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Overview of Diophantine tuples and main theorems

Overview of Diophantine tuples
Main theorems

Overview of Diophantine tuples (1)

Diophantus (3C) searched “{a;, ay, a3, a4} s.t. aa;+1=0"and
found {1/16, 33/16, 17/4, 105/16}

@ Fermat (17C) {1, 3, 8, 120
@ Euler (18C) {a, b, a+b+2r, 4r(r + a)(r + b)} (r = Vab+1)
and {1, 3, 8, 120 7774808288641}
% We restrict ourselves to tuples of “rational integers”

Definition 1

a,...,am € Zsg

{ag,--- ,am} : Diophantine m-tuple

def . .
= gaj+1l=0 (1<Vi<Vj<m)

% {ai,...,am} : D denotes “{a,...,am} : Diophantine m-tuple”



Overview of Diophantine tuples and main theorems 3 q a
P F Overview of Diophantine tuples
Main theorems

Overview of Diophantine tuples (4)

@ Baker-Davenport ('69)
{1,3,8,d}:D = d=120(=d,) Baker's method on 3 logs
@ Arkin-Hoggatt-Strauss ('79), Gibbs ('78)
{a,b,c}:D = {a b, c,d,}:D “regular’ Diophantine quadruple
where d, =a+b+c+ 2abc+ 2rst

(r=+Vab+1, s=vac+ 1, t=+vbc+1)

d = d, is a solution to the equation
(@a+b-c-d)?=4@b+1)(cd+1)

The other solutionis d_ =a+ b+ ¢+ 2abc— 2rst

(Notethat 0<d_.<cand d_>0 < c>a+b+2r)

{a,b,cd:D (a<b<c<d = d=d,
(i.e. all Diophantine quadruples are regular)




Overview of Diophantine tuples and main theorems

Overview of Diophantine tuples
Main theorems

Overview of Diophantine tuples (5)

Theorem (Dujella '04)
(i) There exists no Diophantine sextuple
(i) There exist at most finitely many Diophantine quintuples

Proof (i) Apply Bennett’s theorem

based on Rickert’s theorem on simultaneous rational
approximations of quadratic irrationals

(i) Apply Baker's method on 3 logs
In fact, it was shown that d < 1027 and e < 10*%° O

Theorem (He-Togbé-Ziegler '19)
There does not exist a Diophantine quintuple

Proof Apply Baker's method on 3 logs
<-- “A kit on linear forms in three logarithms” by Mignotte |



Overview of Diophantine tuples and main theorems

Main Theorem 1 (F-Miyazaki '18)

{a,b,c} : D (a<b<c):fixed
= #{d|{a,b,c,d}:D, c<d}<11

Main Theorem 2 (Cipu-F-Miyzaki '18)

{a,b,c}: D (a<b<c):fixed
= #{d|{a,b,c,d}: D, c<d} <8

\

= #{d|{a,b,c,d}: D, d, <d} <7

Main Theorem 3 (Cipu-Filipin-F preprint)

7 1
a(a+§_§v4a+13)gb§4a2+a+2\/§

{a,b,c,d}: D (b<c<d)
— d=d,




undamental solutions
orem 1

Determination of fundamental solutions (1)

For a fixed {a,b,c} : D (a<b<c),assume {a,b,c,d}: D (c < d)and let
ab+1=r? ac+1=5, bc+1l=t> (r,steZy)
ad+1=x% bd+1=y? cd+1=2Z (XY, z€Zy)

where X, Yy, zZare considered to be unknowns. Eliminating d yields
aZ-c¥=a-c, bZ-cf=b-c

By Nagell's argument, any solutions (z X) and (z y) to the above are
expressed as

zva+ xvc = (20 Va+ x Vo) (s+ vag™
zVb+y Ve = (z Vb +y1 Vo)t + Voo

for some |z|, |z1|, X0, Y1 € Z-0 @and M, n € Zsg, where

c+/c c+c
1<zl < y[7—=, 1<lzal<—=
|Zol \/2\/5 |24 N/Z\/B

The number of extensions of Diophantine triples |

10/42



Determination of fundamental solutions

The number of extensions of Diophantine triples |
€ number of extensions of biophantine triples Proof of Main Theorem 1

Determination of fundamental solutions (2)

zva+ xvyc = (o Va+ x Vo) (s+ vag™
zVb+y Ve = (z Vb +y VO)(t + Vbo)"

These equalities enable us to write z = vy, = Wy, where

Vo=729, V1=5S%+CX, Vm2=25Wn1—Vm
Wo =21, Wi=1tZ+C¥1, Wn2=2tWn1—Wy

The fundamental solutions (2, Xo) and (z1, Y1) has been more or less
deteremined:

Theorem (Dujella '04)

(1) m=n=0 (mod 2)with zy = z; and either |z)| € {1, cr — st}

or |zo| < min{0.86%%/14c%14 0.972003c07}
(2)m=1, n=0 (mod 2)with || = t, |z7| = cr — st, Zgzy < 0
(3)m=0, n=1 (mod 2)with |Zg] = cr —st, |z = S, 2021 < O
(4)m=n=0 (mod 2)with |zg| =t, |z1] = S, Z0zs > 0
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Determination of fundamental solutions

The number of extensions of Diophantine triples |
€ number of extensions of biophantine triples Proof of Main Theorem 1

Determination of fundamental solutions (3)

Theorem (Dujella '04)
(1) m=n=0 (mod 2)= 7, = z; and either |z] € {1, cr — st}

or |zo| < min{0.86%>/14c%14 0.972703c07)
(2)m=1,n=0 (mod 2)= |z| =t, |zz] = cr — st, 20z < O
B)m=0,n=1 (mod 2)= |z =cr—st, |z =522 <0
4 m=n=0 (mod 2)= || =t, |zl =S, 2022 >0

The following completely determines the fundamental solutions:

Lemma 3.1 ( F-Miyazaki '18)

(1) m=n=0 (mod 2)= 7 = 7 and |7] € {1, cr — st}
(2)m=1, n=0 (mod 2)= |z| =, |zz] = cr — st, zgzy < O
B m=0,n=1 (mod 2)= |z| =cr—st, |z1] =S, 2021 < 0
4)m=n=0 (mod 2)= || =t, |z| =S, 2021 > 0

12/42



undamental solutions

The number of extensions of Diophantine triples | —
orem

Determination of fundamental solutions (4)

Lemma 3.1 (F-Miyazaki '18)

(1) m=n=0 (mod 2)= 7y = z; and |7)| € {1,cr — st}
(2)m=1,n=0 (mod 2)= |z| =t, |zz] = cr — st, 202y < O
BYm=0,n=1 (mod 2)= |z =cr—-st |z1] =S,22 <0
4m=n=0 (mod 2)= || =t,|za| =S 2022 >0

Proof Assume m=n=0 (mod 2)with |z ¢ {1, cr — st} and put
do=(Z-1)/c (w |2l=1= do=0, |zl=cr—st= dy=d_)
Then, 1 < dg < cand {a,b,dp, c} is an irregular Diophantine quadruple

Examining “vm, = Wy," attached to {a, b, do, ¢} closely, we see that c is large
enough compared to a, b, dy

Thus, the following theorem based on Rickert's theorem is applicable:
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Determination of fundamental solutions
Proof of Main Theorem 1

Determination of fundamental solutions (5)

Lemma 3.1 (F-Miyazaki '18)
(1) m=n=0 (mod 2)= 7y =z and |z)| € {1,cr — st}

The number of extensions of Diophantine triples |

Proof | Assume m=n=0 (mod 2)with |z ¢ {1, cr — st}
Then, {a,b,do,c} : D (do := (% - 1)/c <)

Theorem (Cipu-F 15, cf. Rickert '93)

N > 3.706a'b?*(b — a)? (& = maxb-aa}) and ab|N

6, = V1+a/N, 6, = v1+Db/N
= max{16: — p/dl, 16> — p2/ql} > (L.413- 10?2’ bN/a) g~
log(10ata’bN) <2

for any p1, p2, q(> 0), where 1 =1+ 10g(269%Tb1(b-a)2N?)

Combining this theorem with the lower bounds for solutions obtained by
“the congruent method” due to Dujella leads us to a contradiction a
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Determination of fundamental solutions
Proof of Main Theorem 1

The number of extensions of Diophantine triples |

Bounding the number of d's corresponding to (29, z1)

Put N(zy, z1) :=#{d|{a,b,c,d}: D, d > d,, dcorrespondsto (z,2)}

() N(z0,21) <2
(i) (20,7) € {(st—cr,st—cr), (st—cr,9), (t,9} = N(z,z) <1

Proof (i) Assume z = vy, = W, has 3 solutions (m;, n;) (i € {0, 1, 2},
2 < mp< My < mp) belonging to the same class of solutions, and put

Aj :=mylogé —n;logn + logu

_ Vb(xVe+2zva)
va(y1 Ve +z vb)

% My > 2 implies d > d, (and then we have my > 4)

6vac  ifm=>4

. —2m _ )6 if 20| = 1
If mn> 0, then 0 < Aj < k&M, where « = 2001c/b if 70 = St—cr

1/(2ab) ifzp=t

where ¢ =s+ vac, n=t+ vbe, u
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Determination of fundamental solutions
Proof of Main Theorem 1

Okazaki’'s gap principle

Lemma 3.3 ( cf. Bennett-Cipu-Mignotte-Okazaki '06 )

The number of extensions of Diophantine triples |

N —Ng Ny —Np

- -1 =
m; — my > Aj'4logn, where 4 M —My M- my >0

In particular, if mong > 0, then m, — my > x~1(4a0)™4 logn

Proof of Lemma 3.3 Put p; :=mlogé, g :=nlogn
Then Aj = mjlogé —njlogn + logu = pi — g + logu
The equality v, = Wy, implies that (i, g;)’s are on the curve
c: 0VC+nVa)e - (oVE-nVa)eP (1 VC+z Vb)el - (y1 V-2 Vb)ed
va Vb
C

(P2, 02)

2 (p1,01)
Since @ >1 and M<0,we obtain B

dp dp? (Po. do)

0<B=% G-0 _G-G-P+P_Ao-A1__ Ao
Pr=Po  P2—P1 P1 = Po Pr=Po  P1—Po
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Determination of fundamental solutions

The number of extensions of Diophantine triples | H
N oer of exiensions of Viophantine triples Proof of Main Theorem 1

Rickert’s theorem applied by Bennett (1)

Lemma 3.3 (cf. Bennett-Cipu-Mignotte-Okazaki '06)

mp — my > x~1(4a0)™4 logn

Now the assertion N(Zp, z;) < 2 can be shown by using Lemma 3.3 and
Baker’'s method on linear forms in 3 logarithms
This completes the proof of (i)

(i) | (z0,z) € {(st—cr,st—cr), (st—cr,9), (1,9} = N(z,2z) <1

Assume Z =V = Wy has 2 solutions (i, n) (i €{1,2}, 2<m <nmp)
Note that my = 1, 2 is a solution to z = vy, = Wy, for zp = t, st— cr, resp.

% Since my is small, we need other ingredients
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Determination of fundamental solutions

The number of extensions of Diophantine triples | H
€ numBer of extensions of Diophantine triples Proof of Main Theorem 1

Rickert’s theorem applied by Bennett (2)

(20,2) € {(st—cr,st—cr), (st—cr,9), (1,9} = N(z,z) <1

Consider the linear formI':= Ao —A; = (mp—my )logé—(n, —ny )logn
Then 0 < [T < k& 2™

In order that Baker's method can work, we need m, —ny ~ m
i.e. mp (ny) is not so larger than my (Ny)

a;:=a(c—b), ap :=b(c—a), N := abZ?

(ui=c-b,vi=c-a w:=b-a a:=maxa,a —a})

61:= VI+a&/N, 62:= V1+a/N

N> 10°a, = max{l61 - pi/dl, 162 — p2/al} > (3201a;8,uN/ag) ™"~
Iog(lﬁa:’lazuN)

a
2
| og( 16874\ )

ajag(ap—ag )uvw

for Vp1, p2, (> 0), where & =maxay, a; — a1}, 1=1+ <2

v
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The number of extensions of Diophantine triples | (DR Gl G ST RNy
N f P Proof of Main Theorem 1

Rickert’s theorem applied by Bennett (3)

(20,21) € {(st—cr,st—cr), (st—cr,9), (t,9)} = N(z,z) <1

Theorem 3.4 (cf. Bennett '98 (based on Rickert '93))

a;:=a(c-b), ap:=b(c—a), N:=abZ (u:=c-h, a:=maxa,,a, - a})
01 := V1I+a/N, 6 ;= V1+ay/N

N > 10Pa, = max{|6; — pi/dl, 162 — p2/ql} > (32.01a,a,uN/a;)~* g~

Combining Theorem 3.4 ( q = abzy)Zy) ) with the trivial estimate

acy)y() bexyXe) c3/2
max{| e ab&1)2<2)| | ab&l)z(Z) ) 2a3/2 2(2) (1)

(where (X, Yay> Zi)) (i € {1, 2}) are positive solutions to
aZ-c¥=a-c bZ-cy=b-c)

we obtain:
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Determination of fundamental solutions
Proof of Main Theorem 1

Proof of Main Theorem 1 (1)

(20,7) € {(st—cr,st—cr), (st—cr,9), (1,5} = N(z,z)<1

The number of extensions of Diophantine triples |

@ N >8 = np< 148

@ Ny =7 with z7 = s = n, < 462 (< 66n;)

Proof of Theorem 3.2 (i) Note (Mg, 2p) € {(2, st— cr), (1,t)} for
(20,z1) € {(st—cr, st—cr), (st-cr,9), (t,9)}
Lemma 3.3 m, —my > «~1(4a0)™4logny , k = {i/(zg;%b :I;’; - ft_ cr
shows that
M —

logn

> 30a’bc > 30b? 2)

Since we can show m, n > 7 for the above z;, we may apply Lemma 3.5
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Determination of fundamental solutions
Proof of Main Theorem 1

Proof of Main Theorem 1 (2)

(20,2) € {(st—cr,st—cr), (st—cr,9), (1,9} = N(z,z) <1

The number of extensions of Diophantine triples |

Lemma 3.5
o N >8 = np<148
@ N =7 with z7 =5 = ny <462 66n;)

M =M 30a2be > 3002 @)
logn

Notingnj—1<m < 2n; + 1, Lemma 3.5 implies mp, — my < 338m, , which
together with Baker's method on 2 logs (Laurent’s theorem '08) implies

M-
logn

which contradicts (2) with b > 4000 (we know “d > d, = b > 4000)
This completes the proof of (ii) O

<18-10
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Determination of fundamental solutions

The number of extensions of Diophantine triples | H
N oer of exiensions of Viophantine triples Proof of Main Theorem 1

Proof of Main Theorem 1 (3)

Proof of Main Theorem1 N :=#d>d,|{a b,c,d}:D} <10

SV <zl < S

Recall 1 < |7] < Ve’ Ve

which imply
() |20l = cr — st = c< 4ral?
(i) |zl = cr — st = c< 4r%a’b
(i) |20l =t = ¢ > 4al?
(V) |zl = s = c>4a’b
where 7 = @(1— "’”b#:) (<1
We consider several cases separately, and show N < 10in each case
For example, if 4ab? < ¢ < 4r~*ab?, then |z1| # cr — stand

N < N(1,1)+N(-1,-1)+ N(st—cr,s) +N(cr—st,—s)+ N(t,s) +N(-t,-9)
<2+2+1+2+1+2=10 O
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Proof of Main Theorem 2
The number of extensions of Diophantine triples 11

iliary lemma

Recall the system of Pellian equations aZZ — cX*=a—-c, bZ-cy¥=b-c
any solutions of which can be expressed as z = vy, = W, where

Vo = 2o, V1 = S$% + CX0, Vms2 = 2SVne1 — Vm
Wo = Z1, Wy = tZ1 + CY1, Why2 = 2tWn1 — Wy

Denote by {Vz, m}, {W;, n} the recurrence sequences {Vn}, {Wn} with the
initial terms zy, z;, resp.
The following is the key lemma

Ver—stm = Vot,m+1, Vstermel = Vi,m forallm> 0
Wer—stn = Wg n+1, Wst—cr.n+1 = Wsn foralln>0

Proof zg=cr—st = vy=cr—-st vy =2c(rs—at) -t
Zp=-t = vy =cr—st v, =2c(rs—at) -t

> Ver—stm = Vo, m+1 O
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Proof of Main Theorem 2

The number of extensions of Diophantine triples 11

Proof of Main Theorem 2 (1)

Lemma 4.1
Ver—stm = V-t m+1, Vst-cr.m+1 = Vi.m forallm>0
Wer—stn = W_g n+1, Wst—cr.n+1 = Wgn foralln>0

Proof of Main Theorem 2 In the preceding section, we bounded the
number N dividing several cases by considering whether c is greater than
4al? and so on, where we were able to eliminate some cases because of

the inequalities 1 < [zo] < /%, 1< [z1|< |/ 'F

Now we count N using not these inequalities but Lemma 4.1
Denote by N’(zy, z) the number of solutions to vy, = Wy, with m > 2
(e d>d,), where we are not assuming the inequalities above. Then

N<N(-1,-1)+N'(L1)+ N(z.z) + N(Z.7)
where (z,,z) € {(cr —stcr - st), (-t,cr — s, (cr - st —s), (-t,-9)} and
(Z.Z7) e{(st-cr,st—cr),(t, st—cr),(st-cr,9),(t )}
* (%.Z7). (£.7) attain d_, d, forsomem, n< 2, resp.
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Proof of Main Theorem 2
The number of extensions of Diophantine triples 11

Proof of Main Theorem 2 (2)

N<N(-1,-1)+ N'(1,1)+ N'(z.7) + N(%.Z)
where (z;,z) € {(cr — st.cr — st), (-t,cr — s, (cr - st -s),(-t,—s)} and
(#.77) e{(st-cr,st—cr),(t,st—cr),(st-cr,9),(t,9)}

In the same way as in the preceding section, one can show
N'(-1,-1), N'(1,1), N(z.z) <2

using Lemma 3.3 with Baker’s method on 3 logs, and
N'(%.2) <1

using Lemma 3.3 with Rickert's theorem and Baker’'s method on 2 logs
Therefore

N<2+2+2+ 1 =7 O
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Overview of the relevant results
K a

[ Aain Theorem 3
The extendibility problem

Overview of the relevant results (1)

@ Baker-Davenport ('69)
{1,3,8, d}:D = d=120(=d,)
Baker's method on 3 logs

@ Dujella ('97)
(k-1 k+1 4k d}:D = d= 16k3—4k(= d,)
Rickert's theorem

@ Duijella-Peth 6 ('98)
{1,3,c,d}:D (c<d) = d=d,
Baker's method on 3 logs
@ Dujella ('99)
{Fak, Foki2, Fokea, d} : D = d = 4F 1 FocioF a3 (= d,)
Baker's method on 3 logs
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Overview of the relevant results
Key ma
Main Theorem 3
The extendibility problem

Overview of the relevant results (2)

@ F ('08)
(k=1 k+1c d:D (16k-4k<c<d) = d=d,
Rickert's theorem twice
(wAlk-1,k+1,¢c,d, e :D)
@ Bugeaud-Dujella-Mignotte  ('07)
(k=L k+1cd:D (c=16k3-4k<d)
= d =64 -483+8k(=d,)
Baker's method on 3 logs with refined congruence method

using “s= vVac+1~t= vbc+ 1"

~w (k=L k+1cd:D (c<d) = d=d,
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Overview of the relevant results
Key ma
Main Theorem 3
The extendibility problem

Overview of the relevant results (3)

@ Bugeaud-Dujella-Mignotte  ('07) { k-1, k+ 1, 16k3 - 4k}
Baker's method on 3 logs with refined congruence method

using “s= vVac+1l~t= vbc+1”

@ He-Togbé (°09,'12)
(k, A%k +2A, (A+1)%k+2(A+1),d}: D with

2<A<10 Rickert
A >52330 Bakeron2logs “r= Vvab+1~s= vac+1”

= d=d,
@ Cipu-F-Mignotte ('18)
(k, A%k +2A, (A+1k+2(A+1),d}: D= d=d,
Proof k> 24024(A+ 1)+ 740 optimization of Rickert's theorem
A> 2811 Baker on 2 logs
= d=d,

or

The remaining cases can be checked by the reduction method O
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The extendibility problem

The possibilities for the third element cinduced by {a, b}

For a fixed {a,b} : D (a < b), assume {a,b,c} : D (b < c) and let
ab+1=r? ac+1=%, bc+1l=t> (r,steZy)

Eliminating c yields at? —bs=a-b

By Nagell's argumens, any solution (t, S) to the above is expressed as

tva+svb = (tova+ sVb)(r + Vab)”

for some [tg|, So, v € Zs0, Where [tg| < %E, S < V(r+1)/2
Each (tg, &) (often) gives a sequence of possible third elements C's
E.g., (to, %) = (+1,1) correspondto c=c] (7 € {x}), where

cf = 451%b{(x/6+n/51)2(r + Vab)® + (Vb - 7 va)’(r - Vab)* - 2(a + b}

~» We always have {a,b,c]}: D

32/42



Overview of the relevant results
K a

[ Aain Theorem 3
The extendibility problem

Overview of the relevant results (4)

@ Filipin-Togb é-F ('14)
{k,4k+4,c,d}:D (c;#c<d) = d=c ,(=d,)
c=c; known by Dujella ('97) and He-Togb & ('09)
Cc=c, Baker's method on 2 logs
CcxcC; Rickert's theorem
@ He-Pu-Shen-Togb é ('18)
{k,4k+4,c,d}:D (c=cj <d) = d=cf(=d,)
new kind of application of Baker's method on 2 logs
“m modr, n modr : small constant” (e.g. m=n= =1 (modr))
@ Cipu-Filipin-F (19 (?))
{A%k, 4A%k +4A, ¢, d}:D (c=¢ <d)= d=c,,(=d,)
c=c] known by Cipu-F-Mignotte ('18)
¢ =c, Baker's method on 2 logs
[He-Togb €] for m, n : even, [He-Pu-Shen-Togb é] for m, n: odd
Cxc; Rickert's theorem
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Ovel the relevant results
Key lemma
Proof of Main Theorem 3

The extendibility problem

Corollary and key lemma

Main Theorem 3 (Cipu-Filipin-F preprint)

a(a+;—%\/4a+13)sbs4a2+a+2\/5 ®)
{a,b,c,d}: D (b<c<d)

— d=d,

Corollary 5.1

(A2K, 4A% + 4A, ¢, d} : D (c < d) with ke {1,2 3,4}

= d=c,,(=d,) ¢-- unnecessry to assume C=C]

v

Lemma 5.2 (Key lemma)

{a,b, c} : D with (3)
— {a,b} = {T?+ 2T, 4T* + 8T3 — 4T} forsome T € Zs;
or c=C] forsomeveZs; and T € {+£}




ain Theorem 3

The extendibility problem

Key lemma (1)

Lemma 5.2 (Key lemma)
a(a+%—%V4a+13)sbs4a2+a+2\/5 (3)

= {a, b} = (T2 +2T,4T* + 873 - 4T} forsome T € Z-1
or c=c} forsomeveZ, and 7 € {£}

Proof Suppose ¢ # ¢} and let ¢ =y, «-tva+svb = (tyva+sVb)(r +Vab)”
We may assume Jvg S.t. ¥y, < b < 9,041, and put ¢ = y,,
Then we see that {a,b’, ¢/, b} : D is regular for some b’ € Z1

Thus b=a+ b + ¢ +2ab'c +2r'sT
withr'=+vVab +1, s =+Vvac+1, T=+Vbc +1
Noting 4ab'c +a+b' +c <b<4abc + 4maxa,b’,c’}

we can negate inequalities (3) , except one exceptional case
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Overview of the relevant results
Key lemma
Proof of Main Theorem 3

The extendibility problem

Key lemma (2)

Lemma 5.2 (Key lemma)
a(a+%—%\/4a+13)sbs4a2+a+2\/5 @)

= {a, b} = (T2 + 2T,4T* + 8T3 - 4T} forsome T € Zs1
or c=C} forsomeveZs and 7 € {£}

Proof 4abc +a+b’ +c <b<d4abc +4maxalb’,c}
@ as<bd=b>4abc +a+b +c¢ > 4a’+a+2+/a, contradicting (3)
e a>bc =

cazrb+c+2T > a>4bc +b +¢
= b<a(a+7/2+ vda+ 13/2), contradicting (3)

ca=b+c+2T = bcd <b+c +2T
Setting B := min{b’, ¢’} and C := maxb’, ¢’}, we obtain B=1
ThenT = Vb +1=+VC+1,a=C+1+2VC+1and
a=T2+2T, b=4T4+8T3-4T |
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w of the relevant results
Key ma
Proof of Main Theorem 3
The extendibility problem

The case {a, b} # {T? + 2T, 4T* + 8T3 — 4T}

ci=a+b+2mr (b<c] = 7=4+)

¢y = 4(a+b)(@ab+ 1) + 4rr(2ab+ 1) ~ 4ab?

¢ = 16a’b%(a+ b + 2r) + 8ab(3a + 30 + 47r) + 3(3a + 30 + 211)
~ 16a’b®

Proof of Main Theorem 3
The case {a, b} # (T2 + 2T,4T* + 8T — 4T} |
@ c=c’ Bakeron2logs “r= Vab+1~s= Vac+1” [He-Togb é]
@ c=c; Bakeron 2 logs
e M n:even = “o = S+ yac~ 2 = (r + vab)2” [He-Togb &]
e mn:odd = “m=n=+1 (modr)” [He-Pu-Shen-Togb €]
@ c>c; Rickert
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w of the relevant results
Key ma
Proof of Main Theorem 3
The extendibility problem

The case {a, b} = {T? + 2T, 4T* + 8T3 - 4T} (1)

! The case {a,b} = {T? + 2T, 4T* + 8T3 - 4T} \

We may assume C # C;
Fromac+1=¢< bc+1=1% wehave a2t —b=a-b
~w tya+svb = (tova+ soVb)(s+ vab)”
1<s<TVT+2 (by Nagell's argument)
~w (to, S0) = (£(2T2+2T - 1), T+1)
~ Cc=y5, where (yo=7y§=1 y; =T?-1<b)
¥} = 16T + 6ATS + 7274 — 31T2 - 4T + 3
¥, = 16T8 + 64T7 + 48T6 — 80TS — 88T* + 32T3 + 36T2 - 4T - 3
Y3 > 256T12 + 2048r11

40742



elevant results

Proof of Main Theorem 3
The extendibility problem

The case {a, b} = (T? + 2T, 4T* + 8T3 - 4T} (2)

The case {a, b} = {T2 + 2T, 4T* + 8T3 — 4T}
@Cc=y; = 16T6 + 64T5 + 72T4 - 31T? - 4T + 3
Wegetm=n=0 (mod 2)and zp = z; € {+1}
e m> 3.999%Y2cY2T1?  (assuming T > 10')
«— coming froma=b=0 (modT)

(cf. known in general: m > b=%/2c%/2)
e Baker on 3 logs [Matveev '98] A =mloga —nlogpB’ —logy’
«— “Kummer condition” should be checked:
[K(va, VB, Vi) : K] = 2 =8 B(vEs V)
(K:=Q(vac vbe), a = s+ vac g =t+ vbe y' = —————=")

va(vc+ vb)
~» T <5.146-10%° (cf. T < 1.8- 10" by using [Aleksentsev '08] )

@ c=y, Bakeron2logs “f%=(r+ Vab)?~p" =t+ vbc” [He-Togb €]
@ c>vyj Rickert i
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Thank you so much

for your kind attention !!



	Overview of Diophantine tuples and main theorems
	Overview of Diophantine tuples
	Main theorems

	The number of extensions of Diophantine triples I
	Determination of fundamental solutions
	Proof of Main Theorem 1

	The number of extensions of Diophantine triples II
	Proof of Main Theorem 2

	The extendibility problem
	Overview of the relevant results
	Key lemma
	Proof of Main Theorem 3


