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Preliminaries

Let F (x , y) ∈ Z[x , y ] be an irreducible binary form of degree ≥ 3 and let
0 6= µ ∈ Z. Then equation of the form

F (x , y) = µ in x , y ∈ Z,

is called a Thue equation.

In 1909 A. Thue proved that these equations admit only finitely many
solutions.

In 1967 A. Baker gave effective upper bounds for the solutions.

Later on authors constructed numerical methods to reduce the
bounds and to explicitly calculate the solutions.

In 1990 Thomas investigated for the first time a parametrized family
of Thue equations. Since then, several families have been studied.
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Let M be an algebraic number field with ring of integers ZM . As a
generalization of Thue equations we consider relative Thue equations of
type

F (x , y) = µ in x , y ∈ ZM ,

where F (x , y) ∈ ZM [x , y ] is an irreducible binary form of degree ≥ 3 and
0 6= µ ∈ ZM .

Using Baker’s method S. V. Kotov and V. G. Sprindžuk gave the first
effective upper bounds for the solutions of relative Thue equations.
Their theorem was extended by several authors.

Applying Baker’s method, reduction and enumeration algorithms I.
Gaál and M. Pohst gave an effi cient algorithm for solving relative
Thue equations.

Authors considered infinite parametric families of Thue equations in
the relative case, as well. Up to now all these families were considered
mostly over imaginary quadratic fields.
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Totally real Thue inequalities over imaginary quadratic
fields

Let m ≥ 1 be a square-free positive integer and let M = Q(
√
−m)

be an imaginary quadratic field with ring of integers ZM .

Let F (x , y) ∈ ZM [x , y ] be an irreducible binary form of degree n ≥ 3
where the roots of F (x , 1) are all real.

In 2018 Gaál, Remete and J. gave an effi cient algorithm to reduce the
resolution of relative Thue inequalities of type

|F (x , y)| ≤ K in x , y ∈ ZM

to the resolution of (absolute) Thue inequalities of type

|F (x , y)| ≤ k in x , y ∈ Z.
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Let K ≥ 1. We consider the relative Thue inequality

|F (x , y)| ≤ K in x , y ∈ ZM .

Let f (x) = F (x , 1). Assume f (x) that has leading coeffi cient 1 and
distinct real roots α1, . . . , αn. Set

A = min
i 6=j
|αi − αj |, B = min

i
∏
j 6=i
|αj − αi |.

Let 0 < ε < 1, 0 < η < 1. Set

C = max
{

K
(1− ε)n−1B

, 1
}
,

C1 = max
{
K 1/n

εA
, (2C )1/(n−2)

}
, C2 = max

{
K 1/n

εA
, C 1/(n−2)

}
,

D =
(

K
η(1− ε)n−1AB

)1/n

, E =
(1+ η)n−1K
(1− ε)n−1

.
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Remark 1
For given Thue inequality |F (x , y)| ≤ K, parameters A, B, K and n are
constants and

C1 = C1 (ε) , C2 = C2 (ε) ,

D = D (ε, η) , E = E (ε, η) .

If m ≡ 1, 2(mod 4), then x , y ∈ ZM can be written as

x = x1 + x2i
√
m, y = y1 + y2i

√
m, with x1, x2, y1, y2 ∈ Z.

If m ≡ 3 (mod 4), then x , y ∈ ZM can be written as

x =
(2x1 + x2) + x2i

√
m

2
, y =

(2y1 + y2) + y2i
√
m

2

with x1, x2, y1, y2 ∈ Z.
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Theorem 1 (Gaál, Remete and J.)

Let (x , y) ∈ Z2
M be a solution of |F (x , y)| ≤ K . Assume that

|y | > C1 if m ≡ 3 (mod 4),
|y | > C2 if m ≡ 1, 2 (mod 4).

Then
x2y1 = x1y2.

I. Let m ≡ 3 (mod 4).

IA1. If 2y1 + y2 = 0, then 2x1 + x2 = 0 and |F (x2, y2)| ≤
2nK
(
√
m)n

.

IA2. If |2y1 + y2| ≥ 2D, then |F (2x1 + x2, 2y1 + y2)| ≤ 2nE .

IB1. If y2 = 0, then x2 = 0 and |F (x1, y1)| ≤ K .

IB2. If |y2| ≥
2√
m
D, then |F (x2, y2)| ≤

2n

(
√
m)n

E .
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II. Let m ≡ 1, 2 (mod 4).

IIA1. If y1 = 0, then x1 = 0 and |F (x2, y2)| ≤
K

(
√
m)n

.

IIA2. If |y1| ≥ D, then |F (x1, y1)| ≤ E .

IIB1. If y2 = 0, then x2 = 0 and |F (x1, y1)| ≤ K .

IIB2. If |y2| ≥
D√
m
, then |F (x2, y2)| ≤

E
(
√
m)n

.
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How to apply Theorem 1

Useful hints for a practical application of Theorem 1 on a totally real
relative Thue inequality |F (x , y)| ≤ K :
Case I. (m ≡ 3(mod 4)). We distinguish two cases:

1. |y | ≤ C1

2. |y | > C1 (Theorem 1)

1. Let |y | ≤ C1.
If |y | ≤ C1, then we have only finitely many possible values for y and
hence for y1, y2, as well;

For each possible y and for all integers µ ∈ ZM with |µ| ≤ K we
calculate the roots of the equation F (x , y)− µ = 0 in x ;

For such a root x we calculate the corresponding x1, x2 from

x = (2x1+x2)+x2 i
√
m

2 . If x1, x2 are integers, then x ∈ ZM and (x , y) is
a solution.
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2. Let |y | > C1.
In this case we can apply Theorem 1. We distinguish two cases:

2.a |2y1 + y2| < 2D

2.b |2y1 + y2| ≥ 2D

2.a Let |2y1 + y2 | < 2D. Then we have:
i) If |y2 | < 2D/

√
m, then we have only finitely many values for y1, y2,

and we proceed as in 1.

ii) If |y2 | ≥ 2D/
√
m, then we use IB2. We solve

F (x2, y2) = k

for all k ∈ Z with |k | ≤ 2nE/(
√
m)n . For each possible (x2, y2) we

determine the possible values of y1 that satisfy |2y1 + y2 | < 2D . We
substitute x2, y1, y2 into

x2y1 = x1y2
to see if there exist corresponding integer x1.

Note: If 2y1 + y2 = 0 or y2 = 0, then it is useful to apply IA1 or IB1,
respectively.
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2.b If |2y1 + y2 | ≥ 2D, then we use IA2. We calculate the solutions

X = 2x1 + x2, Y = 2y1 + y2

of
F (X ,Y ) = k

for all k ∈ Z with |k | ≤ 2nE . For each possible (X ,Y ) we have:

i) If |y2 | < 2D/
√
m, then there are only finitely many possible values for

y2. We determine corresponding y1 from Y . Then we substitute
y1, y2, x2 = X − 2x1 into

x2y1 = x1y2

and test if a corresponding x1 is in Z.
ii) If |y2 | ≥ 2D/

√
m, then we use IB2. We solve

F (x2, y2) = k

for |k | ≤ 2nE/(
√
m)n . We determine x1, y1 from x2, y2 and X ,Y .

Note: If y2 = 0, then we can also use IB1.
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Remark 2

For solving absolute Thue equations F (x , y) = k for certain values
k ∈ Z one can effi ciently apply Kash and Magma.

An appropriate choice of the parameters ε and η of Theorem 1 makes
the resolution much easier:

It is worthy to keep C1 = C1 (ε) and also D = D (ε, η) small, to avoid
extensive tests of small possible solutions. On the other hand, if
E = E (ε, η) is small, then there are fewer Thue equations (over Z) to
be solved.

We can not make all these parameters simultaneously small, therefore
we need to make a compromise, taking into consideration also the
value of K, the degree n of the binary form F (x , y) and the value of m
(which also determines the number of Thue equations to be solved).
Usually it is worthy to try several values of ε and η before applying
Theorem 1.
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Simplest quartic and simplest sextic Thue inequalities over
imaginary quadratic fields

Let t be an rational integer parameter and let

f (3)t (x) = x3 − (t − 1)x2 − (t + 2)x − 1,
f (4)t (x) = x4 − tx3 − 6x2 + tx + 1,
f (6)t (x) = x6 − 2tx5 − (5t + 15)x4 − 20x3 + 5tx2 + (2t + 6)x + 1.

The infinite parametric families of number fields generated by the roots of
these polynomials are called simplest cubic, simplest quartic and simplest
sextic fields, respectively.

It was shown by G. Lettl, A. Pethő and P. Voutier that these are all
parametric families of number fields which are totally real cyclic with
Galois group generated by a mapping of type x 7→ ax+b

cx+d with
a, b, c, d ∈ Z.
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Let t be an rational integer parameter and let

F (3)t (x , y) = x3 − (t − 1)x2y − (t + 2)xy2 − y3,

F (4)t (x , y) = x4 − tx3y − 6x2y2 + txy3 + y4,

F (6)t (x , y) =x6−2tx5y − (5t + 15)x4y2−20x3y3+5tx2y4+(2t + 6)xy5+y6.

be corresponding binary forms.
In 2019, by using Theorem 1 and the corresponding results in the absolute
case, Gaál, Remete and J. gave all solutions of the infinite parametric
family of simplest quartic and simplest sextic relative Thue inequalities

|F (4)t (x , y)| ≤ 1 in x , y ∈ ZM

and
|F (6)t (x , y)| ≤ 1 in x , y ∈ ZM ,

where ZM is a ring of integers of an imaginary quadratic number field
M = Q(

√
−m).
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The infinite parametric family of simplest cubic relative Thue inequalities

|F (3)t (x , y)| ≤ 1

was already solved. More generally, the family of relative Thue equations

x3 − (t − 1)x2y − (t + 2)xy2 − y3 = µ,

where the parameters t, the root of unity µ and the solutions x and y are
integers in the same imaginary quadratic number field M = Q(

√
−m) was

completely solved:

In 2002, C.Heuberger, A. Pethő and R.F.Tichy gave the solutions for
large values of |t|;
In 2006, C.Heuberger gave the solutions for all parameters t;

Heuberger’s result was extended by P. Kirschenhofer, C.M. Lampl and
J. Thuswaldner in 2007 involving also a wider class of rights hand
sides.
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Simplest quartic Thue inequalities over imaginary
quadratic fields

Theorem 2 (Gaál, Remete and J.)

Let t ∈ Z with t 6= −3, 0, 3. All solutions of

|F (4)t (x , y)| ≤ 1 in x , y ∈ ZM ,

up to sign, are given by:

for any m and any t: (x , y) = (0, 0), (0, 1), (1, 0);

for any m and t = 1: (x , y) = (1, 2), (2,−1);
for any m and t = −1: (x , y) = (2, 1), (−1, 2);
for any m and t = 4: (x , y) = (2, 3), (3,−2);
for any m and t = −4: (x , y) = (3, 2), (−2, 3);
for m = 1 and any t: (x , y) = (0, i), (i , 0);

for m = 3 and any t: (x , y) = (ω, 0), (0,ω), (1−ω, 0), (0, 1−ω);
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for m = 1 and t = 1: (x , y) = (i , 2i), (2i ,−i);
for m = 1 and t = −1: (x , y) = (2i , i), (−i , 2i);
for m = 1 and t = 4: (x , y) = (2i , 3i), (3i ,−2i);
for m = 1 and t = −4: (x , y) = (3i , 2i), (−2i , 3i);
for m = 3 and t = 1:
(x , y) = (2ω− 2,−ω+ 1), (ω− 1, 2ω− 2), (−2ω,ω), (ω, 2ω);

for m = 3 and t = −1:
(x , y) = (−ω+ 1, 2ω− 2), (2ω− 2,ω− 1), (ω,−2ω), (2ω,ω);

for m = 3 and t = 4:
(x , y) = (3ω− 3,−2ω+ 2), (2ω− 2, 3ω− 3), (2ω, 3ω), (3ω,−2ω);

for m = 3 and t = −4:
(x , y) = (−2ω+ 2, 3ω− 3), (3ω− 3, 2ω− 2), (3ω, 2ω), (−2ω, 3ω),

where ω = (1+ i
√
3)/2.
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Sketch of proof:

We use Theorem 1 and the corresponding results in the absolute case:

Lemma 1 (Chen and Voutier)

Let t ∈ Z with t ≥ 1, t 6= 3. All solutions of

F (4)t (x , y) = ±1 in x , y ∈ Z

are given by
(x , y) = (±1, 0), (0,±1).

Further, for t = 1 we have

(x , y) = (1, 2), (−1,−2), (2,−1), (−2, 1),

and for t = 4 we have

(x , y) = (2, 3), (−2,−3), (3,−2), (−3, 2).
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Lemma 2 (Lettl, Pethő and Voutier)
Let t ∈ Z, t ≥ 58 and consider the primitive solutions of∣∣∣F (4)t (x , y)

∣∣∣ ≤ 6t + 7 in x , y ∈ Z. (1)

If (x , y) is a solution of (1), then every pair in the orbit

{(x , y), (y ,−x), (−x ,−y), (−y , x)}

is also a solution. Every such orbit has a solution with y > 0,
−y ≤ x ≤ y. If such an orbit contains a primitive solution, then all
solutions in this orbit are primitive. All solutions of the above inequality
with y > 0,−y ≤ x ≤ y are

(x , y) = (0, 1), (±1, 1), (±1, 2).
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We exclude the parameters t = −3, 0, 3 for which the binary form
F (4)t (x , y) is reducible over Z.

Since
F (4)t (x , y) = F (4)−t (y , x),

it is enough to solve Thue inequality only for t > 0.
Also, for given t, we have

F (4)t (x , y) = F (4)t (−x ,−y) = F (4)t (y ,−x) = F (4)t (−y , x).

Therefore, if (x , y) ∈ Z2
M is a solution, then (y ,−x), (−y , x),

(−x ,−y) are solutions, too.
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In order to apply Theorem 1 first we need to determine

A = min
i 6=j
|αi − αj | and B = min

i
∏
j 6=i
|αj − αi |.

Using the estimates for the roots α1, ..., α4 of the polynomial
F (4)t (x , 1) given by G. Lettl, A. Pethő and P. Voutier, we obtain

A > 0.9833 and B > 58.1 for t ≥ 58.

Calculating the roots for 0 < t < 58 we obtain

A > 0.8320 and B > 4.6114 for any t > 0, t 6= 3.
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By Theorem 1, the resolution of our relative Thue inequality reduces
to the resolution of (absolute) Thue inequalities of type∣∣∣F (4)t (x , y)

∣∣∣ < k,
where

k =
24

(
√
m)4

,
24E
(
√
m)4

, ... (or
1

(
√
m)4

,
E

(
√
m)4

, ...) (2)

We want to use Lemma 1 and Lemma 2 for as many pairs (t,m) as
possible in order to have fewer (absolute) Thue equations to solve in
Magma.
Since the values of k in (2) are decreasing functions in m, the cases:

m 6= 1, 3
m = 1
m = 3

are considered separately with an appropriate choice of the
parameters ε and η.
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Case m = 3

We consider the cases t ≥ 58 and 0 < t < 58 separately since for t ≥ 58
we can use Lemma 2.

First we assume t ≥ 58 . Then

A > 0.9833 and B > 58.1.

We set
ε = 0.6273, η = 0.0361,

and obtain
C1 < 1.622.

Now, Theorem 1 implies:
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Corollary 1

Let (x , y) ∈ Z2
M be a solution of

∣∣∣F (4)t (x , y)
∣∣∣ ≤ 1 and m = 3. Assume

that t ≥ 58 and
|y | > 1.622.

Then
x2y1 = x1y2.

Further

IA1. If 2y1 + y2 = 0, then 2x1 + x2 = 0 and |F (4)t (x2, y2)| ≤ 1.778.

IA2. If |2y1 + y2| ≥ 3.499, then |F (4)t (2x1 + x2, 2y1 + y2)| ≤ 343.754.

IB1. If y2 = 0, then x2 = 0 and |F (4)t (x1, y1)| ≤ 1.

IB2. If |y2| ≥ 0.989, then |F (4)t (x2, y2)| ≤ 38.95.
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1. Assume |y | > 1.622. Then, by the Corollary 1, we have:
a) If 2y1 + y2 = 0, then by IA1, 2x1 + x2 = 0 and

|F (4)t (x2, y2)| ≤ 1.778.
By Lemma 1 this inequality implies

(x2, y2) = (0, 0), (0,±1), (±1, 0).
Since 2y1 + y2 = 0 and 2x1 + x2 = 0 we obtain that only possibility is
(x , y) = (0, 0) which contradicts |y | > 1.622.
If |2y1 + y2 | ≥ 3.499, then IA2 implies∣∣∣F (4)t (2x1 + x2, 2y1 + y2)

∣∣∣ ≤ 343.754.
Using Lemma 2 we can easily list all primitive and non-primitive
solutions of this inequality and we always have |2y1 + y2 | ≤ 4.
Therefore only |2y1 + y2 | = 1, 2, 3, 4 is possible.

b) Using IB1 and IB2 we similarly obtain that only |y2 | = 1, 2 is possible.
c) The equations |2y1 + y2 | = 1, 2, 3, 4 and |y2 | = 1, 2 leave only a few
possible values for (y1, y2).
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2. If |x | > 1.622 , then we similarly obtain |2x1 + x2| = 1, 2, 3, 4 and
|x2| = 1, 2 since if (x , y) is a solution, then also is (y ,−x).

3. Therefore we have:
i) If |x | > 1.622 and |y | > 1.622, then we test the finite set

|2x1+ x2 | = 1, 2, 3, 4, |x2 | = 1, 2, |2y1+ y2 | = 1, 2, 3, 4, |y2 | = 1, 2.

ii) If |x | > 1.622 and |y | ≤ 1.622, then we test the finite set

|2x1 + x2 | = 1, 2, 3, 4, |x2 | = 1, 2, |y | ≤ 1.622.

iii) If |x | ≤ 1.622 and |y | > 1.622, then we test the finite set

|2y1 + y2 | = 1, 2, 3, 4, |y2 | = 1, 2, |x | ≤ 1.622.

iv) If |x | ≤ 1.622 and |y | ≤ 1.622, then we have to test only finitely many
possibilities for (x , y) .

All solutions, up to sign, for m = 3 and t ≥ 58are:

(x , y) = (0, 0), (1, 0), (0, 1), (ω, 0), (0,ω), (1−ω, 0), (0, 1−ω),

where ω = 1+i
√
3

2 .
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Now we assume m = 3 and 0 < t < 58 . Then A > 0.8320 and
B > 4.6114. If we set

ε = 0.0348, η = 0.0005,

then Theorem 1 implies:

Corollary 2

Let (x , y) ∈ Z2
M be a solution of

∣∣∣F (4)t (x , y)
∣∣∣ ≤ 1 and m = 3. Assume

that 0 < t < 58 and
|y | > 34.539.

Then
x2y1 = x1y2.

Further

IA1. If 2y1 + y2 = 0, then 2x1 + x2 = 0 and |F (4)t (x2, y2)| ≤ 1.778.
IA2. If |2y1 + y2| ≥ 9.814, , then |F (4)t (2x1 + x2, 2y1 + y2)| ≤ 17.821.
IB1. If y2 = 0, then x2 = 0 and |F (4)t (x1, y1)| ≤ 1.
IB2. If |y2| ≥ 5.666, then |F (4)t (x2, y2)| ≤ 1.981.
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1. Assume |y | > 34.539. Then by the Corollary 2 we have:
a) If y2 = 0 or |y2 | ≥ 5.666, then by Lemma 1 and IB1 or IB2,
respectively, we obtain a contradiction.

Therefore only |y2 | = 1, 2, 3, 4, 5 is possible.
b) If 2y1 + y2 = 0 then by Lemma 1 and IA1, we obtain a contradiction

with |y | > 34.539.If |2y1 + y2 | ≥ 9.814, then IA2 implies

|F (4)t (2x1 + x2, 2y1 + y2)| ≤ 17.821.

Using Magma we solve this inequality for all 0 < t < 58. All these
solutions contradict |2y1 + y2 | ≥ 9.814.
Therefore only |2y1 + y2 | = 1, 2, ..., 9 is possible.

c) In the set |y2 | = 1, 2, 3, 4, 5 , |2y1 + y2 | = 1, 2, ..., 9, all corresponding
y have absolute values less than 34.539 which is in contradiction with
|y | > 34.539.
Therefore only |y | ≤ 34.539 is possible.
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2. Similarly as in previous case we obtain |x | ≤ 34.539.
3. Enumerating all x , y with properties |x | ≤ 34.539 and |y | ≤ 34.539 ,
we obtain, up to sign, the following solutions:

for m = 3 and any 0 < t < 58 :

(x , y) = (0, 0), (1, 0), (0, 1), (ω, 0), (0,ω), (1−ω, 0), (0, 1−ω),

for m = 3 and t = 1 :

(x , y) = (1, 2), (2,−1), (2ω− 2,−ω+ 1), (ω− 1, 2ω− 2),
(−2ω,ω), (ω, 2ω)

for m = 3 and t = 4 :

(x , y) = (2, 3), (3,−2), (3ω− 3,−2ω+ 2), (2ω− 2, 3ω− 3),
(2ω, 3ω), (3ω,−2ω).

Therefore we have proved Theorem 2 for all t ∈ Z with t 6= −3, 0, 3 and
m = 3.

(Representation Theory XVI, Dubrovnik, Croatia, June 24 - 29, 2019 ) 29 / 34



Case m = 1

In this case we set

ε = 0.1792, η = 0.0308,

for all t > 0, t 6= 3. By Theorem 1 and Lemma 1, we obtain, up to sign,
the following solutions:

for m = 1 and any t: (x , y) = (0, 0), (0, 1), (1, 0), (0, i), (i , 0),

for m = 1 and t = 1: (x , y) = (1, 2), (i , 2i), (2,−1), (2i ,−i),
for m = 1 and t = 4: (x , y) = (2, 3), (2i , 3i), (3,−2), (3i ,−2i).

Therefore we have proved Theorem 2 for all t ∈ Z with t 6= −3, 0, 3 and
for m = 1.
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Case m 6= 1, 3

In this case we set
ε = 0.1924, η = 0.169,

for all t > 0, t 6= 3 and all m 6= 1, 3. By Theorem 1 and Lemma 1, we
obtain up to sign the following solutions:

for any m and any t: (x , y) = (0, 0), (0, 1), (1, 0),

for any m and t = 1: (x , y) = (1, 2), (2,−1),
for any m and t = 4: (x , y) = (2, 3), (3,−2).

Therefore we have proved Theorem 2 for all t ∈ Z with t 6= −3, 0, 3 and
for all square-free positive integers m.
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Simplest sextic Thue inequalities over imaginary quadratic
fields

Theorem 3 (Gaál, Remete and J.)

Let t ∈ Z with t 6= −8,−3, 0, 5. All solutions of

|F (6)t (x , y)| ≤ 1 in x , y ∈ ZM ,

up to sign, are given by:

for any m and any t: (x , y) = (0, 0), (0, 1), (1, 0), (1,−1);
for m = 1 and any t: (x , y) = (0, i), (i , 0), (i ,−i);
for m = 3 and any t:

(x , y) = (ω, 0), (0,ω), (ω,−ω), (1−ω, 0), (0, 1−ω), (ω− 1,−ω+ 1).

where ω = (1+ i
√
3)/2.
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We have proved Theorem 3 analogously as Theorem 2. We have used
Theorem 1 and the corresponding results in the absolute case:

Lemma 3 (Hoshi)

Let t ∈ Z with t 6= −8,−3, 0, 5. All solutions of

F (6)t (x , y) = ±1 in x , y ∈ Z

are given by

(x , y) = (±1, 0), (0,±1), (1,−1), (−1, 1).
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Lemma 4 (Lettl, Pethő and Voutier)
Let t ∈ Z, t ≥ 89 and consider the primitive solutions of∣∣∣F (6)t (x , y)

∣∣∣ ≤ 120t + 323 in x , y ∈ Z. (2)

If (x , y) is a solution of (2), then every pair in the orbit

{(x , y), (−y , x + y), (−x − y , x), (−x ,−y), (y ,−x − y), (x + y ,−x)}

is also a solution. Every such orbit has a solution with y > 0,
−y/2 ≤ x ≤ y. If such an orbit contains a primitive solution, then all
solutions in this orbit are primitive. All solutions of the above inequality
with y > 0, −y/2 ≤ x ≤ y are

(x , y) = (0, 1), (1, 1), (1, 2), (−1, 3).
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