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Overview of Diophantine tuples (1)

Diophantus (3C) searched “ {a1, a2, a3, a4} s.t. ai a j + 1 = □ ” and
found {1/16, 33/16, 17/4, 105/16}

Fermat (17C) {1, 3, 8, 120}
Euler (18C) {a, b, a+ b+ 2r, 4r(r + a)(r + b)} ( r =

√
ab+ 1 )

and {1, 3, 8, 120, 777480/8288641}
⋆We restrict ourselves to tuples of “rational integers”

Definition 1

a1, . . . , am ∈ Z>0

{a1, · · · ,am} : Diophantine m-tuple
def⇐⇒ ai a j + 1 = □ ( 1 ≤ ∀i < ∀ j ≤ m)

⋆ {a1, . . . ,am} : D denotes “ {a1, . . . ,am} : Diophantine m-tuple ”
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Overview of Diophantine tuples (4)

Baker-Davenport (’69)

{1, 3, 8, d} : D =⇒ d = 120 (= d+ ) Baker’s method on 3 logs

Arkin-Hoggatt-Strauss (’79), Gibbs (’78)

{a, b, c} : D =⇒ {a, b, c, d+} : D “regular” Diophantine quadruple

where d+ = a+ b+ c+ 2abc+ 2rst

( r =
√

ab+ 1, s=
√

ac+ 1, t =
√

bc+ 1 )

d = d+ is a solution to the equation

(a+ b− c− d)2 = 4(ab+ 1) (cd+ 1)

The other solution is d− = a+ b+ c+ 2abc− 2rst

( Note that 0 ≤ d− < c and d− > 0 ⇐⇒ c > a+ b+ 2r )

Conjecture 1

{a, b, c, d} : D (a < b < c < d) =⇒ d = d+
( i.e. all Diophantine quadruples are regular )
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Overview of Diophantine tuples (5)

Theorem (Dujella ’04)

(i) There exists no Diophantine sextuple

(ii) There exist at most finitely many Diophantine quintuples

Proof (i) Apply Bennett’s theorem

based on Rickert’s theorem on simultaneous rational
approximations of quadratic irrationals

(ii) Apply Baker’s method on 3 logs

In fact, it was shown that d < 102171 and e< 101026
□

Theorem (He-Togbé-Ziegler ’19)

There does not exist a Diophantine quintuple

Proof Apply Baker’s method on 3 logs

c “A kit on linear forms in three logarithms” by Mignotte □
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Main theorems

Main Theorem 1 (F-Miyazaki ’18)

{a,b, c} : D (a < b < c) : fixed

=⇒ #
{
d | {a,b, c, d } : D, c < d

} ≤ 11

Main Theorem 2 (Cipu-F-Miyzaki ’18)

{a,b, c} : D (a < b < c) : fixed

=⇒ #
{
d | {a,b, c, d} : D, c < d

} ≤ 8

=⇒ #
{
d | {a,b, c, d} : D, d+ < d

} ≤ 7

Main Theorem 3 (Cipu-Filipin-F preprint)

a

(
a+

7
2
− 1

2

√
4a+ 13

)
≤ b ≤ 4a2 + a+ 2

√
a

{a,b, c,d} : D (b < c < d)

=⇒ d = d+
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Determination of fundamental solutions (1)

For a fixed {a,b, c} : D (a < b < c), assume {a,b, c,d} : D (c < d) and let

ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2 (r, s, t ∈ Z>0)

ad+ 1 = x2, bd+ 1 = y2, cd+ 1 = z2 (x, y, z ∈ Z>0)

where x, y, z are considered to be unknowns. Eliminating d yields

az2 − cx2 = a− c , bz2 − cy2 = b− c

By Nagell’s argument, any solutions (z, x) and (z, y) to the above are
expressed as

z
√

a+ x
√

c = (z0
√

a+ x0
√

c)(s+
√

ac)m

z
√

b+ y
√

c = (z1

√
b+ y1

√
c)(t +

√
bc)n

for some |z0|, |z1|, x0, y1 ∈ Z>0 and m, n ∈ Z≥0, where

1 < |z0| <

√
c
√

c

2
√

a
, 1 < |z1| <

√
c
√

c

2
√

b
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Determination of fundamental solutions (2)

z
√

a+ x
√

c = (z0
√

a+ x0
√

c)(s+
√

ac)m

z
√

b+ y
√

c = (z1

√
b+ y1

√
c)(t +

√
bc)n

These equalities enable us to write z= vm = wn, where

v0 = z0, v1 = sz0 + cx0, vm+2 = 2svm+1 − vm

w0 = z1, w1 = tz1 + cy1, wn+2 = 2twn+1 − wn

The fundamental solutions (z0, x0) and (z1, y1) has been more or less
deteremined:

Theorem (Dujella ’04)

(1) m≡ n ≡ 0 (mod 2)with z0 = z1 and either |z0| ∈ {1, cr − st}
or |z0| < min{0.869a−5/14c9/14, 0.972b−0.3c0.7}

(2) m≡ 1, n ≡ 0 (mod 2)with |z0| = t, |z1| = cr − st, z0z1 < 0
(3) m≡ 0, n ≡ 1 (mod 2)with |z0| = cr − st, |z1| = s, z0z1 < 0
(4) m≡ n ≡ 0 (mod 2)with |z0| = t, |z1| = s, z0z1 > 0
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Theorem (Dujella ’04)
(1) m≡ n ≡ 0 (mod 2)=⇒ z0 = z1 and either |z0| ∈ {1, cr − st}

or |z0| < min{0.869a−5/14c9/14, 0.972b−0.3c0.7}
(2) m≡ 1, n ≡ 0 (mod 2)=⇒ |z0| = t, |z1| = cr − st, z0z1 < 0
(3) m≡ 0, n ≡ 1 (mod 2)=⇒ |z0| = cr − st, |z1| = s, z0z1 < 0
(4) m≡ n ≡ 0 (mod 2)=⇒ |z0| = t, |z1| = s, z0z1 > 0

The following completely determines the fundamental solutions:

Lemma 3.1 ( F-Miyazaki ’18 )

(1) m≡ n ≡ 0 (mod 2)=⇒ z0 = z1 and |z0| ∈ {1, cr − st}
(2) m≡ 1, n ≡ 0 (mod 2)=⇒ |z0| = t, |z1| = cr − st, z0z1 < 0
(3) m≡ 0, n ≡ 1 (mod 2)=⇒ |z0| = cr − st, |z1| = s, z0z1 < 0
(4) m≡ n ≡ 0 (mod 2)=⇒ |z0| = t, |z1| = s, z0z1 > 0
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Determination of fundamental solutions (4)

Lemma 3.1 (F-Miyazaki ’18)

(1) m≡ n ≡ 0 (mod 2)=⇒ z0 = z1 and |z0| ∈ {1, cr − st}
(2) m≡ 1, n ≡ 0 (mod 2)=⇒ |z0| = t, |z1| = cr − st, z0z1 < 0
(3) m≡ 0, n ≡ 1 (mod 2)=⇒ |z0| = cr − st, |z1| = s, z0z1 < 0
(4) m≡ n ≡ 0 (mod 2)=⇒ |z0| = t, |z1| = s, z0z1 > 0

Proof Assume m≡ n ≡ 0 (mod 2)with |z0| < {1, cr − st} and put

d0 := (z2
0 − 1)/c (⇝ |z0| = 1 ⇒ d0 = 0 , |z0| = cr − st ⇒ d0 = d− )

Then, 1 ≤ d0 < c and {a,b,d0, c} is an irregular Diophantine quadruple

Examining “vm = wn” attached to {a,b,d0, c} closely, we see that c is large
enough compared to a, b, d0

Thus, the following theorem based on Rickert’s theorem is applicable:
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Determination of fundamental solutions (5)

Lemma 3.1 (F-Miyazaki ’18)

(1) m≡ n ≡ 0 (mod 2)=⇒ z0 = z1 and |z0| ∈ {1, cr − st}

Proof Assume m≡ n ≡ 0 (mod 2)with |z0| < {1, cr − st}
Then, {a,b,d0, c} : D (d0 := (z2

0 − 1)/c < c)

Theorem (Cipu-F ’15, cf. Rickert ’93)

N > 3.706a′b2(b− a)2 ( a′ = max{b− a,a} ) and
:::::
ab|N

θ1 =
√

1+ a/N, θ2 =
√

1+ b/N

=⇒ max{ |θ1 − p1/q| , |θ2 − p2/q| } > (1.413· 1028a′bN/a)−1q−λ

for any p1, p2, q (> 0), where λ = 1+ log(10a−1a′bN)
log(2.699a−1b−1(b−a)−2N2)< 2

Combining this theorem with the lower bounds for solutions obtained by
“the congruent method” due to Dujella leads us to a contradiction □
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Bounding the number of d’s corresponding to (z0, z1)

Put N(z0, z1) := #
{
d | {a, b, c, d} : D, d > d+, d corresponds to (z0, z1)

}
Theorem 3.2

(i) N(z0, z1) ≤ 2
(ii) (z0, z1) ∈ {(st− cr, st− cr), (st− cr, s), (t, s)} =⇒ N(z0, z1) ≤ 1

Proof (i) Assume z = vm = wn has 3 solutions (mi , ni) (i ∈ {0,1, 2},
::::::
2 < m0< m1 < m2) belonging to the same class of solutions, and put

Λi := mi logξ − ni logη + logµ

where ξ = s+
√

ac, η = t +
√

bc, µ =

√
b (x0

√
c+ z0

√
a )

√
a (y1

√
c+ z1

√
b )

⋆
::::::
m0 > 2 implies

:::::
d > d+ (and then we have m0 ≥ 4)

If mn> 0, then 0 < Λi < κ ξ
−2mi , where κ =


6
√

ac if mi ≥ 4
6 if |z0| = 1
2.001c/b if z0 = st− cr
1/(2ab) if z0 = t
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Okazaki’s gap principle

Lemma 3.3 ( cf. Bennett-Cipu-Mignotte-Okazaki ’06 )

m2 − m1 > Λ
−1
0 ∆ log η, where ∆ =

∣∣∣∣∣ n1 − n0 n2 − n1
m1 −m0 m2 −m1

∣∣∣∣∣ > 0

In particular, if m0n0 > 0, then m2 −m1 > κ
−1(4ac)m0∆ logη

Proof of Lemma 3.3 Put pi := mi logξ, qi := ni logη
Then Λi = mi logξ − ni logη + logµ = pi − qi + logµ
The equality vmi = wni implies that (pi ,qi)’s are on the curve

C : (x0
√

c+ z0
√

a ) ep − (x0
√

c− z0
√

a ) e−p

√
a

=
(y1
√

c+ z1
√

b ) eq − (y1
√

c− z1
√

b ) e−q

√
b

Since
dq
dp
> 1 and

d2q
dp2
< 0 , we obtain

(p2, q2)

(p1,q1)

(p0,q0)

C

0 <
q1 − q0

p1 − p0
− q2 − q1

p2 − p1
<

q1 − q0 − p1 + p0

p1 − p0
=
Λ0 − Λ1

p1 − p0
<
Λ0

p1 − p0
□
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Rickert’s theorem applied by Bennett (1)

Lemma 3.3 (cf. Bennett-Cipu-Mignotte-Okazaki ’06)

m2 −m1 > κ
−1(4ac)m0∆ logη

Now the assertion N(z0, z1) ≤ 2 can be shown by using Lemma 3.3 and

Baker’s method on linear forms in 3 logarithms

This completes the proof of (i)

(ii) (z0, z1) ∈ {(st− cr, st− cr), (st− cr, s), (t, s)} =⇒ N(z0, z1) ≤ 1

Assume z = vm = wn has 2 solutions (mi , ni) ( i ∈ {1,2}, 2 < m1 < m2 )

Note that m0 = 1, 2 is a solution to z= vm = wn for z0 = t, st− cr, resp.

⋆ Since m0 is small, we need other ingredients
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Rickert’s theorem applied by Bennett (2)

(z0, z1) ∈ {(st− cr, st− cr), (st− cr, s), (t, s)} =⇒ N(z0, z1) ≤ 1

Consider the linear form Γ := Λ2 −Λ1 = ( m2 −m1 ) logξ − ( n2 − n1 ) logη

Then 0 < |Γ| < κ ξ−2m1

In order that Baker’s method can work, we need m2 −m1 ∼ m1

i.e. m2 (n2) is not so larger than m1 (n1)

Theorem 3.4 (cf. Bennett ’98 (based on Rickert ’93))

a1 := a(c− b), a2 := b(c− a), N := abz2

( u := c− b, v := c− a, w := b− a, a′1 := max{a1, a2 − a1} )
θ1 :=

√
1+ a1/N, θ2 :=

√
1+ a2/N

N ≥ 105a2 =⇒ max{ |θ1 − p1/q| , |θ2 − p2/q| } > (32.01a′1a2uN/a1)−1q−λ

for ∀p1, p2, q(> 0), where a′1=max{a1,a2 − a1}, λ=1+
log

(
16a′1a2uN

a1

)
log

(
1.6874N2

a1a2(a2−a1)uvw

) < 2
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Rickert’s theorem applied by Bennett (3)

(z0, z1) ∈ {(st− cr, st− cr), (st− cr, s), (t, s)} =⇒ N(z0, z1) ≤ 1

Theorem 3.4 (cf. Bennett ’98 (based on Rickert ’93))

a1 := a(c− b), a2 := b(c− a), N := abz2 ( u := c− b, a′ := max{a1, a2 − a1} )
θ1 :=

√
1+ a1/N, θ2 :=

√
1+ a2/N

N ≥ 105a2 =⇒ max{ |θ1 − p1/q| , |θ2 − p2/q| } > (32.01a′1a2uN/a1)−1 q−λ

Combining Theorem 3.4 ( q = abz(1)z(2) ) with the trivial estimate

max
{ ∣∣∣∣θ1 − acy(1)y(2)

abz(1)z(2)

∣∣∣∣, ∣∣∣∣θ2 − bcx(1)x(2)

abz(1)z(2)

∣∣∣∣ } < c3/2

2a3/2
z−2
(2) (1)

(where (x(i), y(i), z(i)) (i ∈ {1,2}) are positive solutions to

az2 − cx2 = a− c, bz2 − cy2 = b− c )

we obtain:
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Proof of Main Theorem 1 (1)

(z0, z1) ∈ {(st− cr, st− cr), (st− cr, s), (t, s)} =⇒ N(z0, z1) ≤ 1

Lemma 3.5

n1 ≥ 8 =⇒ n2 < 148n1

n1 = 7 with z1 = s =⇒ n2 ≤ 462 (≤ 66n1)

Proof of Theorem 3.2 (ii) Note (m0, z0) ∈ {(2, st− cr), (1, t)} for
(z0, z1) ∈ {(st− cr, st− cr), (st− cr, s), (t, s)}

Lemma 3.3 m2 −m1 > κ
−1(4ac)m0∆ logη , κ =

{
2.001c/b if z0 = st− cr
1/(2ab) if z0 = t

shows that
m2 −m1

logη
> 30a2bc> 30b2 (2)

Since we can show m, n ≥ 7 for the above z0, we may apply Lemma 3.5
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Proof of Main Theorem 1 (2)

(z0, z1) ∈ {(st− cr, st− cr), (st− cr, s), (t, s)} =⇒ N(z0, z1) ≤ 1

Lemma 3.5

n1 ≥ 8 =⇒ n2 < 148n1

n1 = 7 with z1 = s =⇒ n2 ≤ 462 (≤ 66n1)

m2 −m1

logη
> 30a2bc> 30b2 (2)

Noting ni − 1 ≤ mi ≤ 2ni + 1, Lemma 3.5 implies m2 −m1 < 338m1 , which
together with Baker’s method on 2 logs (Laurent’s theorem ’08) implies

m2 −m1

logη
< 1.8 · 107

which contradicts (2) with b > 4000 (we know “d > d+ =⇒ b > 4000”)
This completes the proof of (ii) □
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Proof of Main Theorem 1 (3)

Proof of Main Theorem 1 N := #{d > d+ | {a,b, c,d} : D} ≤ 10

Recall 1 ≤ |z0| <
√

c
√

c
2
√

a
, 1 ≤ |z1| <

√
c
√

c

2
√

b
which imply

(i) |z0| = cr − st =⇒ c < 4τ−4ab2

(ii) |z1| = cr − st =⇒ c < 4τ−4a2b

(iii) |z0| = t =⇒ c > 4ab2

(iv) |z1| = s =⇒ c > 4a2b

where τ =
√

ab
r (1− a+b+1/c

c ) (< 1)

We consider several cases separately, and show N ≤ 10 in each case

For example, if 4ab2 < c < 4τ−4ab2, then |z1| , cr − st and

N ≤ N(1,1)+N(−1,−1)+ N(st− cr, s) +N(cr−st,−s)+ N(t, s) +N(−t,−s)

≤ 2+ 2+ 1 + 2+ 1 + 2 = 10 □
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Auxiliary lemma

Recall the system of Pellian equations az2 − cx2= a− c, bz2 − cy2= b− c
any solutions of which can be expressed as z= vm = wn, where

v0 = z0, v1 = sz0 + cx0, vm+2 = 2svm+1 − vm

w0 = z1, w1 = tz1 + cy1, wn+2 = 2twn+1 − wn

Denote by {vz0,m}, {wz1, n} the recurrence sequences {vm}, {wn} with the
initial terms z0, z1, resp.
The following is the key lemma

Lemma 4.1

vcr−st,m = v−t,m+1, vst−cr,m+1 = vt,m for all m≥ 0
wcr−st, n = w−s,n+1, wst−cr, n+1 = ws, n for all n ≥ 0

Proof z0 = cr − st =⇒ v0 = cr − st, v1 = 2c(rs− at) − t
z0 = −t =⇒ v1 = cr − st, v2 = 2c(rs− at) − t

⇝ vcr−st,m = v−t,m+1 □
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Proof of Main Theorem 2 (1)

Lemma 4.1
vcr−st,m = v−t,m+1, vst−cr,m+1 = vt,m for all m≥ 0
wcr−st, n = w−s, n+1, wst−cr, n+1 = ws, n for all n ≥ 0

Proof of Main Theorem 2 In the preceding section, we bounded the
number N dividing several cases by considering whether c is greater than
4ab2 and so on, where we were able to eliminate some cases because of

the inequalities 1 ≤ |z0| <
√

c
√

c
2
√

a
, 1 ≤ |z1|<

√
c
√

c

2
√

b

Now we count N using not these inequalities but Lemma 4.1
Denote by N′(z0, z1) the number of solutions to vm = wn with m> 2
(⇔ d > d+), where we are not assuming the inequalities above. Then

N ≤ N′(−1,−1)+ N′(1,1)+ N′(z−0 , z
−
1 ) + N′(z+0 , z

+
1 )

where (z−0 , z
−
1 ) ∈ {(cr − st, cr − st), (−t, cr − st), (cr − st,−s), (−t,−s)} and

(z+0 , z
+
1 ) ∈ {(st− cr, st− cr), (t, st− cr), (st− cr, s), (t, s)}

⋆ (z−0 , z
−
1 ) , (z+0 , z

+
1 ) attain d− , d+ for some m, n ≤ 2, resp.
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Proof of Main Theorem 2 (2)

N ≤ N′(−1,−1)+ N′(1,1)+ N′(z−0 , z
−
1 ) + N′(z+0 , z

+
1 )

where (z−0 , z
−
1 ) ∈ {(cr − st, cr − st), (−t, cr − st), (cr − st,−s), (−t,−s)} and

(z+0 , z
+
1 ) ∈ {(st− cr, st− cr), (t, st− cr), (st− cr, s), (t, s)}

In the same way as in the preceding section, one can show

N′(−1,−1), N′(1,1), N′(z−0 , z
−
1 ) ≤ 2

using Lemma 3.3 with Baker’s method on 3 logs, and

N′(z+0 , z
+
1 ) ≤ 1

using Lemma 3.3 with Rickert’s theorem and Baker’s method on 2 logs
Therefore

N ≤ 2+ 2+ 2+ 1 = 7 □
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Overview of the relevant results (1)

Baker-Davenport (’69)

{1, 3, 8, d} : D =⇒ d = 120(= d+ )

Baker’s method on 3 logs

Dujella (’97)

{k− 1, k+ 1, 4k, d} : D =⇒ d = 16k3 − 4k (= d+)

Rickert’s theorem

Dujella-Peth ő (’98)

{1, 3, c, d} : D ( c < d ) =⇒ d = d+
Baker’s method on 3 logs

Dujella (’99)

{F2k, F2k+2, F2k+4, d} : D =⇒ d = 4F2k+1F2k+2F2k+3 (= d+)

Baker’s method on 3 logs
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Overview of the relevant results (2)

F (’08)

{k− 1, k+ 1, c, d} : D ( 16k3 − 4k < c < d ) =⇒ d = d+
Rickert’s theorem twice

(⇝ ∄{k− 1, k+ 1, c, d, e} : D )

Bugeaud-Dujella-Mignotte (’07)

{k− 1, k+ 1, c, d} : D ( c = 16k3 − 4k < d )

=⇒ d = 64k5 − 48k3 + 8k (= d+)

Baker’s method on 3 logs with refined congruence method

using “s=
√

ac+ 1 ∼ t =
√

bc+ 1 ”

⇝ {k− 1, k+ 1, c, d} : D ( c < d ) =⇒ d = d+
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Overview of the relevant results (3)

Bugeaud-Dujella-Mignotte (’07) { k− 1, k+ 1 , 16k3 − 4k}
Baker’s method on 3 logs with refined congruence method

using “s=
√

ac+ 1 ∼ t =
√

bc+ 1 ”
He-Togb é (’09, ’12)

{k, A2k+ 2A, (A+ 1)2k+ 2(A+ 1) , d} : D with

2 ≤ A ≤ 10 Rickert
or

A ≥ 52330 Baker on 2 logs “r =
√

ab+ 1 ∼ s=
√

ac+ 1 ”

=⇒ d = d+
Cipu-F-Mignotte (’18)

{k, A2k± 2A, (A+ 1)2k± 2(A+ 1) , d} : D =⇒ d = d+
Proof k ≥ 240.24(A+ 1)+ 740 optimization of Rickert’s theorem

A ≥ 2811 Baker on 2 logs

=⇒ d = d+
The remaining cases can be checked by the reduction method □
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The possibilities for the third element c induced by {a,b}

For a fixed {a,b} : D (a < b), assume {a,b, c} : D (b < c) and let

ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2 (r, s, t ∈ Z>0)

Eliminating c yields at2 − bs2 = a− b

By Nagell’s argumens, any solution (t, s) to the above is expressed as

t
√

a+ s
√

b = ( t0
√

a+ s0

√
b )( r +

√
ab)ν

for some |t0|, s0, ν ∈ Z>0, where |t0| <
√

b
√

b
2
√

a
, s0 <

√
(r + 1)/2

Each (t0, s0) (often) gives a sequence of possible third elements c’s

E.g., (t0, s0) = (±1,1) correspond to c = cτν ( τ ∈ {±} ), where

cτν =
1

4ab

{
(
√

b+ τ
√

a )2( r +
√

ab)2ν + (
√

b− τ
√

a )2( r −
√

ab)2ν − 2(a+ b)
}

⇝ We always have {a,b, cτν } : D
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Overview of the relevant results (4)

Filipin-Togb é-F (’14)
{k,4k± 4, c,d} : D (c+2 , c < d) =⇒ d = cτν+1 (= d+ )

c = cτ1 known by Dujella (’97) and He-Togb é (’09)
c = c−2 Baker’s method on 2 logs
c ≥ c−3 Rickert’s theorem

He-Pu-Shen-Togb é (’18)
{k,4k± 4, c,d} : D (c = c+2 < d) =⇒ d = c+3 (= d+ )

new kind of application of Baker’s method on 2 logs
“m mod r, n mod r : small constant ” (e.g. m≡ n ≡ ±1 (mod r) )

Cipu-Filipin-F (’19 (?))
{A2k, 4A4k± 4A, c, d} : D ( c = cτν < d) =⇒ d = cτν+1 (= d+ )

c = cτ1 known by Cipu-F-Mignotte (’18)
c = cτ2 Baker’s method on 2 logs
[He-Togb é] for m, n : even, [He-Pu-Shen-Togb é] for m, n : odd
c ≥ c−3 Rickert’s theorem
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Corollary and key lemma

Main Theorem 3 (Cipu-Filipin-F preprint)

a

(
a+

7
2
− 1

2

√
4a+ 13

)
≤ b ≤ 4a2 + a+ 2

√
a (3)

{a,b, c,d} : D (b < c < d)

=⇒ d = d+

Corollary 5.1

{A2k, 4A4k± 4A, c, d} : D (c < d) with k ∈ {1,2,3,4}
=⇒ d = cτν+1 (= d+ ) c unnecessry to assume c = cτν

Lemma 5.2 (Key lemma)

{a,b, c} : D with (3)

=⇒ {a, b} = {T2 + 2T,4T4 + 8T3 − 4T} for some T ∈ Z≥1

or c = cτν for some ν ∈ Z≥1 and τ ∈ {±}
35 / 42



Outline
Overview of Diophantine tuples and main theorems

The number of extensions of Diophantine triples I
The number of extensions of Diophantine triples II

The extendibility problem

Overview of the relevant results
Key lemma
Proof of Main Theorem 3

Key lemma (1)

Lemma 5.2 (Key lemma)

a
(
a+ 7

2 −
1
2

√
4a+ 13

)
≤ b ≤ 4a2 + a+ 2

√
a (3)

=⇒ {a,b} = {T2 + 2T,4T4 + 8T3 − 4T} for some T ∈ Z≥1

or c = cτν for some ν ∈ Z≥1 and τ ∈ {±}

Proof Suppose c , cτν and let c = γν c t
√

a+s
√

b = ( t0
√

a+ s0

√
b)( r +

√
ab)ν

We may assume ∃ ν0 s.t. γν0 < b < γν0+1, and put c′ := γν0
Then we see that {a, b′, c′,b} : D is regular for some b′ ∈ Z≥1

Thus b = a+ b′ + c′ + 2ab′c′ + 2r′s′T

with r ′ =
√

ab′ + 1, s′ =
√

ac′ + 1, T =
√

b′c′ + 1

Noting 4ab′c′ + a+ b′ + c′ < b < 4ab′c′ + 4 max{a, b′, c′}

we can negate inequalities (3) , except one exceptional case
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Key lemma (2)

Lemma 5.2 (Key lemma)

a
(
a+ 7

2 −
1
2

√
4a+ 13

)
≤ b ≤ 4a2 + a+ 2

√
a (3)

=⇒ {a,b} = {T2 + 2T,4T4 + 8T3 − 4T} for some T ∈ Z≥1

or c = cτν for some ν ∈ Z≥1 and τ ∈ {±}

Proof 4ab′c′ + a+ b′ + c′ < b < 4ab′c′ + 4 max{a, b′, c′}
a ≤ b′c′ ⇒ b > 4ab′c′ + a+ b′ + c′ > 4a2+ a+ 2

√
a, contradicting (3)

a > b′c′ ⇒
♢ a , b′ + c′ + 2T ⇒ a > 4b′c′ + b′ + c′

⇒ b < a ( a+ 7/2+
√

4a+ 13/2 ), contradicting (3)

♢ a = b′ + c′ + 2T ⇒ b′c′ < b′ + c′ + 2T

Setting B := min{b′, c′} and C := max{b′, c′}, we obtain B = 1

Then T =
√

b′c′ + 1 =
√

C + 1, a = C + 1+ 2
√

C + 1 and

a = T2 + 2T, b = 4T4 + 8T3 − 4T □
37 / 42



Outline
Overview of Diophantine tuples and main theorems

The number of extensions of Diophantine triples I
The number of extensions of Diophantine triples II

The extendibility problem

Overview of the relevant results
Key lemma
Proof of Main Theorem 3

The case {a,b} , {T2 + 2T, 4T4 + 8T3 − 4T}

cτ1 = a+ b+ 2τr ( b < cτ1 =⇒ τ = + )

cτ2 = 4(a+ b)(ab+ 1)+ 4τr(2ab+ 1) ∼ 4ab2

cτ3 = 16a2b2(a+ b+ 2τr) + 8ab(3a+ 3b+ 4τr) + 3(3a+ 3b+ 2τr)

∼ 16a2b3

Proof of Main Theorem 3

The case {a,b} , {T2 + 2T,4T4 + 8T3 − 4T}

c = c+1 Baker on 2 logs “r =
√

ab+ 1 ∼ s=
√

ac+ 1 ” [He-Togb é]
c = cτ2 Baker on 2 logs

m, n : even =⇒ “α = s+
√

ac∼ β2 = (r +
√

ab)2 ” [He-Togb é]

m, n : odd =⇒ “m≡ n ≡ ±1 (mod r) ” [He-Pu-Shen-Togb é]

c ≥ c−3 Rickert
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The case {a,b} = {T2 + 2T,4T4 + 8T3 − 4T} (1)

The case {a,b} = {T2 + 2T,4T4 + 8T3 − 4T}
We may assume

:::::
c , cτν

From ac+ 1 = s2, bc+ 1 = t2, we have at2 − bs2 = a− b

⇝ t
√

a+ s
√

b = ( t0
√

a+ s0

√
b )( s+

√
ab)ν

:::::
1 < s0 < T

√
T + 2 ( by Nagell’s argument )

⇝ ( t0, s0 ) = (±(2T2 + 2T − 1), T + 1 )

⇝ c = γτν , where ( γ0 = γ
τ
0 = 1, γ−1 = T2 − 1 < b )

γ+1 = 16T6 + 64T5 + 72T4 − 31T2 − 4T + 3

γ−2 = 16T8 + 64T7 + 48T6 − 80T5 − 88T4 + 32T3 + 36T2 − 4T − 3

γ+2 > 256T12 + 2048T11
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The case {a,b} = {T2 + 2T,4T4 + 8T3 − 4T} (2)

The case {a,b} = {T2 + 2T,4T4 + 8T3 − 4T}
c = γ+1 = 16T6 + 64T5 + 72T4 − 31T2 − 4T + 3

We get m≡ n ≡ 0 (mod 2)and z0 = z1 ∈ {±1}
m> 3.9999b−1/2c1/2T1/2 (assuming T > 1010)

←− coming from a ≡ b ≡ 0 (modT)

( cf. known in general: m> b−1/2c1/2 )

Baker on 3 logs [Matveev ’98] Λ = mlogα − n logβ′ − logχ′

←− “Kummer condition” should be checked:

[K(
√
α,
√
β′,
√
χ′ ) : K] = 23 = 8(

K := Q(
√

ac,
√

bc), α = s+
√

ac, β′ = t +
√

bc, χ′ =

√
b (
√

c±
√

a )
√

a (
√

c±
√

b )

)
⇝ T < 5.146· 1010 ( cf. T < 1.8 · 1011 by using [Aleksentsev ’08] )

c = γ−2 Baker on 2 logs “β2 = (r +
√

ab)2∼β′ = t+
√

bc” [He-Togb é]

c ≥ γ+2 Rickert □
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Thank you so much

for your kind attention !!
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