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Introduction

Definition

R - a commutative ring with the unit 1, n ∈ R.
A Diophantine quadruple with the property D(n) - a set of 4
distinct non-zero elements in R with the property that the product
of each 2 distinct elements increased by n is a perfect square in R

{z1, z2, z3, z4} ⊂ R \ {0}

zi 6= zj , zizj + n = �, 1 ≤ i < j ≤ 4

Shortly, a D(n)-quadruple. If n = 1, it is a Diophantine quadruple.

Basic examples

I {1, 33, 68, 105}, a D(256)-quadruple in Z (Diophantus)

I {1, 3, 8, 120}, a D(1)-quadruple in Z (Fermat)
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Introduction

Motivation

Theorem 1. (Brown, Gupta & Singh, Mohanty & Ramasamy, 1985, Dujella, 1993)

A D(n)-quadruple in Z exists iff n 6≡ 2 (mod 4),
except for n ∈ {−4,−3,−1, 3, 5, 8, 12, 20}.

Theorem 2. (Dujella, 1997)

A D(n)-quadruple in Z[i ] exists iff Im(n) ≡ 0 (mod 2) and
n 6≡ 2 + 2i (mod 4), except for n ∈ {2,−2, 1 + 2i ,−1− 2i , 4i ,−4i}
Remark. Conditions from Thm.1 and Thm.2 are related to the
binary quadratic form x2 − y2 (a difference of two squares).

I n ∈ Z, n 6≡ 2 (mod 4) iff n = x2 − y2, x , y ∈ Z
I Z[i ], Im(n) ≡ 0 (mod 2) and n 6≡ 2 + 2i (mod 4) iff

n = x2 − y2, x , y ∈ Z[i ].
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Conjecture.

A D(n)-quadruple in R exists iff n can be represented as a
difference of two squares of elements in R, up to f.m.e.

(”up to f.m.e.” is an abbreviation ”up to finitely many exceptions”)

Conjecture has been verified for the following rings:

I the ring of integers of a real quadratic field Q(
√
d) (for a wide

class of positive integers d , Dujella, F.),

I the ring of integers of imaginary quadratic fields Q(
√
−3)

(Soldo, F.) and Q[
√
−2]∗ (Dujella, Soldo),

I the ring of integers of the pure cubic field Q( 3
√

2) (Jukić
Matić, F.)

*-partially proved
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Bicyclic biquadratic number field K = Q(
√

2,
√

3)
One integral basis of the field K is

{1,
√

2,
√

3,

√
2 +
√

6

2
}.

So, the ring of integers of K is given by

OK = {α + β
√

2 + γ
√

3 + δ

√
2 +
√

6

2
: α, β, γ, δ ∈ Z}.

Every w ∈ K has a unique representation of the form

w = α + β
√

2 + γ
√

3 + δ

√
2 +
√

6

2
,

α, β, γ, δ ∈ Q (or ∈ Z iff w ∈ OK) which will be shortly written as

w = (α, β, γ, δ) ∈ Q4 (or ∈ Z4).
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A strategy for verification of Conjecture

Step 1 Describe the set of all elements n ∈ OK that can be
represented as a difference of squares of two elements
in OK.

Step 2 Show the non-existence of a D(n)-quadruple if n
cannot be represented as a difference of two squares
in OK using congruence types of quadruples modulo
2 and modulo 4.

Step 3 Construct effectively, via polynomial formulas, a
D(n)-quadruple for each n from the set described in
Step 1.
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On differences of two squares

Proposition 1. (A characterization of difference of two squares in OK)

n = (α, β, γ, δ) ∈ OK is a difference of squares of two integers in
OK iff at least one of the following possibilities is valid:

(i) α ≡ 1 (mod 2) and β ≡ δ ≡ 0 (mod 2),

(ii) γ ≡ 1 (mod 2) and β ≡ δ ≡ 0 (mod 2),

(iii) α ≡ β ≡ γ ≡ 0 (mod 2), (α, β, γ) mod 4 6= (2, 2, 2) and
δ ≡ 0 (mod 4).

Proof.⇒: By checking all the possibilities of n2
1 − n2

2, n1, n2 ∈ OK
modulo 2 or 4.

⇐: By the following identities:

(a + 1, b, c, d)2 − (a, b, c, d)2 = (1 + 2a, 2b, 2c, 2d), (a + 1, b, c, d)2 − (a − 1, b, c, d)2 = (4a, 4b, 4c, 4d),

(−b + d,−a + 2c + 1, b, a − c)2 − (−b + d,−a + 2c + 1, b, a − c − 1)2 = (2a, 2b, 1 + 2c, 2d),
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(b + d,
1

2
(a − c + 1), d, c)2 − (b + d,

1

2
(a − c − 1), d, c)2 = (2a, 2b, 2c, 4d)

(
1 + a + b

2
− d,

1 + a + b

2
− c,

1− b + c

2
,
−a + c

2
+ d

)2

−(−1 + a + b

2
− d,

−1 + a + b

2
− c,

−1− b + c

2
,
−a + c

2
+ d

)2

= (2a, 2b, 2c, 4d)

(−a + 2b − 3c + d

2
,
a + 2b − c − d

2
,
−a + c + d

2
,−b + c + 1

)2

−(−a + 2b − 3c + d

2
− 1,

a + 2b − c − d

2
,
−a + c + d

2
,−b + c

)2

= (2a + 1, 2b, 1 + 2c, 2d),

(−3− 3a + 4b − 3c + 5d

2
,

1 + a − 2b + c − d

2
,
−1− a + 2b − 3c + 3d

2
, 2 + a − b + 2c − 2d

)2

−(−3− 3a + 4b − 3c + 5d

2
,

1 + a − 2b + c − d

2
,
−3− a + 2b − 3c + 3d

2
, 1 + a − b + 2c − 2d

)2

= (2a + 1, 2b, 1 + 2c, 2d),

where a, b, c, d ∈ Z with appropriate parities.
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On the nonexistence of quadruples

Proposition 2.
If n = (α, β, γ, δ) ∈ OK is not representable as a difference of
squares of two integers (i.e. iff

(i) β ≡ 1 (mod 2),

(ii) δ ≡ 1 (mod 2),

(iii) (α, β, γ) mod 2 = (0, 0, 0) and δ mod 4 = 2,

(iv) (α, β, γ, δ) mod 4 = (2, 2, 2, 0)),

then a D(n)-quadruple in OK does not exist.

Proof. (i) We assume that {n1, n2, n3, n4} ⊂ OK is a D(n)-quadruple,
i.e. ninj + n = �. This leads to an inconsistent system of congruences:

ajbi + aibj + bjci + bicj + cjdi + cidj ≡ 1 (mod 2), 1 ≤ i < j ≤ 4,

where ni = (ai , bi , ci , di ).



On D(n)-quadruples in Q(
√

2,
√

3)

On the nonexistence of quadruples

(iii) Assume that n mod 4 = (0, 0, 0, 2). We found all congruence types
modulo 4 of a D(n)-triple {n1, n2, n3} ⊂ OK. (A triple {n1, n2, n3} has a
congruence type [c1, c2, c3] modulo 4, ni ≡ ci (mod 4), where ci ∈ Z4

4.)
There are 2 829 056 possible congruence triple-types modulo 4 in OK,
but in this case we get only 3584 congruence types and none of them can
be extended to a D(n)-quadruple.
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The existence of quadruples

Constructing a D(n)-quadruple

Lemma 1 (Dujella, 1996)

Let m, k ∈ R. The set

{m,m(3k+1)2+2k ,m(3k+2)2+2k+2, 9m(2k+1)2+8k+4} (1)

has the D(2m(2k + 1) + 1)-property*.

Lemma 2
If u ∈ R and {n1, n2, n3, n4} is a D(n)-quadruple in R, then
{n1u, n2u, n3u, n4u} is a D(nu2)-quadruple in R.

Lemma 1+2 ⇒

{mu, (m(3k+1)2+2k)u, (m(3k+2)2+2k+2)u, (9m(2k+1)2+8k+4)u}
(2)

has the D((2m(2k + 1) + 1)u2)-property*.
*The set can contain equal elements or elements equal to zero - “f.m.e.”



On D(n)-quadruples in Q(
√

2,
√

3)

The existence of quadruples

The background of the formula (1)

If {a, b} is a D(n)-pair in R, i.e. ab + n = x2 for x ∈ R, then
{a, b, a + b + 2x} is a D(n)-triple since

a(a + b + 2x) + n = (a + x)2, b(a + b + 2x) + n = (b + x)2.

Dujella’s idea: If {a, b} is a D(n)-pair, then

{a, b, a + b + 2x , a + 4b + 4x}

has a D(n)-property iff a(a + 4b + 4x) + n = �.
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Since, ab + n = x2, we have

3n = (a + 2x)2 − y2 = (a + 2x − y)(a + 2x + y).

If
a + 2x − y = 3, a + 2x + y = n

then 2a + 4x − 3 = n and ab + n = x2 implies
a(b + 2) = (x − 1)(x − 3). For x = ak + 1, we have
b = ak2 − 2k − 2 and

n = 2a(2k + 1) + 1.

Remark. Let n = u2 − v2. Then the set {v , v , 2u + 2v , 4u + 5v}
has a D(u2 − v2)-property.
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The existence of quadruples

Application of formula (2)

We try to represent the given n ∈ OK described in Proposition 1,
which one of 55 types modulo 4 ,

n = (4K , 4L, 4M, 4N) + f = 4n1 + f ,

where n1, f ∈ OK and f = (a, b, c, d) ∈ Z4
4 as

(2m(2k + 1) + 1)u2 = n,

for some m, u, k ∈ OK. We have found useful to fix elements m, u
and consider k as solution of the previous equation;

k =
n − u2(1 + 2m)

4mu2
=

4n1 + f − u2(1 + 2m)

4mu2
.
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Application of formula (2)

In the light of the theory of norms, if k is a integer then

44N (m)N (u)2 | N (4n1 + f − u2(1 + 2m)),

where N (α) = NK/Q(α) is a norm of α ∈ K. So, a good starting
point for choosing parameters m, u ∈ OK are units (N (α) = ±1),
as well as elements of small norm.

Proposition 3.

Let f ∈ Z4
4, f mod 2 ∈ {(0, 0, 1, 0), (1, 0, 0, 0)}. There exist

m, u ∈ OK, N(m) = ±1, N(u) = ±1 such that the equation

(2m(2k + 1) + 1)u2 = 4(K , L,M,N) + f

has a solution k ∈ OK for all K , L,M,N ∈ Z.
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f m u k
(0, 0, 1, 0) (2, 0,−1, 0) (0, 0, 0, 1) (−1 + K , L,M,N)
(0, 0, 1, 2) (1, 0, 1,−1) (1, 0, 1,−1) (18− 25K − 35L + 45M + 14N, 20− 28K − 40L + 49M + 15N,

−10 + 15K + 21L− 25M − 7N,−14 + 21K + 30L− 35M − 10N)
(0, 0, 3, 0) (0, 1, 1, 0) (1, 0, 1, 1) (4− K + 6M − 3N,−2 + K − 3L− 3M + 2N,

−1 + 2K − 2L− M − N,−2K + 4L + N)
(0, 0, 3, 2) (1, 1, 1, 1) (0, 0, 0, 1) (−9 + 5K + 9L− 9M − 3N,−11 + 7K + 8L− 12M − 3N,

5− 3K − 5L + 5M + 2N, 8− 5K − 6L + 9M + 2N)
(0, 2, 1, 0) (0, 1, 1, 0) (0, 0, 0, 1) (−1− 3K − 4L + 6M + N,−1− 3K − 5L + 5M + 2N,

2K + 2L− 3M − N, 1 + 2K + 4L− 4M − N)
(0, 2, 1, 2) (1, 0, 1, 1) (0, 1, 0,−1) (−1 + K − L + 3M − 2N,−M + N,

−1 + K − L + M − N, 2− K + 2L− M + 2N)
(0, 2, 3, 0) (0, 1, 1, 0) (0, 1, 0,−1) (2 + 3K − 4L + 6M − 5N,−K + L− M + 2N,

1 + 2K − 2L + 3M − 3N,−1− 2K + 4L− 4M + 5N)
(0, 2, 3, 2) (1, 0, 1, 1) (0, 0, 0, 1) (8− 5K + 5L + 9M − 2N,−8 + 4K − 8L− 7M + 3N,

(−5 + 3K − 3L− 5M + N, 6− 3K + 6L + 5M − 2N)
(1, 0, 0, 0) (1, 0, 0, 0) (2, 0, 1, 0) (1 + 7K − 12M, 11L− 4N,−1− 4K + 7M,−8L + 3N)
(1, 0, 0, 2) (0, 0, 0, 1) (1, 0, 0, 0) (−L + N,−K + 2M, L,K − M)
(1, 0, 2, 0) (2, 0, 1, 0) (1, 0, 0, 0) (−2 + 2K − 3M, 3L− N, 1− K + 2M,−2L + N)
(1, 0, 2, 2) (1, 1, 1, 1) (1, 1, 0, 0) (−1− 3K + 5L− 3M + 4N,

−1 + 2K − 2L− M − N,−K + L− 3M + 3N, 1 + K − 2L + 5M − 4N)
(1, 2, 0, 0) (1, 0, 0, 0) (1,−1, 0, 0) (2 + 3K + 4L + 2N, 2 + 2K + 3L− 2M, 3M + 2N, 4M + 3N)
(1, 2, 0, 2) (0, 0, 0, 1) (0, 1, 1, 0) (−2− 6K − 5L + 6M + 5N,−4− 5K − 8L + 10M + 2N,

3 + 2K + 5L− 6M, 1 + 5K + 4L− 5M − 4N)
(1, 2, 2, 0) (0, 1, 1, 0) (1, 0, 0, 0) (−2L + 3M − N,−K − L + M + N,K − N, 2L− 2M + N)
(1, 2, 2, 2) (1, 0, 1, 1) (1, 1, 0, 0) (6− 5K + 7L + 15M − 7N,−8 + 7K − 10L− 14M + 5N,

−5 + 5K − 7L− 5M, 7− 7K + 10L + 7M)
(2, 0, 1, 0) (1, 0, 0, 0) (0, 1, 0,−1) (1 + 2K + 3M, L + N, 1 + K + 2M, 2L + 3N)

etc. (for 32 values of f , f mod 2 ∈ {(0, 0, 1, 0), (1, 0, 0, 0)})
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Application of formula (2)

Other cases are more complicated. If u and m with just a slightly
larger norm (N (u) = ±2, N (m) = ±2) are implemented in a
polynomial formula, we obtain more subcases (characterized in
terms of some congruent conditions on K , L,M,N). Also, for some
cases, the original polynomial formula for n is too restrictive. So,
we represent n in the form

(m(2k + 1) + 1)u2 = n,

where k ,m, u ∈ OK. A related D(n)-quadruple,

{mu

2
,
mu

2
(3k+1)2+2ku,

mu

2
(3k+2)2+(2k + 2) u, 9

mu

2
(2k+1)2+(8k + 4) u}

is in OK iff mu
2 ∈ OK.
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On “f.m.e.”

If a polynomial formula representing a D(n)-quadruple contains at
least two equal elements or the zero element, then we obtain an
exception. So, we have to solve nine equations

zi (k) = 0, i = 2, 3, 4, zi (k)− zj(k) = 0, 1 ≤ i < j ≤ 4

(z1 = const 6= 0). The only integer solutions are k = 0,−1. Hence,
the exceptions are the elements of the form n = (±2m + 1)u2 or
n = (±m + 1)u2, where m, u are related to f = n mod 4 (or 8).
There are 200 such exceptions and all of them be successfully
resolved using techniques described in the following examples.
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The exception n = (4, 0, 1, 0) = 4 +
√

3 (for m = (2, 0,−1, 0),
u = (0, 0, 0, 1) and k = 0). The p. f. gives improper
D(n)-quadruple

{(1, 1, 1, 1), (1, 1, 1, 1), (6, 4, 4, 4), (13, 9, 9, 9)}.
Example 1. With a slight change of m, m′ = (2, 0, 1, 0) (“new”

unit) and the same u, we have (2m′(2k ′ + 1) + 1)u2 = (4, 0, 1, 0)
for k ′ = (3, 0,−2, 0) and the related D(n)-quadruple

{(0, 1, 0, 3), (0,−36, 0, 26), (0,−39, 0, 31), (0,−151, 0, 111)}.

Example 2. If we could find n′ ∈ OK and u ∈ OK (an unit, if
possible) such that:
I n′u2 = n,
I {z1, z2, z3, z4} is a proper D(n′)-quadruple

then {z1u, z2u, z3u, z4u} would be a D(n)-quadruple (Lemma 2).
In this particular case, n′ = (68,−36, 17,−24), u = (3, 2, 0, 0) and
the D(n)-quadruple is
{(−2,−3, 2, 3), (−190,−165,−422, 597), (−186,−174,−430, 612), (−750,−675,−1706, 2415)}.
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Final conclusion

Theorem
Let n ∈ OK. A D(n)-quadruple in OK exists if and only if n can be
represented as a difference of two squares of elements from OK.

The fact that there is no exception in Conjecture is related to the
number of units in the particular ring, i.e. if the unit group of a
ring is infinite (like in rings integers of some real quadratic fields),
no exception is expected!
If there are only finitely many units in a ring, like in the ring of
rational integers and in ring of integers of imaginary quadratic
fields, the exceptions occur and it seems that they cannot be
eliminated with standard methods.
(The most prominent exception, n = −1 in Z. The conjecture says
that D(−1)-quadruple does not exist in Z. )
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