The regularity of extensions of Diophantine triples or pairs

Yasutsugu Fujita

College of Industrial Technology, Nihon University

Representation Theory XVI

Held at Inter-University Centre Dubrovnik
June 23–29, 2019

- Overview of Diophantine tuples and main theorems
 - Overview of Diophantine tuples
 - Main theorems
- The number of extensions of Diophantine triples I
 - Determination of fundamental solutions
 - Proof of Main Theorem 1
- The number of extensions of Diophantine triples II
 - Proof of Main Theorem 2
- The extendibility problem
 - Overview of the relevant results
 - Key lemma
 - Proof of Main Theorem 3

Overview of Diophantine tuples (1)

Diophantus (3C) searched " $\{a_1, a_2, a_3, a_4\}$ s.t. $a_i a_j + 1 = \square$ " and found $\{1/16, 33/16, 17/4, 105/16\}$

- Fermat (17C) {1, 3, 8, 120}
- Euler (18C) $\{a, b, a+b+2r, 4r(r+a)(r+b)\}\ (r = \sqrt{ab+1})$ and $\{1, 3, 8, 120, \frac{777480/8288641}{4}\}$
- ★ We restrict ourselves to tuples of "rational integers"

Definition 1

$$a_1, \dots, a_m \in \mathbb{Z}_{>0}$$
 $\{a_1, \dots, a_m\}$: Diophantine m -tuple $\overset{\mathbf{def}}{\Longleftrightarrow} a_i \, a_j + 1 = \square \quad (1 \le \forall i < \forall j \le m)$

 \bigstar { a_1, \ldots, a_m } : D denotes "{ a_1, \ldots, a_m } : Diophantine m-tuple"

Overview of Diophantine tuples (4)

Baker-Davenport ('69)

$$\{1, 3, 8, d\}: D \implies d = 120 \ (= d_+)$$
 Baker's method on 3 logs

• Arkin-Hoggatt-Strauss ('79), Gibbs ('78)

$$\{a, b, c\}: D \implies \{a, b, c, d_+\}: D$$
 "regular" Diophantine quadruple
where $d_+ = a + b + c + 2abc + 2rst$
 $(r = \sqrt{ab+1}, s = \sqrt{ac+1}, t = \sqrt{bc+1})$

 $d = d_{+}$ is a solution to the equation

$$(a+b-c-d)^2 = 4(ab+1)(cd+1)$$

The other solution is $d_{-} = a + b + c + 2abc - 2rst$

(Note that $0 \le d_- < c$ and $d_- > 0 \iff c > a + b + 2r$)

Conjecture 1

$${a, b, c, d} : D \ (a < b < c < d) \implies d = d_{+}$$

(i.e. all Diophantine quadruples are regular)

Overview of Diophantine tuples (5)

Theorem (Dujella '04)

- (i) There exists no Diophantine sextuple
- (ii) There exist at most finitely many Diophantine quintuples
- Proof (i) Apply **Bennett's theorem**based on **Rickert's theorem** on simultaneous rational approximations of quadratic irrationals
 - (ii) Apply Baker's method on 3 logs In fact, it was shown that $d < 10^{2171}$ and $e < 10^{10^{26}}$

Theorem (He-Togbé-Ziegler '19)

There does not exist a Diophantine quintuple

Proof Apply Baker's method on 3 logs

"A kit on linear forms in three logarithms" by Mignotte

Main theorems

Main Theorem 1 (F-Miyazaki '18)

$$\{a, b, c\} : D \ (a < b < c) : fixed$$

$$\implies$$
 #{ $d \mid \{a, b, c, d\} : D, c < d\} \le 11$

Main Theorem 2 (Cipu-F-Miyzaki '18)

$$\{a, b, c\} : D \ (a < b < c) : fixed$$

$$\implies$$
 #{ $d \mid \{a, b, c, d\} : D, c < d\} \le 8$

$$\implies$$
 #{ $d \mid \{a, b, c, d\} : D, \frac{d_+}{d_+} < d\} \le 7$

Main Theorem 3 (Cipu-Filipin-F preprint)

$$a\left(a + \frac{7}{2} - \frac{1}{2}\sqrt{4a + 13}\right) \le b \le 4a^2 + a + 2\sqrt{a}$$

$${a,b,c,d} : D \ (b < c < d)$$

$$\implies d = d_+$$

Determination of fundamental solutions (1)

For a fixed $\{a,b,c\}$: D (a < b < c), assume $\{a,b,c,d\}$: D (c < d) and let

$$ab + 1 = r^2$$
, $ac + 1 = s^2$, $bc + 1 = t^2$ $(r, s, t \in \mathbb{Z}_{>0})$
 $ad + 1 = x^2$, $bd + 1 = y^2$, $cd + 1 = z^2$ $(x, y, z \in \mathbb{Z}_{>0})$

where x, y, z are considered to be unknowns. Eliminating d yields

$$az^2 - cx^2 = a - c$$
, $bz^2 - cy^2 = b - c$

By Nagell's argument, any solutions (z, x) and (z, y) to the above are expressed as

$$z\sqrt{a} + x\sqrt{c} = (z_0\sqrt{a} + x_0\sqrt{c})(s + \sqrt{ac})^m$$
$$z\sqrt{b} + y\sqrt{c} = (z_1\sqrt{b} + y_1\sqrt{c})(t + \sqrt{bc})^n$$

for some $|z_0|$, $|z_1|$, x_0 , $y_1 \in \mathbb{Z}_{>0}$ and $m, n \in \mathbb{Z}_{>0}$, where

$$1 < |z_0| < \sqrt{\frac{c\sqrt{c}}{2\sqrt{a}}}, \quad 1 < |z_1| < \sqrt{\frac{c\sqrt{c}}{2\sqrt{b}}}$$

Determination of fundamental solutions (2)

$$z\sqrt{a} + x\sqrt{c} = (z_0\sqrt{a} + x_0\sqrt{c})(s + \sqrt{ac})^m$$

$$z\sqrt{b} + y\sqrt{c} = (z_1\sqrt{b} + y_1\sqrt{c})(t + \sqrt{bc})^n$$

These equalities enable us to write $z = v_m = w_n$, where

$$v_0 = z_0$$
, $v_1 = sz_0 + cx_0$, $v_{m+2} = 2sv_{m+1} - v_m$
 $w_0 = z_1$, $w_1 = tz_1 + cy_1$, $w_{n+2} = 2tw_{n+1} - w_n$

The fundamental solutions (z_0, x_0) and (z_1, y_1) has been more or less determined:

Theorem (Dujella '04)

- (1) $m \equiv n \equiv 0 \pmod{2}$ with $z_0 = z_1$ and either $|z_0| \in \{1, cr st\}$ or $|z_0| < \min\{0.869a^{-5/14}c^{9/14}, 0.972b^{-0.3}c^{0.7}\}$
- (2) $m \equiv 1$, $n \equiv 0 \pmod{2}$ with $|z_0| = t$, $|z_1| = cr st$, $|z_0| < 0$
- (3) $m \equiv 0$, $n \equiv 1 \pmod{2}$ with $|z_0| = cr st$, $|z_1| = s$, $z_0 z_1 < 0$
- (4) $m \equiv n \equiv 0 \pmod{2}$ with $|z_0| = t$, $|z_1| = s$, $z_0 z_1 > 0$

Determination of fundamental solutions (3)

Theorem (Dujella '04)

(1)
$$m \equiv n \equiv 0 \pmod{2} \Longrightarrow z_0 = z_1 \text{ and either } |z_0| \in \{1, cr - st\}$$

or
$$|z_0| < \min\{0.869a^{-5/14}c^{9/14}, 0.972b^{-0.3}c^{0.7}\}$$

(2)
$$m \equiv 1$$
, $n \equiv 0 \pmod{2} \Longrightarrow |z_0| = t$, $|z_1| = cr - st$, $z_0 z_1 < 0$

(3)
$$m \equiv 0$$
, $n \equiv 1 \pmod{2} \Longrightarrow |z_0| = cr - st$, $|z_1| = s$, $z_0 z_1 < 0$

(4)
$$m \equiv n \equiv 0 \pmod{2} \Longrightarrow |z_0| = t, |z_1| = s, z_0 z_1 > 0$$

The following completely determines the fundamental solutions:

Lemma 3.1 (F-Miyazaki '18)

(1)
$$m \equiv n \equiv 0 \pmod{2} \Longrightarrow z_0 = z_1 \text{ and } |z_0| \in \{1, cr - st\}$$

(2)
$$m \equiv 1$$
, $n \equiv 0 \pmod{2} \Longrightarrow |z_0| = t$, $|z_1| = cr - st$, $z_0 z_1 < 0$

(3)
$$m \equiv 0$$
, $n \equiv 1 \pmod{2} \Longrightarrow |z_0| = cr - st$, $|z_1| = s$, $|z_0| < 0$

(4)
$$m \equiv n \equiv 0 \pmod{2} \Longrightarrow |z_0| = t, |z_1| = s, z_0 z_1 > 0$$

Determination of fundamental solutions (4)

Lemma 3.1 (F-Miyazaki '18)

- (1) $m \equiv n \equiv 0 \pmod{2} \Longrightarrow z_0 = z_1 \text{ and } |z_0| \in \{1, cr st\}$
- (2) $m \equiv 1, n \equiv 0 \pmod{2} \Longrightarrow |z_0| = t, |z_1| = cr st, z_0 z_1 < 0$
- (3) $m \equiv 0$, $n \equiv 1 \pmod{2} \Longrightarrow |z_0| = cr st$, $|z_1| = s$, $z_0 z_1 < 0$
- (4) $m \equiv n \equiv 0 \pmod{2} \Longrightarrow |z_0| = t, |z_1| = s, z_0 z_1 > 0$

Proof Assume $m \equiv n \equiv 0 \pmod{2}$ with $|z_0| \notin \{1, cr - st\}$ and put

$$d_0 := (z_0^2 - 1)/c \quad (\leadsto |z_0| = 1 \implies d_0 = 0, |z_0| = cr - st \implies d_0 = d_-)$$

Then, $1 \le d_0 < c$ and $\{a,b,d_0,c\}$ is an **irregular** Diophantine quadruple Examining " $v_m = w_n$ " attached to $\{a,b,d_0,c\}$ closely, we see that c is large enough compared to a,b,d_0

Thus, the following theorem based on Rickert's theorem is applicable:

Determination of fundamental solutions (5)

Lemma 3.1 (F-Miyazaki '18)

(1)
$$m \equiv n \equiv 0 \pmod{2} \Longrightarrow z_0 = z_1 \text{ and } |z_0| \in \{1, cr - st\}$$

Proof

Assume
$$m \equiv n \equiv 0 \pmod{2}$$
 with $|z_0| \notin \{1, cr - st\}$
Then, $\{a, b, d_0, c\} : D (d_0 := (z_0^2 - 1)/c < c)$

Theorem (Cipu-F '15, cf. Rickert '93)

$$N > 3.706a'b^2(b-a)^2$$
 ($a' = \max\{b-a,a\}$) and $ab \mid N$
 $\theta_1 = \sqrt{1+a/N}$, $\theta_2 = \sqrt{1+b/N}$
 $\implies \max\{|\theta_1 - p_1/q|, |\theta_2 - p_2/q|\} > (1.413 \cdot 10^{28}a'bN/a)^{-1}q^{-\lambda}$
for any p_1 , p_2 , $q(>0)$, where $\lambda = 1 + \frac{\log(10a^{-1}a'bN)}{\log(2699a^{-1}b^{-1}(b-a)^{-2}N^2)} < 2$

Combining this theorem with the lower bounds for solutions obtained by "the congruent method" due to Dujella leads us to a contradiction

Bounding the number of d's corresponding to (z_0, z_1)

Put $N(z_0, z_1) := \#\{d \mid \{a, b, c, d\} : D, d > d_+, d \text{ corresponds to } (z_0, z_1)\}$

Theorem 3.2

- (i) $N(z_0, z_1) \le 2$
- (ii) $(z_0, z_1) \in \{(st cr, st cr), (st cr, s), (t, s)\} \Longrightarrow N(z_0, z_1) \le 1$
- Proof (i) Assume $z = v_m = w_n$ has 3 solutions (m_i, n_i) $(i \in \{0, 1, 2\}, 2 < m_0 < m_1 < m_2)$ belonging to the same class of solutions, and put

$$\Lambda_i := m_i \log \xi - n_i \log \eta + \log \mu$$

where
$$\xi = s + \sqrt{ac}$$
, $\eta = t + \sqrt{bc}$, $\mu = \frac{\sqrt{b} (x_0 \sqrt{c} + z_0 \sqrt{a})}{\sqrt{a} (y_1 \sqrt{c} + z_1 \sqrt{b})}$

 $\bigstar m_0 > 2$ implies $d > d_+$ (and then we have $m_0 \ge 4$)

If
$$mn > 0$$
, then $0 < \Lambda_i < \kappa \xi^{-2m_i}$, where $\kappa = \begin{cases} 6\sqrt{ac} & \text{if } m_i \geq 4 \\ 6 & \text{if } |z_0| = 1 \\ 2.001c/b & \text{if } z_0 = st - cr \\ 1/(2ab) & \text{if } z_0 = t \end{cases}$

Okazaki's gap principle

Lemma 3.3 (cf. Bennett-Cipu-Mignotte-Okazaki '06)

$$m_2 - m_1 > \Lambda_0^{-1} \Delta \log \eta$$
, where $\Delta = \begin{vmatrix} n_1 - n_0 & n_2 - n_1 \\ m_1 - m_0 & m_2 - m_1 \end{vmatrix} > 0$

In particular, if $m_0 n_0 > 0$, then $m_2 - m_1 > \kappa^{-1} (4ac)^{m_0} \Delta \log \eta$

Proof of Lemma 3.3 Put $p_i := m_i \log \xi$, $q_i := n_i \log \eta$

Then
$$\Lambda_i = m_i \log \xi - n_i \log \eta + \log \mu = p_i - q_i + \log \mu$$

The equality $v_{m_i} = w_{n_i}$ implies that (p_i, q_i) 's are on the curve

$$C: \frac{(x_0\sqrt{c}+z_0\sqrt{a})\,e^p-(x_0\sqrt{c}-z_0\sqrt{a})\,e^{-p}}{\sqrt{a}} = \underbrace{\frac{(y_1\sqrt{c}+z_1\sqrt{b})\,e^q-(y_1\sqrt{c}-z_1\sqrt{b})\,e^{-q}}{\sqrt{b}}}_{(p_2,q_2)}$$

Since $\frac{dq}{dp} > 1$ and $\frac{d^2q}{dp^2} < 0$, we obtain

$$0 < \frac{q_1 - q_0}{p_1 - p_0} - \frac{q_2 - q_1}{p_2 - p_1} < \frac{q_1 - q_0 - p_1 + p_0}{p_1 - p_0} = \frac{\Lambda_0 - \Lambda_1}{p_1 - p_0} < \frac{\Lambda_0}{p_1 - p_0}$$

Rickert's theorem applied by Bennett (1)

Lemma 3.3 (cf. Bennett-Cipu-Mignotte-Okazaki '06)

$$m_2 - m_1 > \kappa^{-1} (4ac)^{m_0} \Delta \log \eta$$

Now the assertion $N(z_0, z_1) \le 2$ can be shown by using Lemma 3.3 and Baker's method on linear forms in 3 logarithms

This completes the proof of (i)

(ii)
$$(z_0, z_1) \in \{(st - cr, st - cr), (st - cr, s), (t, s)\} \Longrightarrow N(z_0, z_1) \le 1$$

Assume $z = v_m = w_n$ has 2 solutions (m_i, n_i) $(i \in \{1, 2\}, 2 < m_1 < m_2)$ Note that $m_0 = 1, 2$ is a solution to $z = v_m = w_n$ for $z_0 = t$, st - cr, resp.

 \bigstar Since m_0 is small, we need other ingredients

Rickert's theorem applied by Bennett (2)

$$(z_0, z_1) \in \{(st - cr, st - cr), (st - cr, s), (t, s)\} \Longrightarrow N(z_0, z_1) \le 1$$

Consider the linear form $\Gamma := \Lambda_2 - \Lambda_1 = (m_2 - m_1) \log \xi - (n_2 - n_1) \log \eta$

Then
$$0 < |\Gamma| < \kappa \xi^{-2m_1}$$

In order that Baker's method can work, we need $m_2-m_1\sim m_1$ i.e. m_2 (n_2) is not so larger than m_1 (n_1)

Theorem 3.4 (cf. Bennett '98 (based on Rickert '93))

$$a_1 := a(c - b), a_2 := b(c - a), N := abz^2$$

 $(u := c - b, v := c - a, w := b - a, a'_1 := \max\{a_1, a_2 - a_1\})$
 $\theta_1 := \sqrt{1 + a_1/N}, \theta_2 := \sqrt{1 + a_2/N}$

$$N \ge 10^5 a_2 \implies \max\{|\theta_1 - p_1/q|, |\theta_2 - p_2/q|\} > (32.01a_1'a_2uN/a_1)^{-1}q^{-\lambda}$$

for
$$\forall p_1, p_2, q > 0$$
, where $a_1' = \max\{a_1, a_2 - a_1\}$, $\frac{1}{\log\left(\frac{16a_1'a_2u^N}{a_1}\right)} < \frac{2}{\log\left(\frac{1.6874N^2}{a_1a_2(a_2-a_1)uvw}\right)}$

Rickert's theorem applied by Bennett (3)

$$(z_0, z_1) \in \{(st - cr, st - cr), (st - cr, s), (t, s)\} \Longrightarrow N(z_0, z_1) \le 1$$

Theorem 3.4 (cf. Bennett '98 (based on Rickert '93))

$$a_1 := a(c - b), a_2 := b(c - a), N := abz^2 \quad (u := c - b, a' := \max\{a_1, a_2 - a_1\})$$

$$\theta_1 := \sqrt{1 + a_1/N}, \, \theta_2 := \sqrt{1 + a_2/N}$$

$$N \ge 10^5 a_2 \Longrightarrow \max\{ |\theta_1 - p_1/q|, |\theta_2 - p_2/q| \} > (32.01a_1'a_2uN/a_1)^{-1} q^{-\lambda}$$

Combining Theorem 3.4 ($q = abz_{(1)}z_{(2)}$) with the trivial estimate

$$\max\left\{\left|\theta_{1} - \frac{acy_{(1)}y_{(2)}}{abz_{(1)}z_{(2)}}\right|, \left|\theta_{2} - \frac{bcx_{(1)}x_{(2)}}{abz_{(1)}z_{(2)}}\right|\right\} < \frac{c^{3/2}}{2a^{3/2}} \frac{z_{(2)}^{-2}}{z_{(2)}}$$
(1)

(where $(x_{(i)}, y_{(i)}, z_{(i)})$ $(i \in \{1, 2\})$ are positive solutions to

$$az^2 - cx^2 = a - c$$
, $bz^2 - cy^2 = b - c$)

we obtain:

Proof of Main Theorem 1 (1)

$$(z_0, z_1) \in \{(st - cr, st - cr), (st - cr, s), (t, s)\} \Longrightarrow N(z_0, z_1) \le 1$$

Lemma 3.5

- $n_1 \ge 8 \implies n_2 < 148n_1$
- $n_1 = 7$ with $z_1 = s \implies n_2 \le 462 (\le 66n_1)$

Proof of Theorem 3.2 (ii) Note $(m_0, z_0) \in \{(2, st - cr), (1, t)\}$ for $(z_0, z_1) \in \{(st - cr, st - cr), (st - cr, s), (t, s)\}$

Lemma 3.3 $m_2 - m_1 > \kappa^{-1} (4ac)^{m_0} \Delta \log \eta$, $\kappa = \begin{cases} 2.001c/b & \text{if } z_0 = st - cr \\ 1/(2ab) & \text{if } z_0 = t \end{cases}$

shows that

$$\frac{m_2 - m_1}{\log \eta} > 30a^2bc > 30b^2 \tag{2}$$

Since we can show m, $n \ge 7$ for the above z_0 , we may apply Lemma 3.5

Proof of Main Theorem 1 (2)

$$(z_0, z_1) \in \{(st - cr, st - cr), (st - cr, s), (t, s)\} \Longrightarrow N(z_0, z_1) \le 1$$

Lemma 3.5

- $n_1 \ge 8 \implies n_2 < 148n_1$
- $n_1 = 7$ with $z_1 = s \implies n_2 \le 462 (\le 66n_1)$

$$\frac{m_2 - m_1}{\log \eta} > 30a^2bc > 30b^2 \tag{2}$$

Noting $n_i-1 \le m_i \le 2n_i+1$, Lemma 3.5 implies $m_2-m_1 < 338m_1$, which together with Baker's method on **2 logs** (Laurent's theorem '08) implies

$$\frac{m_2 - m_1}{\log \eta} < 1.8 \cdot 10^7$$

which contradicts (2) with b > 4000 (we know " $d > d_+ \implies b > 4000$ ") This completes the proof of (ii)

Proof of Main Theorem 1 (3)

Proof of Main Theorem 1 $N := \#\{d > d_+ \mid \{a, b, c, d\} : D\} \le 10$

Recall
$$1 \le |z_0| < \sqrt{\frac{c \sqrt{c}}{2\sqrt{a}}}, \ 1 \le |z_1| < \sqrt{\frac{c \sqrt{c}}{2\sqrt{b}}}$$
 which imply

(i)
$$|z_0| = cr - st \implies c < 4\tau^{-4}ab^2$$

(ii)
$$|z_1| = cr - st \implies c < 4\tau^{-4}a^2b$$

(iii)
$$|z_0| = t \implies c > 4ab^2$$

(iv)
$$|z_1| = s \implies c > 4a^2b$$

where
$$\tau = \frac{\sqrt{ab}}{r} (1 - \frac{a+b+1/c}{c})$$
 (< 1)

We consider several cases separately, and show $N \le 10$ in each case

For example, if $4ab^2 < c < 4\tau^{-4}ab^2$, then $|z_1| \neq cr - st$ and

$$N \le N(1,1) + N(-1,-1) + \frac{N(st-cr,s)}{N(st-cr,s)} + N(cr-st,-s) + \frac{N(t,s)}{N(t,s)} + N(-t,-s)$$

$$\leq 2 + 2 + 1 + 2 + 1 + 2 = 10$$

Auxiliary lemma

Recall the system of Pellian equations $az^2 - cx^2 = a - c$, $bz^2 - cy^2 = b - c$ any solutions of which can be expressed as $z = v_m = w_n$, where

$$v_0 = z_0$$
, $v_1 = sz_0 + cx_0$, $v_{m+2} = 2sv_{m+1} - v_m$
 $w_0 = z_1$, $w_1 = tz_1 + cy_1$, $w_{n+2} = 2tw_{n+1} - w_n$

Denote by $\{v_{z_0,m}\}$, $\{w_{z_1,n}\}$ the recurrence sequences $\{v_m\}$, $\{w_n\}$ with the initial terms z_0 , z_1 , resp.

The following is the key lemma

Lemma 4.1

$$v_{cr-st,m} = v_{-t,m+1}, v_{st-cr,m+1} = v_{t,m} \text{ for all } m \ge 0$$

 $w_{cr-st,n} = w_{-s,n+1}, w_{st-cr,n+1} = w_{s,n} \text{ for all } n \ge 0$

Proof
$$z_0 = cr - st \implies v_0 = cr - st$$
, $v_1 = 2c(rs - at) - t$
 $z_0 = -t \implies v_1 = cr - st$, $v_2 = 2c(rs - at) - t$
 $v_{cr-st} = v_{-t} = v_{-t} = v_{-t}$

Proof of Main Theorem 2 (1)

Lemma 4.1

$$v_{cr-st,m} = v_{-t,m+1}, v_{st-cr,m+1} = v_{t,m}$$
 for all $m \ge 0$ $w_{cr-st,n} = w_{-s,n+1}, w_{st-cr,n+1} = w_{s,n}$ for all $n \ge 0$

Proof of Main Theorem 2 In the preceding section, we bounded the number N dividing several cases by considering whether c is greater than $4ab^2$ and so on, where we were able to eliminate some cases because of the inequalities $1 \le |z_0| < \sqrt{\frac{c\sqrt{c}}{2\sqrt{c}}}$, $1 \le |z_1| < \sqrt{\frac{c\sqrt{c}}{2\sqrt{c}}}$

Now we **count** N **using** not these inequalities but **Lemma 4.1**

Denote by $N'(z_0, z_1)$ the number of solutions to $v_m = w_n$ with m > 2 ($\Leftrightarrow d > d_+$), where we are not assuming the inequalities above. Then

$$N \le N'(-1, -1) + N'(1, 1) + \frac{N'(z_0^-, z_1^-)}{N'(z_0^+, z_1^+)} + \frac{N'(z_0^+, z_1^+)}{N'(z_0^+, z_1^+)}$$

where
$$(z_0^-, z_1^-) \in \{(cr - st, cr - st), (-t, cr - st), (cr - st, -s), (-t, -s)\}$$
 and $(z_0^+, z_1^+) \in \{(st - cr, st - cr), (t, st - cr), (st - cr, s), (t, s)\}$

★ (z_0^-, z_1^-) , (z_0^+, z_1^+) attain d_- , d_+ for some $m, n \le 2$, resp.

Proof of Main Theorem 2 (2)

$$\begin{split} N &\leq N'(-1,-1) + N'(1,1) + N'(z_0^-,z_1^-) + \frac{N'(z_0^+,z_1^+)}{N'(z_0^+,z_1^+)} \\ \text{where } &(z_0^-,z_1^-) \in \{(cr-st,cr-st),(-t,cr-st),(cr-st,-s),(-t,-s)\} \text{ and } \\ &(z_0^+,z_1^+) \in \{(st-cr,st-cr),(t,st-cr),(st-cr,s),(t,s)\} \end{split}$$

In the same way as in the preceding section, one can show

$$N'(-1,-1),\ N'(1,1),\ N'(z_0^-,z_1^-)\leq 2$$

using Lemma 3.3 with Baker's method on 3 logs, and

$$N'(z_0^+,z_1^+) \le 1$$

using Lemma 3.3 with Rickert's theorem and Baker's method on 2 logs Therefore

$$N \le 2 + 2 + 2 + \frac{1}{1} = 7$$

Overview of the relevant results (1)

Baker-Davenport ('69)

$$\{1, 3, 8, d\}: D \implies d = 120 (= d_+)$$

Baker's method on 3 logs

Dujella ('97)

$$\{k-1, k+1, 4k, d\}: D \implies d = 16k^3 - 4k (= d_+)$$

Rickert's theorem

Dujella-Pethő ('98)

$$\{1, 3, c, d\} : D \quad (c < d) \implies d = d_+$$
Baker's method on 3 logs

• Dujella ('99)

$$\{F_{2k}, F_{2k+2}, F_{2k+4}, d\} : D \implies d = 4F_{2k+1}F_{2k+2}F_{2k+3} (= d_+)$$

Baker's method on 3 logs

Overview of the relevant results (2)

• **F** ('08)

$$\{k-1, k+1, c, d\}: D \quad (16k^3-4k < c < d) \implies d = d_+$$

Rickert's theorem twice

$$(\rightsquigarrow \nexists \{k-1, k+1, c, d, e\} : D)$$

Bugeaud-Dujella-Mignotte ('07)

$$\{k-1, k+1, c, d\}: D \quad (c = 16k^3 - 4k < d)$$

 $\implies d = 64k^5 - 48k^3 + 8k (= d_+)$

Baker's method on 3 logs with refined congruence method

using "
$$s = \sqrt{ac+1} \sim t = \sqrt{bc+1}$$
"

$$(k-1, k+1, c, d) : D (c < d) \implies d = d_+$$

Overview of the relevant results (3)

• Bugeaud-Dujella-Mignotte ('07) $\{k-1, k+1, 16k^3 - 4k\}$ Baker's method on 3 logs with refined congruence method

using "
$$s = \sqrt{ac+1} \sim t = \sqrt{bc+1}$$
"

He-Togbé ('09, '12)

{k,
$$A^2k + 2A$$
, $(A + 1)^2k + 2(A + 1)$, d }: D with or $2 \le A \le 10$ Rickert $A \ge 52330$ Baker on **2 logs** " $r = \sqrt{ab + 1} \sim s = \sqrt{ac + 1}$ " $\implies d = d$.

Cipu-F-Mignotte ('18)

$$\{k, \frac{A^2k \pm 2A, (A+1)^2k \pm 2(A+1)}{k \ge 240.24(A+1) + 740}, d\}: D \Longrightarrow d = d_+$$
Proof $k \ge 240.24(A+1) + 740$ optimization of Rickert's theorem
$$A \ge 2811$$
Baker on **2 logs**

$$\Longrightarrow d = d_+$$

The remaining cases can be checked by the reduction method

The possibilities for the third element c induced by $\{a, b\}$

For a fixed $\{a,b\}$: D (a < b), assume $\{a,b,c\}$: D (b < c) and let

$$ab + 1 = r^2$$
, $ac + 1 = s^2$, $bc + 1 = t^2$ $(r, s, t \in \mathbb{Z}_{>0})$

Eliminating *c* yields $at^2 - bs^2 = a - b$

By Nagell's argumens, any solution (t, s) to the above is expressed as

$$t\sqrt{a} + s\sqrt{b} = (t_0\sqrt{a} + s_0\sqrt{b})(r + \sqrt{ab})^{\nu}$$

for some
$$|t_0|$$
, s_0 , $v \in \mathbb{Z}_{>0}$, where $|t_0| < \sqrt{\frac{b\sqrt{b}}{2\sqrt{a}}}$, $s_0 < \sqrt{(r+1)/2}$

Each (t_0, s_0) (often) gives a sequence of possible third elements c's

E.g.,
$$(t_0, s_0) = (\pm 1, 1)$$
 correspond to $c = c_v^{\tau}$ $(\tau \in \{\pm\})$, where

$$c_{\nu}^{\tau} = \frac{1}{4ab} \left\{ (\sqrt{b} + \tau \sqrt{a})^{2} (r + \sqrt{ab})^{2\nu} + (\sqrt{b} - \tau \sqrt{a})^{2} (r - \sqrt{ab})^{2\nu} - 2(a+b) \right\}$$

 \rightsquigarrow We always have $\{a, b, c_v^{\tau}\}: D$

Overview of the relevant results (4)

• Filipin-Togbé-F ('14)

$$\{k, 4k \pm 4, c, d\} : D \ (c_2^+ \neq c < d) \implies d = c_{\nu+1}^{\tau} (= d_+)$$
 $c = c_1^{\tau}$ known by **Dujella** ('97) and **He-Togbé** ('09)
 $c = c_2^{\tau}$ Baker's method on **2 logs**
 $c \ge c_3^{\tau}$ Rickert's theorem

• He-Pu-Shen-Togbé ('18)

$$\{k, 4k \pm 4, c, d\} : D \ (c = c_2^+ < d) \implies d = c_3^+ (= d_+)$$

new kind of application of Baker's method on 2 logs

" $m \mod r$, $n \mod r$: small constant" (e.g. $m \equiv n \equiv \pm 1 \pmod{r}$)

Cipu-Filipin-F ('19 (?))

$$\{A^2k, 4A^4k \pm 4A, c, d\}: D \quad (c = c_{\nu}^{\tau} < d) \Longrightarrow d = c_{\nu+1}^{\tau} (= d_{+})$$
 $c = c_{1}^{\tau}$ known by **Cipu-F-Mignotte** ('18)
 $c = c_{2}^{\tau}$ Baker's method on **2 logs**
[**He-Togbé**] for m, n : even, [**He-Pu-Shen-Togbé**] for m, n : odd $c \ge c_{2}^{\tau}$ Rickert's theorem

Corollary and key lemma

Main Theorem 3 (Cipu-Filipin-F preprint)

$$a\left(a + \frac{7}{2} - \frac{1}{2}\sqrt{4a + 13}\right) \le b \le 4a^2 + a + 2\sqrt{a}$$
(3)

$${a,b,c,d} : D (b < c < d)$$

$$\implies d = d_+$$

Corollary 5.1

$$\{A^2k, 4A^4k \pm 4A, c, d\} : D \ (c < d) \text{ with } k \in \{1, 2, 3, 4\}$$

$$\implies d = c_{v+1}^{\tau} (= \mathbf{d}_+)$$

 \leftarrow unnecessry to assume $c = c_v^{\tau}$

Lemma 5.2 (Key lemma)

$$\{a, b, c\}$$
: D with (3)

$$\implies \{a,b\} = \{T^2 + 2T, 4T^4 + 8T^3 - 4T\} \text{ for some } T \in \mathbb{Z}_{\geq 1}$$
 or $c = c_v^{\tau}$ for some $v \in \mathbb{Z}_{\geq 1}$ and $\tau \in \{\pm\}$

Key lemma (1)

Lemma 5.2 (Key lemma)

$$a\left(a + \frac{7}{2} - \frac{1}{2}\sqrt{4a + 13}\right) \le b \le 4a^2 + a + 2\sqrt{a}$$
 (3)

$$\implies \{a,b\} = \{T^2 + 2T, 4T^4 + 8T^3 - 4T\} \text{ for some } T \in \mathbb{Z}_{\geq 1}$$
 or $c = c_v^{\tau}$ for some $v \in \mathbb{Z}_{\geq 1}$ and $\tau \in \{\pm\}$

Proof Suppose
$$c \neq c_{\nu}^{\tau}$$
 and let $c = \gamma_{\nu} \leftarrow t\sqrt{a} + s\sqrt{b} = (t_0\sqrt{a} + s_0\sqrt{b})(r + \sqrt{ab})^{\nu}$

We may assume $\exists \nu_0$ s.t. $\gamma_{\nu_0} < b < \gamma_{\nu_0+1}$, and put $c' := \gamma_{\nu_0}$

Then we see that $\{a,b',c',b\}:D$ is regular for some $b'\in\mathbb{Z}_{\geq 1}$

Thus
$$b = a + b' + c' + 2ab'c' + 2r's'T$$

with
$$r' = \sqrt{ab' + 1}$$
, $s' = \sqrt{ac' + 1}$, $T = \sqrt{b'c' + 1}$

Noting
$$4ab'c' + a + b' + c' < b < 4ab'c' + 4 \max\{a, b', c'\}$$

we can negate inequalities (3), except one exceptional case

Key lemma (2)

Lemma 5.2 (Key lemma)

$$a\left(a + \frac{7}{2} - \frac{1}{2}\sqrt{4a + 13}\right) \le b \le 4a^2 + a + 2\sqrt{a}$$
 (3)

$$\Longrightarrow \{a,b\} = \{T^2 + 2T, 4T^4 + 8T^3 - 4T\} \text{ for some } T \in \mathbb{Z}_{\geq 1}$$
 or $c = c_v^{\tau}$ for some $v \in \mathbb{Z}_{\geq 1}$ and $\tau \in \{\pm\}$

Proof $4ab'c' + a + b' + c' < b < 4ab'c' + 4 \max\{a, b', c'\}$

•
$$a \le b'c' \Rightarrow b > 4ab'c' + a + b' + c' > 4a^2 + a + 2\sqrt{a}$$
, contradicting (3)

•
$$a > b'c' \Rightarrow$$

$$\lozenge a = b' + c' + 2T \Rightarrow b'c' < b' + c' + 2T$$

Setting $B := \min\{b', c'\}$ and $C := \max\{b', c'\}$, we obtain $B = 1$
Then $T = \sqrt{b'c' + 1} = \sqrt{C + 1}$, $a = C + 1 + 2\sqrt{C + 1}$ and $a = T^2 + 2T$, $b = 4T^4 + 8T^3 - 4T$

The case $\{a, b\} \neq \{T^2 + 2T, 4T^4 + 8T^3 - 4T\}$

$$c_1^{\tau} = a + b + 2\tau r \qquad (b < c_1^{\tau} \implies \tau = +)$$

$$c_2^{\tau} = 4(a+b)(ab+1) + 4\tau r(2ab+1) \sim 4ab^2$$

$$c_3^{\tau} = 16a^2b^2(a+b+2\tau r) + 8ab(3a+3b+4\tau r) + 3(3a+3b+2\tau r)$$

$$\sim 16a^2b^3$$

Proof of Main Theorem 3

The case
$$\{a, b\} \neq \{T^2 + 2T, 4T^4 + 8T^3 - 4T\}$$

- $c = c_1^+$ Baker on 2 logs " $r = \sqrt{ab+1} \sim s = \sqrt{ac+1}$ " [He-Togbé]
- $c = c_2^{\tau}$ Baker on **2 logs**
 - $m, n : \text{even} \Longrightarrow \text{``} \alpha = s + \sqrt{ac} \sim \beta^2 = (r + \sqrt{ab})^2 \text{''} \text{ [He-Togbé]}$
 - $m, n : \text{odd} \implies "m \equiv n \equiv \pm 1 \pmod{r}$ " [He-Pu-Shen-Togbé]
- $c \ge c_3^-$ Rickert

The case $\{a,b\} = \{T^2 + 2T, 4T^4 + 8T^3 - 4T\}$ (1)

The case
$$\{a, b\} = \{T^2 + 2T, 4T^4 + 8T^3 - 4T\}$$

We may assume $c \neq c_{\kappa}^{\tau}$

From
$$ac + 1 = s^2$$
, $bc + 1 = t^2$, we have $at^2 - bs^2 = a - b$
 $\Rightarrow t \sqrt{a} + s \sqrt{b} = (t_0 \sqrt{a} + s_0 \sqrt{b})(s + \sqrt{ab})^{\gamma}$
 $1 \le s_0 < T\sqrt{T+2}$ (by Nagell's argument)

 $c = \gamma_{\nu}^{\tau}$, where $(\gamma_0 = \gamma_0^{\tau} = 1, \gamma_1^{-} = T^2 - 1 < b)$
 $\gamma_1^+ = 16T^6 + 64T^5 + 72T^4 - 31T^2 - 4T + 3$
 $\gamma_2^- = 16T^8 + 64T^7 + 48T^6 - 80T^5 - 88T^4 + 32T^3 + 36T^2 - 4T - 3$
 $\gamma_2^+ > 256T^{12} + 2048T^{11}$

The case $\{\overline{a},b\} = \{T^2 + 2T, 4T^4 + 8\overline{T^3 - 4T}\}$ (2)

The case
$$\{a, b\} = \{T^2 + 2T, 4T^4 + 8T^3 - 4T\}$$

$$c = \gamma_1^+ = 16T^6 + 64T^5 + 72T^4 - 31T^2 - 4T + 3$$

We get $m \equiv n \equiv 0 \pmod{2}$ and $z_0 = z_1 \in \{\pm 1\}$

- $m > 3.9999b^{-1/2}c^{1/2}T^{1/2}$ (assuming $T > 10^{10}$)
 - \leftarrow coming from $a \equiv b \equiv 0 \pmod{T}$

(cf. known in general: $m > b^{-1/2}c^{1/2}$)

- Baker on 3 logs [Matveev '98] $\Lambda = m \log \alpha n \log \beta' \log \chi'$
 - ← "Kummer condition" should be checked:

$$[K(\sqrt{\alpha}, \sqrt{\beta'}, \sqrt{\chi'}) : K] = 2^3 = 8$$

$$\left(K := \mathbb{Q}(\sqrt{ac}, \sqrt{bc}), \ \alpha = s + \sqrt{ac}, \ \beta' = t + \sqrt{bc}, \ \chi' = \frac{\sqrt{b}(\sqrt{c} \pm \sqrt{a})}{\sqrt{a}(\sqrt{c} \pm \sqrt{b})}\right)$$

$$\longrightarrow T < 5.146 \cdot 10^{10}$$
 (cf. $T < 1.8 \cdot 10^{11}$ by using [Aleksentsev '08])

- $c = \gamma_2^-$ Baker on 2 logs " $\beta^2 = (r + \sqrt{ab})^2 \sim \beta' = t + \sqrt{bc}$ " [He-Togbé]
- $c \ge \gamma_2^+$ Rickert

Thank you so much for your kind attention!!