ and $\gamma = 3\alpha$,
 - d) $(z_0, z_1) = (\pm t, \pm s)$, where $\beta \leq \deg(d_-) < \gamma$, $\alpha \geq 0$ and $\gamma \geq \alpha + 2\beta$.

• To prove that, we consider the equation $v_m = w_n$ from which the solution $d = d_-$ arises from.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- To prove that, we consider the equation $v_m = w_n$ from which the solution $d = d_-$ arises from.
- We distinguish the cases by possible form of *d*_− and we use the fact that if *d* = *d*_−, then *v_m* = *w_n* = ±*w* for *m*, *n* ∈ {0,1}, which we also proved.

 We described more precisely one special case of a D(1)-triple and we adjust the result of Dujella and Fuchs [2004] to the situation in ℤ[i][X]:

 We described more precisely one special case of a D(1)-triple and we adjust the result of Dujella and Fuchs [2004] to the situation in ℤ[i][X]:

Lemma 4

Let $\{a, b, c\}$ be a D(1)-triple in $\mathbb{Z}[i][X]$ with $\beta < \gamma = \alpha + 2\beta$. Then, $\{a, b, d_{-}, c\}$ has elements

$$\{a, b, a+b\pm 2r, 4r(a\pm r)(b\pm r)\}$$

or

$$\{\pm i, b, -b \pm 2i, \mp 4b^2i \pm 8b \pm 5i\}.$$

Precise determination of initial terms

▲□▶ ▲圖▶ ★園▶ ★園▶ - 園 - のへで

Precise determination of initial terms

• We distinguish the cases depending on the parity of indices *m* and *n* in the recurring sequences (*v_m*) and (*w_n*).

Precise determination of initial terms

- We distinguish the cases depending on the parity of indices *m* and *n* in the recurring sequences (*v_m*) and (*w_n*).
- By Dujella and Fuchs [2004]:

Lemma 5

Let the sequences (v_m) and (w_n) be given by (6) and (7). Then,

$$v_{2m} \equiv z_0 \pmod{2c}, \quad v_{2m+1} \equiv sz_0 + cx_0 \pmod{2c},$$
$$w_{2m} \equiv z_1 \pmod{2c}, \quad w_{2m+1} \equiv tz_1 + cy_1 \pmod{2c},$$

Dujella and Jurasić [2010] described all possible relations between the initial terms z_0 and z_1 of the recurring sequences (v_m) and (w_n) in $\mathbb{C}[X]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dujella and Jurasić [2010] described all possible relations between the initial terms z_0 and z_1 of the recurring sequences (v_m) and (w_n) in $\mathbb{C}[X]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• This is more precise version:

Dujella and Jurasić [2010] described all possible relations between the initial terms z_0 and z_1 of the recurring sequences (v_m) and (w_n) in $\mathbb{C}[X]$.

• This is more precise version:

Lemma 6

1) If $v_{2m} = w_{2n}$, then $z_0 = z_1$. 2) If $v_{2m+1} = w_{2n}$, then either $(z_0, z_1) = (\pm 1, \pm s)$ or $(z_0, z_1) = (\pm s, \pm 1)$ or $z_1 = sz_0 \pm cx_0$, where x_0 is not constant. 3) If $v_{2m} = w_{2n+1}$, then either $(z_0, z_1) = (\pm t, \pm 1)$ or $(z_0, z_1) = (\pm s, \pm 1)$ or $(z_0, z_1) = (\pm 1, \pm 1)$ or $z_0 = tz_1 \pm cy_1$, where y_1 is not constant. 4) If $v_{2m+1} = w_{2n+1}$, then either $(z_0, z_1) = (\pm 1, \pm cr \pm st)$ or $(z_0, z_1) = (\pm cr \pm st, \pm 1)$ or $sz_0 \pm cx_0 = tz_1 \pm cy_1$, where x_0 and y_1 are not constant and polynomials on both sides of the equation have degree less than γ .

• We examine which possibilities from Lemma 6 exist in $\mathbb{Z}[i][X]$ and which initial terms appear from those possibilities.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- We examine which possibilities from Lemma 6 exist in $\mathbb{Z}[i][X]$ and which initial terms appear from those possibilities.
 - In the following lemma for each possibility of initial terms we have relations between degrees α , β and γ which admit that possibility.

- We examine which possibilities from Lemma 6 exist in $\mathbb{Z}[i][X]$ and which initial terms appear from those possibilities.
 - In the following lemma for each possibility of initial terms we have relations between degrees α , β and γ which admit that possibility.

• For one particular triple {*a*, *b*, *c*} there can be more initial terms, depending on degrees of polynomials *a*, *b* and *c*.

Since in $\mathbb{Z}[i][X]$ we do not have the relation "<" between the elements, there are more possibilities to examine for z_0 and z_1 than in $\mathbb{R}[X]$, but less possibilities really hold.

Let $v_{z_0,m}$ be the *m*-th term of the sequence $(v_m)_{m\geq 0}$ with initial term z_0 and $w_{z_1,n}$ the *n*-th term of the sequence $(w_n)_{n\geq 0}$ with initial term z_1 . Then

$$\begin{array}{ll} v_{t,m} = -v_{cr-st,m+1}, & v_{-t,m+1} = -v_{-cr+st,m}, \\ v_{t,m+1} = v_{cr+st,m}, & v_{-t,m} = v_{-cr-st,m+1}, \\ w_{s,n} = -w_{cr-st,n+1}, & w_{-s,n+1} = -w_{-cr+st,n}, \\ w_{s,n+1} = w_{cr+st,n}, & w_{-s,m} = w_{-cr-st,n+1}. \end{array}$$

Let $v_{z_0,m}$ be the *m*-th term of the sequence $(v_m)_{m\geq 0}$ with initial term z_0 and $w_{z_1,n}$ the *n*-th term of the sequence $(w_n)_{n\geq 0}$ with initial term z_1 . Then

$$\begin{array}{ll} v_{t,m} = -v_{cr-st,m+1}, & v_{-t,m+1} = -v_{-cr+st,m}, \\ v_{t,m+1} = v_{cr+st,m}, & v_{-t,m} = v_{-cr-st,m+1}, \\ w_{s,n} = -w_{cr-st,n+1}, & w_{-s,n+1} = -w_{-cr+st,n}, \\ w_{s,n+1} = w_{cr+st,n}, & w_{-s,m} = w_{-cr-st,n+1}. \end{array}$$

 This lemma is a suitable version for Z[i][X] of Lemma 2.3 by Cipu, Fujita, Miyazaki [2018].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $v_{z_0,m}$ be the *m*-th term of the sequence $(v_m)_{m\geq 0}$ with initial term z_0 and $w_{z_1,n}$ the *n*-th term of the sequence $(w_n)_{n\geq 0}$ with initial term z_1 . Then

$$\begin{array}{ll} v_{t,m} = -v_{cr-st,m+1}, & v_{-t,m+1} = -v_{-cr+st,m}, \\ v_{t,m+1} = v_{cr+st,m}, & v_{-t,m} = v_{-cr-st,m+1}, \\ w_{s,n} = -w_{cr-st,n+1}, & w_{-s,n+1} = -w_{-cr+st,n}, \\ w_{s,n+1} = w_{cr+st,n}, & w_{-s,m} = w_{-cr-st,n+1}. \end{array}$$

- This lemma is a suitable version for Z[i][X] of Lemma 2.3 by Cipu, Fujita, Miyazaki [2018].
- It follows that in some cases of Lemma 7 we obtain the same intersections of sequences, but with shifted indices.

Let $v_{z_0,m}$ be the *m*-th term of the sequence $(v_m)_{m\geq 0}$ with initial term z_0 and $w_{z_1,n}$ the *n*-th term of the sequence $(w_n)_{n\geq 0}$ with initial term z_1 . Then

$$\begin{array}{ll} v_{t,m} = -v_{cr-st,m+1}, & v_{-t,m+1} = -v_{-cr+st,m}, \\ v_{t,m+1} = v_{cr+st,m}, & v_{-t,m} = v_{-cr-st,m+1}, \\ w_{s,n} = -w_{cr-st,n+1}, & w_{-s,n+1} = -w_{-cr+st,n}, \\ w_{s,n+1} = w_{cr+st,n}, & w_{-s,m} = w_{-cr-st,n+1}. \end{array}$$

- This lemma is a suitable version for Z[i][X] of Lemma 2.3 by Cipu, Fujita, Miyazaki [2018].
- It follows that in some cases of Lemma 7 we obtain the same intersections of sequences, but with shifted indices.
 - The cases 2), 3.b) and 4) of Lemma 7 can be reduced to the case 1.c) of that lemma.

Let $v_{z_0,m}$ be the *m*-th term of the sequence $(v_m)_{m\geq 0}$ with initial term z_0 and $w_{z_1,n}$ the *n*-th term of the sequence $(w_n)_{n\geq 0}$ with initial term z_1 . Then

$$\begin{array}{ll} v_{t,m} = -v_{cr-st,m+1}, & v_{-t,m+1} = -v_{-cr+st,m}, \\ v_{t,m+1} = v_{cr+st,m}, & v_{-t,m} = v_{-cr-st,m+1}, \\ w_{s,n} = -w_{cr-st,n+1}, & w_{-s,n+1} = -w_{-cr+st,n}, \\ w_{s,n+1} = w_{cr+st,n}, & w_{-s,m} = w_{-cr-st,n+1}. \end{array}$$

- This lemma is a suitable version for Z[i][X] of Lemma 2.3 by Cipu, Fujita, Miyazaki [2018].
- It follows that in some cases of Lemma 7 we obtain the same intersections of sequences, but with shifted indices.
 - The cases 2), 3.b) and 4) of Lemma 7 can be reduced to the case 1.c) of that lemma.
 - In the proof of the Theorem 1 we considered the case 1.c) for all possible combinations of degrees.

We examine possibilities from Lemma 7. We get only:

We examine possibilities from Lemma 7. We get only:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• regular quadruples $\{a, b, c, d_{\pm}\}$,

We examine possibilities from Lemma 7. We get only:

- regular quadruples $\{a, b, c, d_{\pm}\}$,
- improper regular or irregular quadruples $\{0, a, b, c\}$ and $\{a, a, b, c\}$, where *a* is a constant.

We examine possibilities from Lemma 7. We get only:

- regular quadruples $\{a, b, c, d_{\pm}\}$,
- improper regular or irregular quadruples $\{0, a, b, c\}$ and $\{a, a, b, c\}$, where *a* is a constant.
 - We use important relations, obtained by Dujella and Fuchs [2004] (we consider congruences in Z[i][X]):

Lemma 9

Let the sequences $(v_m)_{m\geq 0}$ and $(w_n)_{n\geq 0}$ be given by (6) and (7). Then,

$$\begin{array}{lll} \mathbf{v}_{2m} &\equiv& z_0 + 2c(az_0m^2 + sx_0m) \ (\mathrm{mod} \ 8c^2), \\ \mathbf{v}_{2m+1} &\equiv& sz_0 + c[2asz_0m(m+1) + x_0(2m+1)] \ (\mathrm{mod} \ 4c^2), \\ \mathbf{w}_{2n} &\equiv& z_1 + 2c(bz_1n^2 + ty_1n) \ (\mathrm{mod} \ 8c^2), \\ \mathbf{w}_{2n+1} &\equiv& tz_1 + c[2btz_1n(n+1) + y_1(2n+1)] \ (\mathrm{mod} \ 4c^2). \end{array}$$

We examine possibilities from Lemma 7. We get only:

- regular quadruples $\{a, b, c, d_{\pm}\}$,
- improper regular or irregular quadruples $\{0, a, b, c\}$ and $\{a, a, b, c\}$, where *a* is a constant.
 - We use important relations, obtained by Dujella and Fuchs [2004] (we consider congruences in Z[i][X]):

Lemma 9

Let the sequences $(v_m)_{m\geq 0}$ and $(w_n)_{n\geq 0}$ be given by (6) and (7). Then,

$$\begin{array}{rcl} v_{2m} &\equiv& z_0 + 2c(az_0m^2 + sx_0m) \ (\bmod \ 8c^2), \\ v_{2m+1} &\equiv& sz_0 + c[2asz_0m(m+1) + x_0(2m+1)] \ (\bmod \ 4c^2), \\ w_{2n} &\equiv& z_1 + 2c(bz_1n^2 + ty_1n) \ (\bmod \ 8c^2), \\ w_{2n+1} &\equiv& tz_1 + c[2btz_1n(n+1) + y_1(2n+1)] \ (\bmod \ 4c^2). \end{array}$$

 Conclusion - every Diophantine quadruple in Z[i][X] is regular. Polynomial Diophantine quadruples over Gaussian integers

Thank you for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ