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Polynomial Diophantine quadruples over Gaussian integers

Long history of the problem

A set consisting of m positive integers such that the product
of any two of its distinct elements increased by 1 is a perfect
square is called a Diophantine m-tuple.

Diophantus of Alexandria first studied this problem.

How large such set can be?
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Rational numbers:
Diophantus found the first rational Diophantine quadruple{

1
16 ,

33
16 ,

17
4 ,

105
16

}
.

Euler found first quintuple, Gibbs [?] found some sextuples.
Dujella et al. [2017] proved that there exist infinitely many
rational Diophantine sextuples.
No upper bound for the size of such sets is known.

Integers:
Fermat found the first such quadruple of integers {1, 3, 8, 120}.
He, Togbé and Ziegler [2019] proved that there does not exist
a Diophantine quintuple.
There is also a stronger conjecture:

Conjecture 1

If {a, b, c , d} is a Diophantine quadruple of integers and d > max{a,b,c},
then d = d+ = a + b + c + 2(abc +

√
(ab + 1)(ac + 1)(bc + 1)).
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He, Togbé and Ziegler [2019] proved that there does not exist
a Diophantine quintuple.
There is also a stronger conjecture:

Conjecture 1

If {a, b, c , d} is a Diophantine quadruple of integers and d > max{a,b,c},
then d = d+ = a + b + c + 2(abc +

√
(ab + 1)(ac + 1)(bc + 1)).



Polynomial Diophantine quadruples over Gaussian integers

Generalizations of the problem

Adding a fixed integer n instead of 1 (Brown, Dujella,
Luca,...),

considering the problem over domains other than Z or Q...

Definition 1

Let m ≥ 2 and let R be a commutative ring with 1. Let n ∈ R be
a nonzero element and let {a1, . . . , am} be a set of m distinct
nonzero elements from R such that aiaj + n is a square of an
element of R for 1 ≤ i < j ≤ m. The set {a1, . . . , am} is called a
Diophantine m-tuple with the property D(n) or simply a
D(n)-m-tuple in R.



Polynomial Diophantine quadruples over Gaussian integers

Generalizations of the problem

Adding a fixed integer n instead of 1 (Brown, Dujella,
Luca,...),

considering the problem over domains other than Z or Q...

Definition 1

Let m ≥ 2 and let R be a commutative ring with 1. Let n ∈ R be
a nonzero element and let {a1, . . . , am} be a set of m distinct
nonzero elements from R such that aiaj + n is a square of an
element of R for 1 ≤ i < j ≤ m. The set {a1, . . . , am} is called a
Diophantine m-tuple with the property D(n) or simply a
D(n)-m-tuple in R.



Polynomial Diophantine quadruples over Gaussian integers

Generalizations of the problem

Adding a fixed integer n instead of 1 (Brown, Dujella,
Luca,...),

considering the problem over domains other than Z or Q...

Definition 1

Let m ≥ 2 and let R be a commutative ring with 1. Let n ∈ R be
a nonzero element and let {a1, . . . , am} be a set of m distinct
nonzero elements from R such that aiaj + n is a square of an
element of R for 1 ≤ i < j ≤ m. The set {a1, . . . , am} is called a
Diophantine m-tuple with the property D(n) or simply a
D(n)-m-tuple in R.



Polynomial Diophantine quadruples over Gaussian integers

Generalizations of the problem

Adding a fixed integer n instead of 1 (Brown, Dujella,
Luca,...),

considering the problem over domains other than Z or Q...

Definition 1

Let m ≥ 2 and let R be a commutative ring with 1. Let n ∈ R be
a nonzero element and let {a1, . . . , am} be a set of m distinct
nonzero elements from R such that aiaj + n is a square of an
element of R for 1 ≤ i < j ≤ m. The set {a1, . . . , am} is called a
Diophantine m-tuple with the property D(n) or simply a
D(n)-m-tuple in R.



Polynomial Diophantine quadruples over Gaussian integers

Polynomial variants of the problem of Diophantus

At least one element of a Diophantine m-tuple is non-constant.

R = Z[X ]:
First studied by Jones [?, ?].
Dujella and Fuchs [2004] - there does not exist a Diophantine
quintuple.
A lot of other variants of such a polynomial problem (Dujella,
Fuchs, Tichy, Walsh, Jurasić, Kazalicki, Mikić, Sziksai, ...).

R = R[X ]
Filipin and Jurasic - there does not exist a Diophantine
quintuple.

R = K[X ] (K - algebraically closed field of characteristic 0):
Dujella and Jurasić [?] - there does not exist a Diophantine
8-tuple.
Other similar results (Dujella and Luca [2007], Filipin and
Jurasić [2016], ...).
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Our research

We consider the case R = Z[i ][X ] and n = 1.

Does there exist a Diophantine quintuple in R = Z[i ][X ]?
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Let {a, b, c} be a D(1)-triple in Z[i ][X ] such that

ab + 1 = r2, ac + 1 = s2, bc + 1 = t2,

where r , s, t ∈ Z[i ][X ].

Definition 2 (Gibbs)

A D(1)-triple {a, b, c} in Z[i ][X ] is called regular if
(c − b − a)2 = 4(ab + 1). (1)

Equation (1) is symmetric under permutations of a, b, c .

From (1), we get
c = c± = a + b ± 2r ,

ac± + 1 = (a± r)2, bc± + 1 = (b ± r)2.
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Definition 3 (Gibbs)

A D(1)-quadruple {a, b, c , d} in R is called regular if
(d + c − a− b)2 = 4(ab + 1)(cd + 1). (2)

An irregular D(1)-quadruple in R is one that is not regular.

Equation (2) is symmetric under permutations of a, b, c , d .

It is a quadratic equation in d with roots
d = d± = a + b + c + 2(abc ± rst).

We denote by d+ the polynomial with larger degree and by d−
the polynomial with smaller degree among the polynomials d±.



Polynomial Diophantine quadruples over Gaussian integers

Definition 3 (Gibbs)

A D(1)-quadruple {a, b, c , d} in R is called regular if
(d + c − a− b)2 = 4(ab + 1)(cd + 1). (2)

An irregular D(1)-quadruple in R is one that is not regular.

Equation (2) is symmetric under permutations of a, b, c , d .

It is a quadratic equation in d with roots
d = d± = a + b + c + 2(abc ± rst).

We denote by d+ the polynomial with larger degree and by d−
the polynomial with smaller degree among the polynomials d±.



Polynomial Diophantine quadruples over Gaussian integers

Definition 3 (Gibbs)

A D(1)-quadruple {a, b, c , d} in R is called regular if
(d + c − a− b)2 = 4(ab + 1)(cd + 1). (2)

An irregular D(1)-quadruple in R is one that is not regular.

Equation (2) is symmetric under permutations of a, b, c , d .

It is a quadratic equation in d with roots
d = d± = a + b + c + 2(abc ± rst).

We denote by d+ the polynomial with larger degree and by d−
the polynomial with smaller degree among the polynomials d±.



Polynomial Diophantine quadruples over Gaussian integers

Definition 3 (Gibbs)

A D(1)-quadruple {a, b, c , d} in R is called regular if
(d + c − a− b)2 = 4(ab + 1)(cd + 1). (2)

An irregular D(1)-quadruple in R is one that is not regular.

Equation (2) is symmetric under permutations of a, b, c , d .

It is a quadratic equation in d with roots
d = d± = a + b + c + 2(abc ± rst).

We denote by d+ the polynomial with larger degree and by d−
the polynomial with smaller degree among the polynomials d±.



Polynomial Diophantine quadruples over Gaussian integers

Definition 3 (Gibbs)

A D(1)-quadruple {a, b, c , d} in R is called regular if
(d + c − a− b)2 = 4(ab + 1)(cd + 1). (2)

An irregular D(1)-quadruple in R is one that is not regular.

Equation (2) is symmetric under permutations of a, b, c , d .

It is a quadratic equation in d with roots
d = d± = a + b + c + 2(abc ± rst).

We denote by d+ the polynomial with larger degree and by d−
the polynomial with smaller degree among the polynomials d±.



Polynomial Diophantine quadruples over Gaussian integers

It is known that every D(1)-pair {a, b} in in every ring R can
be extended to a regular D(1)-quadruple in R:

{a, b, a + b ± 2r , 4r(a± r)(b ± r)}.
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The main Theorem

Dujella and Fuchs [2004] - every D(1)-quadruple in Z[X ] is
regular.

Filipin and Jurasic - every D(1)-quadruple in R[X ] is
regular.

Our main result:

Theorem 1

Every D(1)-quadruple in Z[i ][X ] is regular.
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One consequence of the main Theorem

Corolary 1

Every polynomial D(−1)-triple in Z[X ] can be uniquely extended
to D(−1; 1)-quadruple in Z[X ].

A set {a, b, c , d} of four non-zero distinct polynomials from
Z[X ] is said to have a property D(−1; 1), or that it is
polynomial D(−1; 1)-quadruple, if {a, b, c} is a polynomial
D(−1)-triple and each of ad + 1, bd + 1 and cd + 1 is a
square of polynomial from Z[X ].

This improves result obtained by Blizanac Trebjesanin, Filipin
and Jurasic [2018] under some additional conditions.
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Sketch of the proof of Theorem 1

We partially follow the strategies used by Dujella and Fuchs [2004]
for Z[X ], by Filipin and Jurasic for R[X ] and by Dujella and
Jurasic [2010] for C[X ].

1 Since we do not have the relation ”<” between the elements
of Z[i ][X ], we use the relation ”≤” between their degrees.

2 We transform the problem of extending a D(1)-triple {a, b, c}
to a D(1)-quadruple {a, b, c , d} in Z[i ][X ] into solving a
system of simultaneous Pellian equations, which
furthermore transforms to finding intersections of binary
recurrent sequences of polynomials.
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3 We find a gap principle for degrees of elements in a
D(1)-triple {a, b, c} in Z[i ][X ].

4 We assume that we have an irregular D(1)-quadruple
{a, b, c , d} in Z[i ][X ] with minimal possible degree of d .

5 We describe all possible initial terms of the observed
recurring sequences.

For some initial terms we obtain the same elements of
sequences, but with shifted indices and with different degrees
of polynomials (overlaps ”by form”).
Hence, some cases are reduced to the study of the other ones,
which saves some time and which is some improvement from
the proofs of previous analogous results.

6 Finally, we prove the Theorem 1.
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Reduction to intersections of recursive sequences

We consider an arbitray extension of a D(1)-triple {a, b, c} in
Z[i ][X ] to a D(1)-quadruple {a, b, c , d} in Z[i ][X ].

Notation:

Let α, β, γ denote the degrees of polynomials a, b, c ,
respectively.
Assume that 0 ≤ α ≤ β ≤ γ and β, γ > 0.
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Let
ad + 1 = x2, bd + 1 = y2, cd + 1 = z2, (3)

where x , y , z ∈ Z[i ][X ].

Eliminating d from (3), we get the system of Pellian equations
az2 − cx2 = a− c , (4)
bz2 − cy2 = b − c . (5)

We look for solutions (z , x) and (z , y) of (4) and (5),
respectively.
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Estimates of the initial values of recurrent sequences

Lemma1 (Adapted result of Dujella and Luca [2007])

Let (z , x) and (z , y) be solutions, with x , y , z ∈ Z[i ][X ], of (4) and
(5), respectively. Then there exist solutions (z0, x0) and (z1, y1),
with z0, x0, z1, y1 ∈ Z[i ][X ], of (4) and (5), respectively, such that:

deg(z0) ≤ 3γ − α
4

, deg(x0) ≤ α + γ

4
,

deg(z1) ≤ 3γ − β
4

, deg(y1) ≤ β + γ

4
.

There also exist non-negative integers m and n such that
z
√
a + x

√
c = (z0

√
a + x0

√
c)(s +

√
ac)m,

z
√
b + y

√
c = (z1

√
b + y1

√
c)(t +

√
bc)n.
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Most of the statements of Lemma 1 follow directly from
Dujella and Luca [2007] (for K[X ], where K is algebraically
closed field of characteristic 0).

By Lemma 1, z = vm = wn, where the sequences (vm) and
(wn) are, for m, n ≥ 0, defined by

v0 = z0, v1 = sz0+cx0, vm+2 = 2svm+1−vm, (6)
w0 = z1, w1 = tz1+cy1, wn+2 = 2twn+1−wn. (7)

Hence, we reduced the problem of finding extensions of
D(1)-triple {a, b, c} to solving the equation vm = wn in
m, n ≥ 0.
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We use the expression

c = a + b + d− + 2(abd− ∓ ruv),

where u = at ± rs, v = bs ± rt, w = cr ± st and
ad− + 1 = u2, bd− + 1 = v2, cd− + 1 = w2, obtained by
Jones [1977] for Z[X ].

Here, wherever two possibilities ± occur, we have to observe
those from which a polynomial of the lower degree arise.

For d− 6= 0, by Dujella, Fuchs and Luca [2008], we have
deg(d−) ≤ γ − α− β, i.e. γ ≥ α + β. We prove:

Lemma 2

Let {a, b, c} be a D(1)-triple in Z[i ][X ]. Then d− = 0 or
deg(d−) = γ − α− β.
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By the proof of Lemma 2, if β = γ then d− = 0 or
d− = a = ±i .

By Dujella and Luca [2007], there is at most one constant in a
D(1)-m-tuple in C[X ], so if a and d− are non-zero constants,
then d− = a.
In this case {a, b, c} = {±i ,±ti ± i ,∓ti ± i}.
Such an example is a D(1)-triple

{±i ,±4iX 2 ∓ 4X ,∓4iX 2 ± 4X ± 2i}.
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Polynomial Diophantine quadruples over Gaussian integers

We assume that {a, b, c , d ′}, with deg(d ′) = δ and γ ≤ δ, is
an irregular D(1)-quadruple with minimal δ among all
irregular D(1)-quadruples in Z[i ][X ] and we try to prove that
such quadruple does not exist.

By Dujella and Jurasić [2010], deg(d ′) ≥ 3β+5γ
2 .
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Polynomial Diophantine quadruples over Gaussian integers

We prove that that if m, n ∈ {0, 1} then from vm = wn we
can obtain polynomial D(1)-quadruples:
a) {a, b, c , d−},
b) {0, a, b, c},
c) {±i ,±i , b, c},
d) {a, b, c , d+} and γ ≥ α + 2β.

A D(1)-quadruple with a relaxed condition that its elements
need not be distinct and need not be non-zero is called
(regular or irregular) improper D(1)-quadruple.

We use this result in our proofs.

By the mininmality assumption, whenever we get d such that
deg(d) < δ then we may conlude that d = d− or d = 0 6= d−
or d = ±i 6= d−.
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In the following lemma we consider all possibilities for d−.

Similar gap principle is known in classical case and in a
polynomial variants of the problem of Diophantus, but we
obtained more information about possible polynomial
D(1)-triples.

We consider d0, d1 ∈ Z[i ][X ], where

ad0 + 1 = x20 , cd0 + 1 = z20

and
bd1 + 1 = y2

1 , cd1 + 1 = z21.
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Gap principle for degrees of polynomials a, b and c

We describe all possible relations between α, β and γ.

Lemma 3

Let {a, b, c} be a D(1)-triple in Z[i ][X ]. We have:

1. If d− = 0, then z0 = z1 = ±1. In this case c = a+ b ± 2r and β = γ.

2. a) If d− = a = ±i , then (z0, z1) = (±s,±s), α = 0, β = γ and c = −b± 2i .
b) If d− ∈ Z[i ] \ {0, a}, then z0 = z1 = ±cr ± st, α > 0 and γ = α+ β.

3. If deg(d−) > 0, then we have the following possibilities:

a) z0 = z1 = ±cr ± st, with deg(d−) ≤ α, α > 0 and α+ β < γ ≤ 2α+ β,
b) (z0, z1) = (±cr ± st,±s), where α ≤ deg(d−) ≤ β, α ≥ 0 and

2α+ β ≤ γ ≤ α+ 2β,
c) (z0, z1) = (±t,±cr ± st), with deg(d−) = α, α = β and γ = 3α,
d) (z0, z1) = (±t,±s), where β ≤ deg(d−) < γ, α ≥ 0 and γ ≥ α+ 2β.
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To prove that, we consider the equation vm = wn from which
the solution d = d− arises from.

We distinguish the cases by possible form of d− and we use
the fact that if d = d−, then vm = wn = ±w for
m, n ∈ {0, 1}, which we also proved.
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We described more precisely one special case of a D(1)-triple
and we adjust the result of Dujella and Fuchs [2004] to the
situation in Z[i ][X ]:

Lemma 4

Let {a, b, c} be a D(1)-triple in Z[i ][X ] with β < γ = α + 2β.
Then, {a, b, d−, c} has elements

{a, b, a + b ± 2r , 4r(a± r)(b ± r)}

or
{±i , b,−b ± 2i ,∓4b2i ± 8b ± 5i}.
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Precise determination of initial terms

We distinguish the cases depending on the parity of indices m
and n in the recurring sequences (vm) and (wn).

By Dujella and Fuchs [2004]:

Lemma 5

Let the sequences (vm) and (wn) be given by (6) and (7). Then,

v2m ≡ z0 (mod 2c), v2m+1 ≡ sz0 + cx0 (mod 2c),

w2n ≡ z1 (mod 2c), w2n+1 ≡ tz1 + cy1 (mod 2c).
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Dujella and Jurasić [2010] described all possible relations between
the initial terms z0 and z1 of the recurring sequences (vm) and
(wn) in C[X ].

This is more precise version:

Lemma 6

1) If v2m = w2n, then z0 = z1.
2) If v2m+1 = w2n, then either (z0, z1) = (±1,±s) or
(z0, z1) = (±s,±1) or z1 = sz0 ± cx0, where x0 is not constant.
3) If v2m = w2n+1, then either (z0, z1) = (±t,±1) or
(z0, z1) = (±s,±1) or (z0, z1) = (±1,±1) or z0 = tz1 ± cy1, where
y1 is not constant.
4) If v2m+1 = w2n+1, then either (z0, z1) = (±1,±cr ± st) or
(z0, z1) = (±cr ± st,±1) or sz0 ± cx0 = tz1 ± cy1, where x0 and y1
are not constant and polynomials on both sides of the equation
have degree less than γ.
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We examine which possibilities from Lemma 6 exist in Z[i ][X ]
and which initial terms appear from those possibilities.

In the following lemma for each possibility of initial terms we
have relations between degrees α, β and γ which admit that
possibility.
For one particular triple {a, b, c} there can be more initial
terms, depending on degrees of polynomials a, b and c .
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Lemma 7

1) If v2m = w2n, then either

a) z0 = z1 = ±1 or
b) z0 = z1 = ±s and α = 0 or
c) z0 = z1 = ±cr ± st and α > 0, α + β ≤ γ ≤ 2α + β.

2) If v2m+1 = w2n, then (z0, z1) = (±t,±cr ± st) and α = β,
γ = 3α.

3) If v2m = w2n+1, then either

a) (z0, z1) = (±s,±1) and α = 0, β = γ or
b) (z0, z1) = (±cr ± st,±s) and α ≥ 0, 2α + β ≤ γ ≤ α + 2β

(special case:

1) (z0, z1) = (±s,±s) and α = 0, β = γ).

4) If v2m+1 = w2n+1, then (z0, z1) = (±t,±s) and γ ≥ α + 2β.

Since in Z[i ][X ] we do not have the relation ”<” between the
elements, there are more possibilities to examine for z0 and z1 than
in R[X ], but less possibilities really hold.
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Lemma 8

Let vz0,m be the m-th term of the sequence (vm)m≥0 with initial
term z0 and wz1,n the n-th term of the sequence (wn)n≥0 with
initial term z1. Then

vt,m = −vcr−st,m+1, v−t,m+1 = −v−cr+st,m,
vt,m+1 = vcr+st,m, v−t,m = v−cr−st,m+1,
ws,n = −wcr−st,n+1, w−s,n+1 = −w−cr+st,n,
ws,n+1 = wcr+st,n, w−s,m = w−cr−st,n+1.

This lemma is a suitable version for Z[i ][X ] of Lemma 2.3 by
Cipu, Fujita, Miyazaki [2018].
It follows that in some cases of Lemma 7 we obtain the same
intersections of sequences, but with shifted indices.

The cases 2), 3.b) and 4) of Lemma 7 can be reduced to the
case 1.c) of that lemma.
In the proof of the Theorem 1 we considered the case 1.c) for
all possible combinations of degrees.
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Conclusion

We examine possibilities from Lemma 7. We get only:

regular quadruples {a, b, c , d±},
improper regular or irregular quadruples {0, a, b, c} and
{a, a, b, c}, where a is a constant.

We use important relations, obtained by Dujella and Fuchs
[2004] (we consider congruences in Z[i ][X ]):

Lemma 9

Let the sequences (vm)m≥0 and (wn)n≥0 be given by (6) and (7).
Then,

v2m ≡ z0 + 2c(az0m
2 + sx0m) (mod 8c2),

v2m+1 ≡ sz0 + c[2asz0m(m + 1) + x0(2m + 1)] (mod 4c2),

w2n ≡ z1 + 2c(bz1n
2 + ty1n) (mod 8c2),

w2n+1 ≡ tz1 + c[2btz1n(n + 1) + y1(2n + 1)] (mod 4c2).

Conclusion - every Diophantine quadruple in Z[i ][X ] is
regular.
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Thank you for your attention!


