D(=1)-
quadruples

Mihai Cipu

Report on D(—1)-quadruples

Mihai Cipu
IMAR, Bucharest, ROMANIA

Representation Theory XVI
Dubrovnik, 28" June 2019
(joint work with N. C. Bonciocat and M. Mignotte)



Outline

D(-1)-
quadruples Prologue
Mihai Cipu ] Terminology

Main problems
m Existence
m A conjecture

Classical approach to find quadi
m Starting point

Alternative approach
m Different viewpoint
m A particular case
m The general case

References



Terminology

D(=1)-
quadruples

Mihai Cipu D(n) — m-set = set of m positive integers, the product
of any two being a perfect square minus n

Terminology



Terminology

D(=1)-
quadruples

Mihai Cipu D(n) — m-set = set of m positive integers, the product
of any two being a perfect square minus n

Terminology

n-pair = D(n) — 2-set



Terminology

D(=1)-
quadruples

Mihai Cipu D(n) — m-set = set of m positive integers, the product
of any two being a perfect square minus n

Terminology

n-pair = D(n) — 2-set

n-triple = D(n) — 3-set



D(=1)-
quadruples

Mihai Cipu

Terminology

Existence
\ conjecture

Starting point

Terminology

D(n) — m-set = set of m positive integers, the product
of any two being a perfect square minus n

n-pair = D(n) — 2-set
n-triple = D(n) — 3-set

n-quadruple = D(n) — 4-set



D(=1)-
quadruples

Mihai Cipu

Terminology

Existence

A\ conjecture

Starting point

Different

Terminology

D(n) — m-set = set of m positive integers, the product
of any two being a perfect square minus n

n-pair = D(n) — 2-set
n-triple = D(n) — 3-set
n-quadruple = D(n) — 4-set

n-quintuple = D(n) — 5-set



Terminology

D(—1)-

quadruples

Mihai Cipu D(n) — m-set = set of m positive integers, the product
of any two being a perfect square minus n

Terminology

. n-pair = D(n) — 2-set

A conjecture
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Different

n-quintuple = D(n) — 5-set

n=—1=—  pardi, tridi, quadi
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quadruples

Mihai Cipu
’ How large a D(n) — m-set can be?

Infinite if n =10
From now on n # 0

Dujella 2004 Any D(n) — m-set has

m < 31 if 1< |n| <400
m < 15.476 log |n| if |n| > 400
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Better answers

Brown, Gupta-Singh, Mohanty-Ramasamy 1985
There are no D(4k + 2)-quadruples

Dujella 2004 There are no D(1)-sextuples and only
finitely many D(1)-quintuples

Dujella-Luca 2005 Any D(n) — m-set with n prime has
m < 3.2108

Dujella-Fuchs 2005 There is no D(—1)-quadruple
whose smallest element is > 2. Hence, there is no
D(—1)-quintuple

Dujella-Filipin-Fuchs 2007 There are only finitely many
D(—1)-quadruples
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Bliznac TrebjeSanin-Filipin 2019 There is no
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Dujella 1993 if n ¢ S := {—4,-3,-1,3,5,12,20} and
n # 4k + 2 then there exists at least one D(n)-quadruple

Conjecture for n € S does not exist D(n)-quadruples
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Starting point

How to find D(—1)-sets

Prolongation: start with a pair, extend it to a triple,
then to a quadruple ...

Prolongation to a quadruple requires to solve a system
of three generalized Pell equations

Throughout {1, b, ¢, d} will be a quadi with
l<b<c<d

r, s, t are the positive integers defined by
b—1=r®c—1=5% bc—1=1+t?
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vt 3 D(—1)-quadruples <= the system
Mihai Cipu Z2—CX2:C—1, bzz_cy2:C_b,y2_bX2:b_1

is solvable in positive integers

< Zz =V, = w,, where the integer sequences
(Vp)p>0, (Wp)p=0 are given by explicit formulae

o = 2 ((s+ v/ + (s = v2)®).

Starting point

s+ pry/E o SNB= e,
Wo = —— SVOTPIVE (44 /by + 2¥2—PTVE L (t—v/bc)
for some fixed p € {—1,1}

Similarly for x, y
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Starting point

Classical approach

Establish inequalities between b, ¢, m, n by
transforming equalities of the form z = v,,, z = w, into
congruences

Associate a linear form in three logarithms to v,,, = w,
and use Baker's theory to obtain absolute bounds on ¢

Long computations give necessary conditions for the
existence of D(—1)-quadruples, including b > 1.024 - 103
and max{10'p, b'1°} < ¢ < min{9.6 b*, 10148}
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Novel approach

D(-1)-

quadruples
Mihai Cipu o .

Featuring the positive parameter

f=t—rs
Squaring f + rs = t, one gets
r? + 5% = 2frs + f2 *)

Different
viewpoint Our approach is essentially a study of solutions in

positive integers to equation (*) in its various disguises,
starting with (s — rf)? — (f> = 1)r? = £
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Mihai Cipu
Theorem
There are no D(—1)—quadruples with f = gcd(r,s). In
particular, there exists no D(—1)—quadruple for which the

corresponding f has no prime divisor congruent to 1
modulo 4.

Theorem
If c > b? then ¢ > 16b>.

A particular case
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D(—1)-
quadruples

Mihai Cipu When gcd(r,s) = f, the cardinal equation has positive
solutions
F(~k — mk F(yk+T _ mkt1
r:—(7 j), s = 4 il ), k e N,
Y= Y=
withy=f++vf2—landy=1Ff—+f2—1
Always %1 < b and — <
For k > 2 it holds 2 L ¢
I —_— f—



First step in the proof of Theorem A

D(—1)-
quadruples

Mihai Cipu

No quadi has ¢ > b in the special case.

A particular case



First step in the proof of Theorem A

D(—1)-
quadruples

Mihai Cipu
No quadi has ¢ > b in the special case.

b3§C:>’)/4k_2<b2< 2

C<
=5 g

A particular case



First step in the proof of Theorem A

D(—1)-
quadruples

Mihai Cipu
No quadi has ¢ > b in the special case.

b3§C:>’)/4k_2<b2< 2

C<
=5 g

— k<1

A particular case



First step in the proof of Theorem A

D(—1)-
quadruples

Mihai Cipu
No quadi has ¢ > b in the special case.

2

P<c=y*2<p<_ <y

S| 0

— k<1

Experimental result: no quadi has f < 107. In the
Apcunr e SPecial case no quadi has £ < 10°
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Second step in the proof of Theorem A

c>bhP —=k=1=b=Ff2+1c=4f*+1,
t=2+f

Vm = 2% (mod 8°)
4n3 +8n

w, = 2(pn+1)f? + ( 3

,0+4n2) f* (mod 8f°)

for suitable p € {£1}

Observe that n is even and use this to deduce
n = 4f2u for some positive integer u. Come back to the
congruence to get u = 0 (mod 2), so that n > 4f*.



D(=1)-
quadruples

Mihai Cipu

A particular case

Second step in the proof of Theorem A

c>bhP —=k=1=b=Ff2+1c=4f*+1,
t=2+f

Vm = 2% (mod 8°)
4n3 +8n

w, = 2(pn+1)f? + ( 3

,0+4n2) f* (mod 8f°)

for suitable p € {£1}

Observe that n is even and use this to deduce
n = 4f2u for some positive integer u. Come back to the
congruence to get u = 0 (mod 2), so that n > 4f*.

This inequality and Matveev's theorem yield f < 11300
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Third step in the proof of Theorem A

D(=1)-
quadruples

Mihai Cipu

B <c< b= k=2
Now it is preferable to use y = U,, = u;, where
uyo = (4b — 2)u1 — vy, u=r, u=2b—1)r,

Un+2 = (4bC - 2) Un+1 — Un7 UO = pr,
Ui = (2bc — 1)pr + 2bst.

The congruence mod r? gives
n>r—2=2(f2—1) > 1.999f2 From f > 10° it results
n > 108, in contradiction with a previous result

A particular case
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The general case

Write f = f1f,, with f; the product of all the prime
divisors of f which are congruent to 1 modulo 4,
multiplicity included. From now on f; > 5

Then r = hu, s= v, with
(v —fu)® = (f> — 1)u® = .

7k)7 S = fé(g’yk—i_

—F k+1)
-7 g

k>0

r = 7

f(e7* 1z

b —5 !
with € = vo + upV/f2 — 1 a fundamental solution to the
generalized Pell equation V2 — (f2 — 1)U? = 2 and

€ = Vo—Uo\/fZ—l_
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Properties in the general case

D(—1)-
quadruples
Mihai Cipu

Always ~? < b and

S| 0

For k > 1 it holds S

N~

k=0<= c> b?

For kK > 1 it holds

The general case f2 — ’Vi-‘ .
4p

N

AN
)

A
o |0
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Proof of Theorem B

D(=1)-
quadruples Theorem

Mihai Cipu If c > b2 then ¢ > 16b3.

As k =0, one has r = fhug, s = f(v + fup), with

fF+1 f,
1= e e = g =
2 2(F+1)

f2>2u3f =2uifhf = fi > 2uifh = 2uor
— f = fifb > 2ugrf = 212

The general case

Put f = 2r% + § in the cardinal equation to get a
quadratic polynomial in s whose discriminant is square only
ford =2r+1or > 4r+2
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