Simplest quartic and simplest sextic Thue equations over imaginary quadratic fields

Borka Jadrijević Faculty of Science, University of Split, Croatia

Joint work with I. Gaál and L. Remete

Representation Theory XVI, Dubrovnik, Croatia, June 24 - 29, 2019

Preliminaries

Let $F(x, y) \in \mathbb{Z}[x, y]$ be an irreducible binary form of degree ≥ 3 and let $0 \neq \mu \in \mathbb{Z}$. Then equation of the form

$$F(x, y) = \mu$$
 in $x, y \in \mathbb{Z}$,

is called a Thue equation.

- In 1909 A. Thue proved that these equations admit only finitely many solutions.
- In 1967 A. Baker gave effective upper bounds for the solutions.
- Later on authors constructed numerical methods to reduce the bounds and to explicitly calculate the solutions.
- In 1990 Thomas investigated for the first time a parametrized family of Thue equations. Since then, several families have been studied.

・ロン ・四と ・ヨン ・ヨン

Let M be an algebraic number field with ring of integers \mathbb{Z}_M . As a generalization of Thue equations we consider relative Thue equations of type

$$F(x, y) = \mu$$
 in $x, y \in \mathbb{Z}_M$,

where $F(x, y) \in \mathbb{Z}_M[x, y]$ is an irreducible binary form of degree ≥ 3 and $0 \neq \mu \in \mathbb{Z}_M$.

- Using Baker's method S. V. Kotov and V. G. Sprindžuk gave the first effective upper bounds for the solutions of relative Thue equations. Their theorem was extended by several authors.
- Applying Baker's method, reduction and enumeration algorithms I. Gaál and M. Pohst gave an efficient algorithm for solving relative Thue equations.
- Authors considered infinite parametric families of Thue equations in the relative case, as well. Up to now all these families were considered mostly over imaginary quadratic fields.

Totally real Thue inequalities over imaginary quadratic fields

- Let m ≥ 1 be a square-free positive integer and let M = Q(√-m) be an imaginary quadratic field with ring of integers Z_M.
- Let $F(x, y) \in \mathbb{Z}_M[x, y]$ be an irreducible binary form of degree $n \ge 3$ where the roots of F(x, 1) are all real.
- In 2018 Gaál, Remete and J. gave an efficient algorithm to reduce the resolution of relative Thue inequalities of type

$$|F(x, y)| \leq K$$
 in $x, y \in \mathbb{Z}_M$

to the resolution of (absolute) Thue inequalities of type

$$|F(x,y)| \leq k$$
 in $x, y \in \mathbb{Z}$.

ヘロト 人間 とくほ とくほ とう

• Let $K \ge 1$. We consider the relative Thue inequality

 $|F(x, y)| \leq K$ in $x, y \in \mathbb{Z}_M$.

Let f(x) = F(x, 1). Assume f(x) that has leading coefficient 1 and distinct real roots α₁,..., α_n. Set

$$A = \min_{i \neq j} |\alpha_i - \alpha_j|, \quad B = \min_i \prod_{j \neq i} |\alpha_j - \alpha_i|.$$

• Let $0 < \varepsilon < 1$, $0 < \eta < 1$. Set

$$C = \max\left\{rac{K}{(1-arepsilon)^{n-1}B},1
ight\},$$

$$C_1 = \max\left\{\frac{K^{1/n}}{\epsilon A}, (2C)^{1/(n-2)}\right\}, \quad C_2 = \max\left\{\frac{K^{1/n}}{\epsilon A}, C^{1/(n-2)}\right\},$$

$$D = \left(\frac{K}{\eta(1-\varepsilon)^{n-1}AB}\right)^{1/n}, \ E = \frac{(1+\eta)^{n-1}K}{(1-\varepsilon)^{n-1}}.$$

Remark 1

For given Thue inequality $|F(x, y)| \le K$, parameters A, B, K and n are constants and

$$C_{1} = C_{1}(\varepsilon), \quad C_{2} = C_{2}(\varepsilon),$$

$$D = D(\varepsilon, \eta), \quad E = E(\varepsilon, \eta)$$

If $m \equiv 1, 2 \pmod{4}$, then $x, y \in \mathbb{Z}_M$ can be written as

 $x = x_1 + x_2 i \sqrt{m}, y = y_1 + y_2 i \sqrt{m}, \text{ with } x_1, x_2, y_1, y_2 \in \mathbb{Z}.$

If $m \equiv 3 \pmod{4}$, then $x, y \in \mathbb{Z}_M$ can be written as

$$x = \frac{(2x_1 + x_2) + x_2i\sqrt{m}}{2}, \quad y = \frac{(2y_1 + y_2) + y_2i\sqrt{m}}{2}$$

with $x_1, x_2, y_1, y_2 \in \mathbb{Z}$.

Theorem 1 (Gaál, Remete and J.)

Let $(x, y) \in \mathbb{Z}_M^2$ be a solution of $|F(x, y)| \leq K$. Assume that

$$|y| > C_1 \quad \text{if} \quad m \equiv 3 \pmod{4},$$

$$|y| > C_2 \quad \text{if} \quad m \equiv 1, 2 \pmod{4}.$$

Then

$$x_2y_1 = x_1y_2.$$

I. Let $m \equiv 3 \pmod{4}$.

IA1. If
$$2y_1 + y_2 = 0$$
, then $2x_1 + x_2 = 0$ and $|F(x_2, y_2)| \le \frac{2^n K}{(\sqrt{m})^n}$

- IA2. If $|2y_1 + y_2| \ge 2D$, then $|F(2x_1 + x_2, 2y_1 + y_2)| \le 2^n E$.
- IB1. If $y_2 = 0$, then $x_2 = 0$ and $|F(x_1, y_1)| \le K$.

IB2. If
$$|y_2| \ge \frac{2}{\sqrt{m}}D$$
, then $|F(x_2, y_2)| \le \frac{2^n}{(\sqrt{m})^n}E$

II. Let $m \equiv 1, 2 \pmod{4}$.

IIA1. If
$$y_1 = 0$$
, then $x_1 = 0$ and $|F(x_2, y_2)| \le \frac{K}{(\sqrt{m})^n}$.
IIA2. If $|y_1| \ge D$, then $|F(x_1, y_1)| \le E$.
IIB1. If $y_2 = 0$, then $x_2 = 0$ and $|F(x_1, y_1)| \le K$.
IIB2. If $|y_2| \ge \frac{D}{\sqrt{m}}$, then $|F(x_2, y_2)| \le \frac{E}{(\sqrt{m})^n}$.

3

メロト メポト メヨト メヨト

How to apply Theorem 1

Useful hints for a practical application of Theorem 1 on a totally real relative Thue inequality $|F(x, y)| \leq K$:

Case I. $(m \equiv 3 \pmod{4})$. We distinguish two cases:

1. $|y| \leq C_1$ **2.** $|y| > C_1$ (Theorem 1)

1. Let $|y| \leq C_1$.

- If |y| ≤ C₁, then we have only finitely many possible values for y and hence for y₁, y₂, as well;
- For each possible y and for all integers $\mu \in \mathbb{Z}_M$ with $|\mu| \le K$ we calculate the roots of the equation $F(x, y) \mu = 0$ in x;
- For such a root x we calculate the corresponding x_1, x_2 from $x = \frac{(2x_1+x_2)+x_2i\sqrt{m}}{2}$. If x_1, x_2 are integers, then $x \in \mathbb{Z}_M$ and (x, y) is a solution.

2. Let $|y| > C_1$.

In this case we can apply **Theorem 1**. We distinguish two cases:

2.a
$$|2y_1 + y_2| < 2D$$

2.b $|2y_1 + y_2| \geq 2D$

2.a Let $|2y_1 + y_2| < 2D$. Then we have:

- i) If |y₂| < 2D/\sqrt{m}, then we have only finitely many values for y₁, y₂, and we proceed as in 1.
- ii) If $|y_2| \ge 2D/\sqrt{m}$, then we use **IB2**. We solve

$$F(x_2, y_2) = k$$

for all $k \in \mathbb{Z}$ with $|k| \leq 2^n E / (\sqrt{m})^n$. For each possible (x_2, y_2) we determine the possible values of y_1 that satisfy $|2y_1 + y_2| < 2D$. We substitute x_2, y_1, y_2 into

 $x_2y_1 = x_1y_2$

to see if there exist corresponding integer x_1 .

<u>Note:</u> If $2y_1 + y_2 = 0$ or $y_2 = 0$, then it is useful to apply IA1 or IB1, respectively.

イロト イ理ト イヨト イヨト

2.b If $|2y_1 + y_2| \ge 2D$, then we use **IA2**. We calculate the solutions

$$X = 2x_1 + x_2$$
, $Y = 2y_1 + y_2$

of

$$F(X, Y) = k$$

for all $k \in \mathbb{Z}$ with $|k| \leq 2^n E$. For each possible (X, Y) we have:

i) If $|y_2| < 2D/\sqrt{m}$, then there are only finitely many possible values for y_2 . We determine corresponding y_1 from Y. Then we substitute y_1 , y_2 , $x_2 = X - 2x_1$ into

$$x_2y_1 = x_1y_2$$

and test if a corresponding x_1 is in \mathbb{Z} . ii) If $|y_2| \ge 2D/\sqrt{m}$, then we use **IB2.** We solve

 $F(x_2, y_2) = k$

for $|k| \leq 2^n E / (\sqrt{m})^n$. We determine x_1, y_1 from x_2, y_2 and X, Y.

<u>Note:</u> If $y_2 = 0$, then we can also use **IB1**.

Remark 2

- ۲
- For solving absolute Thue equations F(x, y) = k for certain values k ∈ Z one can efficiently apply Kash and Magma.
- An appropriate choice of the parameters ε and η of Theorem 1 makes the resolution much easier:
 - It is worthy to keep $C_1 = C_1(\varepsilon)$ and also $D = D(\varepsilon, \eta)$ small, to avoid extensive tests of small possible solutions. On the other hand, if $E = E(\varepsilon, \eta)$ is small, then there are fewer Thue equations (over \mathbb{Z}) to be solved.
 - We can not make all these parameters simultaneously small, therefore we need to make a compromise, taking into consideration also the value of K, the degree n of the binary form F(x, y) and the value of m (which also determines the number of Thue equations to be solved).
 - Usually it is worthy to try several values of ε and η before applying Theorem 1.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Simplest quartic and simplest sextic Thue inequalities over imaginary quadratic fields

Let t be an rational integer parameter and let

$$\begin{split} f_t^{(3)}(x) &= x^3 - (t-1)x^2 - (t+2)x - 1, \\ f_t^{(4)}(x) &= x^4 - tx^3 - 6x^2 + tx + 1, \\ f_t^{(6)}(x) &= x^6 - 2tx^5 - (5t+15)x^4 - 20x^3 + 5tx^2 + (2t+6)x + 1. \end{split}$$

The infinite parametric families of number fields generated by the roots of these polynomials are called simplest cubic, simplest quartic and simplest sextic fields, respectively.

• It was shown by G. Lettl, A. Pethő and P. Voutier that these are all parametric families of number fields which are totally real cyclic with Galois group generated by a mapping of type $x \mapsto \frac{ax+b}{cx+d}$ with $a, b, c, d \in \mathbb{Z}$.

Let t be an rational integer parameter and let

$$F_t^{(3)}(x,y) = x^3 - (t-1)x^2y - (t+2)xy^2 - y^3,$$

$$F_t^{(4)}(x,y) = x^4 - tx^3y - 6x^2y^2 + txy^3 + y^4,$$

$$F_t^{(6)}(x,y) = x^6 - 2tx^5y - (5t+15)x^4y^2 - 20x^3y^3 + 5tx^2y^4 + (2t+6)xy^5 + y^6,$$

be corresponding binary forms.

In 2019, by using Theorem 1 and the corresponding results in the absolute case, Gaál, Remete and J. gave all solutions of the infinite parametric family of simplest quartic and simplest sextic relative Thue inequalities

$$|F_t^{(4)}(x,y)| \le 1$$
 in $x, y \in \mathbb{Z}_M$

and

$$|F_t^{(6)}(x, y)| \le 1$$
 in $x, y \in \mathbb{Z}_M$,

where \mathbb{Z}_M is a ring of integers of an imaginary quadratic number field $M = \mathbb{Q}(\sqrt{-m})$.

The infinite parametric family of simplest cubic relative Thue inequalities

$$|F_t^{(3)}(x,y)| \le 1$$

was already solved. More generally, the family of relative Thue equations

$$x^{3} - (t-1)x^{2}y - (t+2)xy^{2} - y^{3} = \mu$$
,

where the parameters t, the root of unity μ and the solutions x and y are integers in the same imaginary quadratic number field $M = \mathbb{Q}(\sqrt{-m})$ was completely solved:

- In 2002, C.Heuberger, A. Pethő and R.F.Tichy gave the solutions for large values of |t|;
- In 2006, C.Heuberger gave the solutions for all parameters t;
- Heuberger's result was extended by P. Kirschenhofer, C.M. Lampl and J. Thuswaldner in 2007 involving also a wider class of rights hand sides.

イロト 不得下 イヨト イヨト

Simplest quartic Thue inequalities over imaginary quadratic fields

Theorem 2 (Gaál, Remete and J.)

Let $t \in \mathbb{Z}$ with $t \neq -3, 0, 3$. All solutions of

$$|F_t^{(4)}(x, y)| \le 1$$
 in $x, y \in \mathbb{Z}_M$,

up to sign, are given by: for any m and any t: (x, y) = (0, 0), (0, 1), (1, 0);for any m and t = 1: (x, y) = (1, 2), (2, -1);for any m and t = -1: (x, y) = (2, 1), (-1, 2);for any m and t = 4: (x, y) = (2, 3), (3, -2);for any m and t = -4: (x, y) = (3, 2), (-2, 3);for m = 1 and any t: (x, y) = (0, i), (i, 0);for m = 3 and any t: $(x, y) = (\omega, 0), (0, \omega), (1 - \omega, 0), (0, 1 - \omega);$

for
$$m = 1$$
 and $t = 1$: $(x, y) = (i, 2i), (2i, -i);$
for $m = 1$ and $t = -1$: $(x, y) = (2i, i), (-i, 2i);$
for $m = 1$ and $t = 4$: $(x, y) = (2i, 3i), (3i, -2i);$
for $m = 1$ and $t = -4$: $(x, y) = (3i, 2i), (-2i, 3i);$
for $m = 3$ and $t = 1$:
 $(x, y) = (2\omega - 2, -\omega + 1), (\omega - 1, 2\omega - 2), (-2\omega, \omega), (\omega, 2\omega);$
for $m = 3$ and $t = -1$:
 $(x, y) = (-\omega + 1, 2\omega - 2), (2\omega - 2, \omega - 1), (\omega, -2\omega), (2\omega, \omega);$
for $m = 3$ and $t = 4$:
 $(x, y) = (3\omega - 3, -2\omega + 2), (2\omega - 2, 3\omega - 3), (2\omega, 3\omega), (3\omega, -2\omega);$
for $m = 3$ and $t = -4$:
 $(x, y) = (-2\omega + 2, 3\omega - 3), (3\omega - 3, 2\omega - 2), (3\omega, 2\omega), (-2\omega, 3\omega),$
where $\omega = (1 + i\sqrt{3})/2$.

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q ()~

Sketch of proof:

We use Theorem 1 and the corresponding results in the absolute case:

Lemma 1 (Chen and Voutier)

Let $t \in \mathbb{Z}$ with $t \ge 1$, $t \ne 3$. All solutions of

$$F_t^{(4)}(x,y) = \pm 1$$
 in $x, y \in \mathbb{Z}$

are given by

$$(x, y) = (\pm 1, 0), (0, \pm 1).$$

Further, for t = 1 we have

$$(x, y) = (1, 2), (-1, -2), (2, -1), (-2, 1),$$

and for t = 4 we have

$$(x, y) = (2, 3), (-2, -3), (3, -2), (-3, 2).$$

3

Lemma 2 (Lettl, Pethő and Voutier)

Let $t \in \mathbb{Z}$, $t \ge 58$ and consider the primitive solutions of

$$\left|F_{t}^{(4)}(x,y)\right| \leq 6t + 7 \text{ in } x, y \in \mathbb{Z}.$$
 (1)

If (x, y) is a solution of (1), then every pair in the orbit

$$\{(x, y), (y, -x), (-x, -y), (-y, x)\}$$

is also a solution. Every such orbit has a solution with y > 0, $-y \le x \le y$. If such an orbit contains a primitive solution, then all solutions in this orbit are primitive. All solutions of the above inequality with $y > 0, -y \le x \le y$ are

$$(x, y) = (0, 1), (\pm 1, 1), (\pm 1, 2).$$

• We exclude the parameters t = -3, 0, 3 for which the binary form $F_t^{(4)}(x, y)$ is reducible over \mathbb{Z} .

Since

$$F_t^{(4)}(x,y) = F_{-t}^{(4)}(y,x),$$

it is enough to solve Thue inequality only for t > 0. Also, for given t, we have

$$F_t^{(4)}(x,y) = F_t^{(4)}(-x,-y) = F_t^{(4)}(y,-x) = F_t^{(4)}(-y,x).$$

Therefore, if $(x, y) \in \mathbb{Z}_M^2$ is a solution, then (y, -x), (-y, x), (-x, -y) are solutions, too.

副下 《唐下 《唐下

• In order to apply Theorem 1 first we need to determine

$$A = \min_{i \neq j} |\alpha_i - \alpha_j|$$
 and $B = \min_i \prod_{j \neq i} |\alpha_j - \alpha_i|.$

Using the estimates for the roots $\alpha_1, ..., \alpha_4$ of the polynomial $F_t^{(4)}(x, 1)$ given by G. Lettl, A. Pethő and P. Voutier, we obtain

$$A > 0.9833$$
 and $B > 58.1$ for $t \ge 58$.

Calculating the roots for 0 < t < 58 we obtain

A > 0.8320 and B > 4.6114 for any t > 0, $t \neq 3$.

• By Theorem 1, the resolution of our relative Thue inequality reduces to the resolution of (absolute) Thue inequalities of type

$$\left|F_t^{(4)}(x,y)\right| < k,$$

where

$$k = \frac{2^4}{(\sqrt{m})^4}, \ \frac{2^4 E}{(\sqrt{m})^4}, \ \dots \ (\text{or} \ \frac{1}{(\sqrt{m})^4}, \frac{E}{(\sqrt{m})^4}, \dots)$$
 (2)

- We want to use Lemma 1 and Lemma 2 for as many pairs (t, m) as possible in order to have fewer (absolute) Thue equations to solve in Magma.
- Since the values of k in (2) are decreasing functions in m, the cases:
 - *m* ≠ 1, 3
 - m = 1
 - *m* = 3

are considered separately with an appropriate choice of the parameters ε and $\eta.$

Case *m* = 3

We consider the cases $t \ge 58$ and 0 < t < 58 separately since for $t \ge 58$ we can use Lemma 2.

• First we assume $t \ge 58$. Then

A > 0.9833 and B > 58.1.

We set

$$\varepsilon = 0.6273, \qquad \eta = 0.0361,$$

and obtain

 $C_1 < 1.622.$

Now, Theorem 1 implies:

Corollary 1

Let
$$(x, y) \in \mathbb{Z}_M^2$$
 be a solution of $\left| F_t^{(4)}(x, y) \right| \le 1$ and $m = 3$. Assume that $t \ge 58$ and $|y| > 1.622$.

Then

$$x_2y_1 = x_1y_2$$
.

Further

IA1. If
$$2y_1 + y_2 = 0$$
, then $2x_1 + x_2 = 0$ and $|F_t^{(4)}(x_2, y_2)| \le 1.778$.
IA2. If $|2y_1 + y_2| \ge 3.499$, then $|F_t^{(4)}(2x_1 + x_2, 2y_1 + y_2)| \le 343.754$.

IB1. If
$$y_2 = 0$$
, then $x_2 = 0$ and $|F_t^{(4)}(x_1, y_1)| \le 1$.

IB2. If
$$|y_2| \ge 0.989$$
, then $|F_t^{(4)}(x_2, y_2)| \le 38.95$.

3

イロト イ理ト イヨト イヨト

1. Assume |y| > 1.622. Then, by the **Corollary 1**, we have:

a) If $2y_1 + y_2 = 0$, then by IA1, $2x_1 + x_2 = 0$ and

 $|F_t^{(4)}(x_2, y_2)| \le 1.778.$

By Lemma 1 this inequality implies

$$(x_2, y_2) = (0, 0), (0, \pm 1), (\pm 1, 0).$$

Since $2y_1 + y_2 = 0$ and $2x_1 + x_2 = 0$ we obtain that only possibility is (x, y) = (0, 0) which contradicts |y| > 1.622.

If $|2y_1 + y_2| \ge 3.499$, then **IA2** implies

$$\left|F_t^{(4)}(2x_1+x_2,2y_1+y_2)\right| \le 343.754.$$

Using **Lemma 2** we can easily list all primitive and non-primitive solutions of this inequality and we always have $|2y_1 + y_2| \le 4$.

Therefore only $|2y_1 + y_2| = 1, 2, 3, 4$ is possible.

b) Using IB1 and IB2 we similarly obtain that only |y₂| = 1, 2 is possible.
c) The equations |2y₁ + y₂| = 1, 2, 3, 4 and |y₂| = 1, 2 leave only a few possible values for (y₁, y₂).

- 2. If |x| > 1.622, then we similarly obtain $|2x_1 + x_2| = 1, 2, 3, 4$ and $|x_2| = 1, 2$ since if (x, y) is a solution, then also is (y, -x).
- 3. Therefore we have:

i) If |x| > 1.622 and |y| > 1.622, then we test the finite set

 $|2x_1 + x_2| = 1, 2, 3, 4, |x_2| = 1, 2, |2y_1 + y_2| = 1, 2, 3, 4, |y_2| = 1, 2.$

ii) If |x| > 1.622 and $|y| \le 1.622$, then we test the finite set

 $|2x_1 + x_2| = 1, 2, 3, 4, |x_2| = 1, 2, |y| \le 1.622.$

iii) If $|x| \le 1.622$ and |y| > 1.622, then we test the finite set

 $|2y_1 + y_2| = 1, 2, 3, 4, |y_2| = 1, 2, |x| \le 1.622.$

iv) If $|x| \le 1.622$ and $|y| \le 1.622$, then we have to test only finitely many possibilities for (x, y).

All solutions, up to sign, for m = 3 and $t \ge 58$ are:

$$(x,y)=(0,0),(1,0),(0,1),(\omega,0),(0,\omega),(1-\omega,0),(0,1-\omega),$$

where $\omega = \frac{1+i\sqrt{3}}{2}$.

(Representation Theory XVI, Dubrovnik, Crc

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

• Now we assume m = 3 and 0 < t < 58 . Then A > 0.8320 and B > 4.6114. If we set

$$\varepsilon = 0.0348, \qquad \eta = 0.0005,$$

then Theorem 1 implies:

Corollary 2

Let $(x, y) \in \mathbb{Z}_M^2$ be a solution of $\left| F_t^{(4)}(x, y) \right| \le 1$ and m = 3. Assume that 0 < t < 58 and |y| > 34.539.

Then

$$x_2y_1 = x_1y_2$$
.

Further

IA1. If $2y_1 + y_2 = 0$, then $2x_1 + x_2 = 0$ and $|F_t^{(4)}(x_2, y_2)| \le 1.778$.

IA2. If $|2y_1 + y_2| \ge 9.814$, then $|F_t^{(4)}(2x_1 + x_2, 2y_1 + y_2)| \le 17.821$.

IB1. If $y_2 = 0$, then $x_2 = 0$ and $|F_t^{(4)}(x_1, y_1)| \le 1$.

IB2. If
$$|y_2| \ge 5.666$$
, then $|F_t^{(4)}(x_2, y_2)| \le 1.981$

- **1.** Assume |y| > 34.539. Then by the **Corollary 2** we have:
 - a) If $y_2 = 0$ or $|y_2| \ge 5.666$, then by Lemma 1 and IB1 or IB2, respectively, we obtain a contradiction.

Therefore only $|y_2| = 1, 2, 3, 4, 5$ is possible.

b) If $2y_1 + y_2 = 0$ then by Lemma 1 and IA1, we obtain a contradiction with |y| > 34.539. If $|2y_1 + y_2| \ge 9.814$, then IA2 implies

$$|F_t^{(4)}(2x_1+x_2, 2y_1+y_2)| \le 17.821.$$

Using **Magma** we solve this inequality for all 0 < t < 58. All these solutions contradict $|2y_1 + y_2| \ge 9.814$.

Therefore only $|2y_1 + y_2| = 1, 2, ..., 9$ is possible.

c) In the set $|y_2| = 1, 2, 3, 4, 5$, $|2y_1 + y_2| = 1, 2, ..., 9$, all corresponding y have absolute values less than 34.539 which is in contradiction with |y| > 34.539.

Therefore only $|y| \leq 34.539$ is possible.

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q @

- **2.** Similarly as in previous case we obtain $|x| \le 34.539$.
- **3.** Enumerating all x, y with properties $|x| \le 34.539$ and $|y| \le 34.539$, we obtain, up to sign, the following solutions:

for
$$m = 3$$
 and any $0 < t < 58$:
 $(x, y) = (0, 0), (1, 0), (0, 1), (\omega, 0), (0, \omega), (1 - \omega, 0), (0, 1 - \omega),$
for $m = 3$ and $t = 1$:
 $(x, y) = (1, 2), (2, -1), (2\omega - 2, -\omega + 1), (\omega - 1, 2\omega - 2),$
 $(-2\omega, \omega), (\omega, 2\omega)$
for $m = 3$ and $t = 4$:
 $(x, y) = (2, 3), (3, -2), (3\omega - 3, -2\omega + 2), (2\omega - 2, 3\omega - 3),$
 $(2\omega, 3\omega), (3\omega, -2\omega).$

Therefore we have proved Theorem 2 for all $t \in \mathbb{Z}$ with $t \neq -3, 0, 3$ and m = 3.

イロト イポト イヨト イヨト

Case m = 1

In this case we set

$$\varepsilon = 0.1792, \qquad \eta = 0.0308,$$

for all t > 0, $t \neq 3$. By **Theorem 1** and **Lemma 1**, we obtain, up to sign, the following solutions:

for
$$m = 1$$
 and any t : $(x, y) = (0, 0)$, $(0, 1)$, $(1, 0)$, $(0, i)$, $(i, 0)$,
for $m = 1$ and $t = 1$: $(x, y) = (1, 2)$, $(i, 2i)$, $(2, -1)$, $(2i, -i)$,
for $m = 1$ and $t = 4$: $(x, y) = (2, 3)$, $(2i, 3i)$, $(3, -2)$, $(3i, -2i)$.

Therefore we have proved Theorem 2 for all $t \in \mathbb{Z}$ with $t \neq -3, 0, 3$ and for m = 1.

イロト イポト イヨト イヨト

Case $m \neq 1, 3$

In this case we set

$$arepsilon=$$
 0.1924, $\eta=$ 0.169,

for all t > 0, $t \neq 3$ and all $m \neq 1, 3$. By **Theorem 1** and **Lemma 1**, we obtain up to sign the following solutions:

for any *m* and any *t*: (x, y) = (0, 0), (0, 1), (1, 0),

for any *m* and t = 1: (x, y) = (1, 2), (2, -1),

for any *m* and t = 4: (x, y) = (2, 3), (3, -2).

Therefore we have proved Theorem 2 for all $t \in \mathbb{Z}$ with $t \neq -3, 0, 3$ and for all square-free positive integers m.

・ロト ・四ト ・ヨト ・ヨトー

Simplest sextic Thue inequalities over imaginary quadratic fields

Theorem 3 (Gaál, Remete and J.)

Let $t \in \mathbb{Z}$ with $t \neq -8, -3, 0, 5$. All solutions of

 $|F_t^{(6)}(x,y)| \le 1$ in $x, y \in \mathbb{Z}_M$,

up to sign, are given by: for any m and any t: (x, y) = (0, 0), (0, 1), (1, 0), (1, -1);for m = 1 and any t: (x, y) = (0, i), (i, 0), (i, -i);for m = 3 and any t: $(x, y) = (\omega, 0), (0, \omega), (\omega, -\omega), (1 - \omega, 0), (0, 1 - \omega), (\omega - 1, -\omega + 1).$ where $\omega = (1 + i\sqrt{3})/2.$

э.

イロト 不得 トイヨト イヨト

We have proved Theorem 3 analogously as Theorem 2. We have used Theorem 1 and the corresponding results in the absolute case:

Lemma 3 (Hoshi)

Let $t \in \mathbb{Z}$ with $t \neq -8, -3, 0, 5$. All solutions of

$$F_t^{(6)}(x, y) = \pm 1 \text{ in } x, y \in \mathbb{Z}$$

are given by

$$(x, y) = (\pm 1, 0), (0, \pm 1), (1, -1), (-1, 1).$$

Lemma 4 (Lettl, Pethő and Voutier)

Let $t \in \mathbb{Z}$, $t \ge 89$ and consider the primitive solutions of

$$\left|F_{t}^{(6)}(x,y)\right| \leq 120t + 323 \quad \text{in } x,y \in \mathbb{Z}.$$
(2)

If (x, y) is a solution of (2), then every pair in the orbit

$$\{(x, y), (-y, x+y), (-x-y, x), (-x, -y), (y, -x-y), (x+y, -x)\}$$

is also a solution. Every such orbit has a solution with y > 0, $-y/2 \le x \le y$. If such an orbit contains a primitive solution, then all solutions in this orbit are primitive. All solutions of the above inequality with y > 0, $-y/2 \le x \le y$ are

$$(x, y) = (0, 1), (1, 1), (1, 2), (-1, 3).$$