Extensions of a D(4)-triple

Marija Bliznac Trebješanin

University of Split

28.6. 2019.

Supported by Croatian Science Foundation under the project no. IP-2018-01-1313.

Definition

Let $n \in \mathbb{Z}$. Diophantine D(n)-m-tuple is a set of m positive integers $\{a_1,\ldots,a_m\}$, such that a_ia_j+n is a perfect square for each $1 \leq i < j \leq m$.

Definition

Let $n \in \mathbb{Z}$. Diophantine D(n)-m-tuple is a set of m positive integers $\{a_1, \ldots, a_m\}$, such that $a_i a_j + n$ is a perfect square for each $1 \le i < j \le m$.

- Diophantus:
 - for n = 1, quadruple in rational numbers $\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\}$

Definition

Let $n \in \mathbb{Z}$. Diophantine D(n)-m-tuple is a set of m positive integers $\{a_1, \ldots, a_m\}$, such that $a_i a_j + n$ is a perfect square for each $1 \le i < j \le m$.

- Diophantus:
 - for n=1, quadruple in rational numbers $\{\frac{1}{16},\frac{33}{16},\frac{17}{4},\frac{105}{16}\}$
 - for n = 256, quadruple in integers $\{1, 33, 68, 105\}$

Definition

Let $n \in \mathbb{Z}$. Diophantine D(n)-m-tuple is a set of m positive integers $\{a_1, \ldots, a_m\}$, such that $a_i a_j + n$ is a perfect square for each $1 \le i < j \le m$.

- Diophantus:
 - for n=1, quadruple in rational numbers $\{\frac{1}{16},\frac{33}{16},\frac{17}{4},\frac{105}{16}\}$
 - for n=256, quadruple in integers $\{1,33,6\overline{8},\overline{105}\}$
- Fermat: for n = 1, $\{1, 3, 8, 120\}$ quadruple in positive integers

Definition

Let $n \in \mathbb{Z}$. Diophantine D(n)-m-tuple is a set of m positive integers $\{a_1, \ldots, a_m\}$, such that $a_i a_j + n$ is a perfect square for each $1 \le i < j \le m$.

- Diophantus:
 - for n=1, quadruple in rational numbers $\{\frac{1}{16},\frac{33}{16},\frac{17}{4},\frac{105}{16}\}$
 - for n = 256, quadruple in integers $\{1, 33, 68, 105\}$
- Fermat: for n = 1, $\{1, 3, 8, 120\}$ quadruple in positive integers
- Euler:
 - for n = 1, infinitely many quadruple in positive integers $\{a, b, a + b + 2r, 4r(r + a)(r + b)\}$, where $r^2 = ab + 1$

Definition

Let $n \in \mathbb{Z}$. Diophantine D(n)-m-tuple is a set of m positive integers $\{a_1, \ldots, a_m\}$, such that $a_i a_j + n$ is a perfect square for each $1 \le i < j \le m$.

- Diophantus:
 - for n=1, quadruple in rational numbers $\{\frac{1}{16},\frac{33}{16},\frac{17}{4},\frac{105}{16}\}$
 - for n = 256, quadruple in integers $\{1, 33, 68, 105\}$
- Fermat: for n = 1, $\{1, 3, 8, 120\}$ quadruple in positive integers
- Euler:
 - for n = 1, infinitely many quadruple in positive integers $\{a, b, a + b + 2r, 4r(r + a)(r + b)\}$, where $r^2 = ab + 1$
 - for n = 1, rational quintuple $\{1, 3, 8, 120, \frac{777480}{8288641}\}$

Comparison of cases n = 1 and n = 4

Case n = 1

- pair $\{a, b\}$ extended with c = a + b + 2r
- triple $\{a, b, c\}$ extended with

$$d_+ = a + b + c + 2(abc + rst)$$

Case n = 4

- pair $\{a, b\}$ extended with c = a + b + 2r
- triple $\{a, b, c\}$ extended with

$$d_{+} = a + b + c + \frac{1}{2}(abc + rst)$$

Comparison of cases n = 1 and n = 4

Case n = 1

- pair $\{a, b\}$ extended with c = a + b + 2r
- triple $\{a, b, c\}$ extended with

$$d_+ = a + b + c + 2(abc + rst)$$

- Dujella (2004.) nonexistence of sextuples
- He, Togbe, Ziegler (2019) nonexistence of quintuples

Case n = 4

- pair $\{a, b\}$ extended with c = a + b + 2r
- triple $\{a, b, c\}$ extended with

$$d_+ = a + b + c + \frac{1}{2}(abc + rst)$$

- Filipin (2008.) nonexistence of sextuples
- B.T. and Filipin (2019) nonexistence of quintuples

Comparison of cases n = 1 and n = 4

Case n = 1

- pair $\{a, b\}$ extended with c = a + b + 2r
- triple $\{a, b, c\}$ extended with

$$d_+ = a + b + c + 2(abc + rst)$$

- Dujella (2004.) nonexistence of sextuples
- He, Togbe, Ziegler (2019) nonexistence of quintuples
- Conjecture: uniqueness of extension to a quadruple

Case n = 4

- pair $\{a, b\}$ extended with c = a + b + 2r
- triple $\{a, b, c\}$ extended with

$$d_+ = a + b + c + \frac{1}{2}(abc + rst)$$

- Filipin (2008.) nonexistence of sextuples
- B.T. and Filipin (2019) nonexistence of quintuples
- Conjecture: uniqueness of extension to a quadruple

Known results in the D(4)-case

Let $\{a,b,c,d\}$ be a D(4)-quadruple such that $a < b < c < d_+ < d$, i.e. an irregular quadruple.

Baćić, Filipin (2013) Then $b > 10^4$.

Filipin (2017) Then $b \ge a + 57\sqrt{a}$.

Filipin (2008) Then $c < \max\{7b^{11}, 10^{26}\}$.

Known results in the D(4)-case

Let $\{a,b,c,d\}$ be a D(4)-quadruple such that $a < b < c < d_+ < d$, i.e. an irregular quadruple.

Baćić, Filipin (2013) Then $b > 10^4$.

Filipin (2017) Then $b \ge a + 57\sqrt{a}$.

Filipin (2008) Then $c < \max\{7b^{11}, 10^{26}\}$.

Results for some specific parametric families of pairs and triples.

Dujella, Ramasamy (2005) If
$$\{a,b,c\} = \{F_{2k}, 5F_{2k}, 4F_{2k+2}\}$$
 then $d=d_+=4L_{2k}F_{4k+2}.$

Filipin, He, Togbe (2012) If
$$\{a,b,c\} = \{k,A^2k+4A,(A+1)^2k+4(A+1)\},\ k\in\mathbb{Z} \text{ and } 1\leq A\leq 22 \text{ or } A\geq 51767 \text{ then } d=d_+.$$

Filipin, Baćić (2013) If $\{a, b\} = \{k - 2, k + 2\}, k \ge 3$ then $d = d_+$.

New results in the D(1) case

Theorem (Fujita, Miyazaki (2018))

Any fixed Diophantine triple can only be extended to a Diophantine quadruple in at most 11 ways by joining a fourth element exceeding the maximal element in the triple.

Theorem (Fujita, Miyazaki (2018))

Any fixed **regular** Diophantine triple can only be extended to a Diophantine quadruple in **at most 4 ways** by joining a fourth element exceeding the maximal element in the triple.

New results in the D(1) case

Theorem (Fujita, Miyazaki (2018))

Any fixed Diophantine triple can only be extended to a Diophantine quadruple in at most 11 ways by joining a fourth element exceeding the maximal element in the triple.

Theorem (Fujita, Miyazaki (2018))

Any fixed **regular** Diophantine triple can only be extended to a Diophantine quadruple in **at most 4 ways** by joining a fourth element exceeding the maximal element in the triple.

Theorem (Cipu, Fujita, Miyazaki (2018))

Any fixed Diophantine triple can only be extended to a Diophantine quadruple in at most 8 ways by joining a fourth element exceeding the maximal element in the triple.

Main result in the D(4) case

Theorem

Any D(4)-triple can be extended to a D(4)-quadruple with

 $d > \max\{a, b, c\}$ in at most 8 ways.

A regular D(4)-triple $\{a, b, c\}$ can be extended to a D(4)-quadruple with $d > \max\{a, b, c\}$ in at most 4 ways.

Let us observe a fixed D(4)-pair $\{a, b\}$, a < b. Then

$$ab + 4 = r^2, \quad r \in \mathbb{N}.$$

Let us observe a fixed D(4)-pair $\{a, b\}$, a < b. Then

$$ab + 4 = r^2, \quad r \in \mathbb{N}.$$

If we extend it with c to a triple $\{a,b,c\}$, a < b < c, then there exist $s,t \in \mathbb{N}$ s.t.

$$ac + 4 = s^2$$
, $bc + 4 = t^2$.

These equations yield a Pellian equation with unknowns (s, t)

$$bs^2 - at^2 = 4(b - a).$$

A solution (s,t) can be described as an element of a sequence (s_{ν},t_{ν}) , $\nu \in \mathbb{N}_0$, where (s_0,t_0) is a fundamental solution of the Pellian equation, and

$$t_{
u}\sqrt{a}+s_{
u}\sqrt{b}=\left(t_0\sqrt{a}+s_0\sqrt{b}\right)\left(rac{r+\sqrt{ab}}{2}
ight)^{
u}.$$

A solution (s,t) can be described as an element of a sequence (s_{ν},t_{ν}) , $\nu\in\mathbb{N}_0$, where (s_0,t_0) is a fundamental solution of the Pellian equation, and

$$t_{\nu}\sqrt{a}+s_{\nu}\sqrt{b}=\left(t_{0}\sqrt{a}+s_{0}\sqrt{b}\right)\left(\frac{r+\sqrt{ab}}{2}\right)^{\nu}.$$

Any fundamental solution (s_0, t_0) satisfies inequalities

$$2 \le s_0 < \sqrt{r+2}, \qquad 2 \le |t_0| \le \sqrt{\frac{b\sqrt{b}}{\sqrt{a}}}.$$

If we consider an extension of a D(4)-triple $\{a,b,c\}$ to a D(4)-quadruple with an element d then there must exist $x,y,z\in\mathbb{N}$

$$ad + 4 = x^2$$
, $bd + 4 = y^2$, $cd + 4 = z^2$.

If we consider an extension of a D(4)-triple $\{a,b,c\}$ to a D(4)-quadruple with an element d then there must exist $x,y,z\in\mathbb{N}$

$$ad + 4 = x^2$$
, $bd + 4 = y^2$, $cd + 4 = z^2$.

These equations induce a system of Pellian equations

$$cx^2-az^2=4(c-a),$$

$$cy^2-bz^2=4(c-b).$$

If we consider an extension of a D(4)-triple $\{a,b,c\}$ to a D(4)-quadruple with an element d then there must exist $x,y,z\in\mathbb{N}$

$$ad + 4 = x^2$$
, $bd + 4 = y^2$, $cd + 4 = z^2$.

These equations induce a system of Pellian equations

$$cx^{2} - az^{2} = 4(c - a),$$

 $cy^{2} - bz^{2} = 4(c - b).$

Solution z is an element of sequences v_m and w_n - solutions of these equations,

$$v_0 = z_0, \ v_1 = \frac{1}{2} (sz_0 + cx_0), \ v_{m+2} = sv_{m+1} - v_m,$$

 $w_0 = z_1, \ w_1 = \frac{1}{2} (tz_1 + cy_1), \ w_{n+2} = tw_{n+1} - w_n.$

A regular quadruple

An extension of a triple $\{a,b,c\}$ to a quadruple with a larger element does exist:

$$d_{+} = a + b + c + \frac{1}{2}(abc + rst).$$

A regular quadruple

An extension of a triple $\{a, b, c\}$ to a quadruple with a larger element does exist:

$$d_{+} = a + b + c + \frac{1}{2}(abc + rst).$$

Lemma

Let $\{a, b, c\}$ be a D(4)-triple such that $z = v_m = w_n$ has a solution (m, n) for which $d = d_+ = \frac{z^2 - 4}{c}$. Then only one of the following cases can occur:

- i) (m, n) = (2, 2) and $z_0 = z_1 = \frac{1}{2}(st cr)$,
- ii) (m, n) = (1, 2) and $z_0 = t$, $z_1 = \frac{1}{2}(st cr)$,
- iii) (m, n) = (2, 1) and $z_0 = \frac{1}{2}(st cr)$, $z_1 = s$,
- iv) (m, n) = (1, 1) and $z_0 = t$, $z_1 = s$.

Fundamental solutions

Filipin (2009)

Suppose that $\{a, b, c, d\}$ is a D(4)-quadruple with a < b < c < d and that w_m and v_n are defined as before. If $z = v_m = w_n$ has a solution with

- i) m and n both even, then $z_0=z_1$ and $|z_0|=2$ or $|z_0|=\frac{1}{2}(cr-st)$ or $z_0<1.608a^{-5/14}c^{9/14}$.
- ii) m odd and n even, then $z_0z_1<0$ and $|z_0|=t$ and $|z_1|=\frac{1}{2}(cr-st)$.
- iii) m even and n odd, then $z_0z_1<0$ and $|z_1|=s$ and $|z_0|=\frac{1}{2}(cr-st)$.
- iv) m and n both odd, then $z_0z_1>0$ and $|z_0|=t$ and $|z_1|=s$.

Fundamental solutions

Filipin (2009)

Suppose that $\{a, b, c, d\}$ is a D(4)-quadruple with a < b < c < d and that w_m and v_n are defined as before. If $z = v_m = w_n$ has a solution with

- i) m and n both even, then $z_0=z_1$ and $|z_0|=2$ or $|z_0|=\frac{1}{2}(cr-st)$ or $z_0<1.608a^{-5/14}c^{9/14}$.
- ii) m odd and n even, then $z_0z_1<0$ and $|z_0|=t$ and $|z_1|=\frac{1}{2}(cr-st)$.
- iii) m even and n odd, then $z_0z_1<0$ and $|z_1|=s$ and $|z_0|=\frac{1}{2}(cr-st)$.
- iv) m and n both odd, then $z_0z_1>0$ and $|z_0|=t$ and $|z_1|=s$.

Fundamental solutions - new result

Theorem

Suppose that $\{a, b, c, d\}$ is a D(4)-quadruple with a < b < c < d and that w_m and v_n are defined as before. If $z = v_m = w_n$ has a solution with

- i) m and n both even, then $z_0 = z_1$ and $|z_0| = 2$ or $|z_0| = \frac{1}{2}(cr st)$.
- ii) m odd and n even, then $z_0z_1<0$ and $|z_0|=t$ and $|z_1|=\frac{1}{2}(cr-st)$.
- iii) m even and n odd, then $z_0z_1<0$ and $|z_1|=s$ and $|z_0|=\frac{1}{2}(cr-st)$.
- iv) m and n both odd, then $z_0z_1 > 0$ and $|z_0| = t$ and $|z_1| = s$.

Moreover, if $d > d_+$, case ii) cannot occur.

Outline of classical methods

- congruence method
- Baker's method on linear forms in logarithms- Matveev's theorem and Laurent's theorem,
- Rickert's theorem on simultaneous rational approximation of irrationals
- Baker and Davenport's reduction method

Numerical lower bound on an element b

Lemma

If $\{a, b, c, d\}$ is a D(4)-quadruple such that a < b < c < d and $b \le 10^5$ then $d = d_+$.

Lemma (Dujella, Pethö)

Assume that M is a positive integer. Let p/q be the convergent of the continued fraction expansion of a real number κ such that q>6M and let

$$\eta = \|\mu q\| - M \cdot \|\kappa q\|,$$

where $\|\cdot\|$ denotes the distance from the nearest integer. If $\eta>0$, then the inequality

$$0 < J\kappa - K + \mu < AB^{-J}$$

has no solution in integers J and K with $\frac{\log(Aq/\eta)}{\log B} \leq J \leq M$.

Bound on c in the terms of b

Theorem

Let $\{a, b, c, d\}$ be a D(4)-quadruple and a < b < c < d. Then

- i) if b < 2a and $c \ge 890b^4$ or
- ii) if $2a \le b \le 12a$ and $c \ge 1613b^4$ or
- iii) if b > 12a and $c \ge 39247b^4$

we must have $d = d_+$.

Following idea by Okazaki:

Let us assume that there are 3 solutions to the equation $z=v_m=w_n$ which belong to the same fundamental solution, denote (m_i,n_i) , i=0,1,2 and $\Lambda_0=m_0\log\frac{s+\sqrt{ac}}{2}-n_0\log\frac{t+\sqrt{bc}}{2}+\log\mu$, then

$$m_2 - m_1 > \Lambda_0^{-1} \Delta \log \frac{t + \sqrt{bc}}{2},$$

where
$$\Delta = \left| \begin{array}{cc} n_1 - n_0 & n_2 - n_1 \\ m_1 - m_0 & m_2 - m_1 \end{array} \right| > 0.$$

Following idea by Okazaki:

Let us assume that there are 3 solutions to the equation $z=v_m=w_n$ which belong to the same fundamental solution, denote (m_i,n_i) , i=0,1,2 and $\Lambda_0=m_0\log\frac{s+\sqrt{ac}}{2}-n_0\log\frac{t+\sqrt{bc}}{2}+\log\mu$, then

$$m_2 - m_1 > \Lambda_0^{-1} \Delta \log \frac{t + \sqrt{bc}}{2},$$

where
$$\Delta = \left| \begin{array}{cc} n_1 - n_0 & n_2 - n_1 \\ m_1 - m_0 & m_2 - m_1 \end{array} \right| > 0.$$

If
$$c > b > 10^5$$
, then

$$m_0 \leq 2$$
.

Let $\{a,b,c\}$ be a D(4)-triple, a < b < c. Let N denote a number of extensions of a triple to an irregular quadruple with $d > d_+$.

Let $\{a, b, c\}$ be a D(4)-triple, a < b < c.

Let N denote a number of extensions of a triple to an irregular quadruple with $d>d_{+}.$

Then:

$$N = N_{ee} + N_{eo} + N_{oo}$$
.

Let $\{a, b, c\}$ be a D(4)-triple, a < b < c.

Let $\it N$ denote a number of extensions of a triple to an irregular quadruple with $\it d>\it d_+$.

Then:

$$N = N_{ee} + N_{eo} + N_{oo}$$
.

If c = a + b + 2r then:

• since c = a + b + 2r < 4b, only the case N_{ee} can hold,

Let $\{a, b, c\}$ be a D(4)-triple, a < b < c.

Let $\it N$ denote a number of extensions of a triple to an irregular quadruple with $\it d>\it d_+$.

Then:

$$N = N_{ee} + N_{eo} + N_{oo}$$
.

If c = a + b + 2r then:

- since c = a + b + 2r < 4b, only the case N_{ee} can hold,
- we have s = a + r, t = b + r and $\frac{1}{2}(st cr) = 2$

Let $\{a, b, c\}$ be a D(4)-triple, a < b < c.

Let N denote a number of extensions of a triple to an irregular quadruple with $d>d_{+}.$

Then:

$$N = N_{ee} + N_{eo} + N_{oo}$$
.

If c = a + b + 2r then:

- since c = a + b + 2r < 4b, only the case N_{ee} can hold,
- we have s = a + r, t = b + r and $\frac{1}{2}(st cr) = 2$
- SO

$$N = N_{ee} = N(2,2) + N(-2,-2) \le 1 + 2 = 3.$$

"Shifting" a sequence

Observe

<i>v</i> ₀	v_1	V ₂	<i>V</i> 3
t	$\frac{1}{2}(cr+st)$	$\frac{1}{2}((s^2-1)t+crs)$	$\frac{1}{2}(cr(s^2-1)+st(ac+1))$
$-\frac{1}{2}(cr-st)$	t	$\frac{1}{2}(cr+st)$	$\frac{1}{2}((s^2-1)t+crs)$

"Shifting" a sequence

Observe

<i>v</i> ₀	v_1	<i>v</i> ₂	<i>V</i> ₃
t	$\frac{1}{2}(cr+st)$	$\frac{1}{2}((s^2-1)t+crs)$	$\frac{1}{2}(cr(s^2-1)+st(ac+1))$
$-\frac{1}{2}(cr-st)$	t	$\frac{1}{2}(cr+st)$	$rac{1}{2}((s^2-1)t+crs)$

Let $\{v_{z_0,m}\}$ denote a sequence $\{v_m\}$ with an initial value z_0 .

$$V_{\frac{1}{2}(cr-st),m} = V_{-t,m+1}, \quad V_{-\frac{1}{2}(cr-st),m+1} = V_{t,m}$$

for each m > 0 and

$$w_{\frac{1}{2}(cr-st),n} = w_{-s,n+1}, \quad w_{-\frac{1}{2}(cr-st),n+1} = w_{s,n}$$

for each n > 0.

If
$$c > a + b + 2r$$
 then:

• also
$$c > ab + a + b$$

If c > a + b + 2r then:

- also c > ab + a + b
- we have

$$N = N(-2, -2) + N(2, 2) + N'(z_0^-, z_1^-) + N'(z_0^+, z_1^+)$$

where

$$\begin{array}{l} (z_0^+,z_1^+) \in \left\{ \left(\frac{1}{2} (st-cr), \frac{1}{2} (st-cr) \right), \left(t, \frac{1}{2} (st-cr) \right), \ \left(\frac{1}{2} (st-cr), s \right), \\ (t,s) \right\} \ \text{and} \ \left(z_0^-, z_1^- \right) = \left(-z_0^+, -z_1^+ \right). \end{array}$$

If c > a + b + 2r then:

- also c > ab + a + b
- we have

$$N = N(-2, -2) + N(2, 2) + N'(z_0^-, z_1^-) + N'(z_0^+, z_1^+)$$

where

$$\begin{array}{l} (z_0^+,z_1^+) \in \left\{ \left(\frac{1}{2} (st-cr), \frac{1}{2} (st-cr) \right), \left(t, \frac{1}{2} (st-cr) \right), \ \left(\frac{1}{2} (st-cr), s \right), \\ (t,s) \right\} \ \text{and} \ \left(z_0^-, z_1^- \right) = \left(-z_0^+, -z_1^+ \right). \end{array}$$

- $N'(z_0^+, z_1^+) \le 2$ and $N'(z_0^-, z_1^-) \le 2$
- $N'(z_0^+, z_1^+) = N'(t, s) \le 1$ for $c > b^2$

Theorem

Let $\{a, b, c\}$ be a D(4)-triple with a < b < c.

- i) If c = a + b + 2r, then $N \le 3$.
- ii) If $a + b + 2r \neq c < b^2$, then $N \leq 7$.
- iii) If $b^2 < c < 39247b^4$, then $N \le 6$.
- iv) If $c \ge 39247b^4$, then N = 0.

Proposition

Let $\{a,b\}$ be a D(4)-pair with a < b. Let $c = c_{\nu}^{\tau}$ given by

$$c = c_{\nu}^{\tau} = \frac{4}{ab} \left\{ \left(\frac{\sqrt{b} + \tau \sqrt{a}}{2} \right)^2 \left(\frac{r + \sqrt{ab}}{2} \right)^{2\nu} + \left(\frac{\sqrt{b} - \tau \sqrt{a}}{2} \right)^2 \left(\frac{r - \sqrt{ab}}{2} \right)^{2\nu} - \frac{a + b}{2} \right\}$$

where $\tau \in \{1, -1\}$ and $\nu \in \mathbb{N}$.

- i) If $c = c_1^{\tau}$ for some τ , then $N \leq 3$.
- ii) If $c_2^+ \le c \le c_4^+$ then $N \le 6$.
- iii) If $c=c_2^-$ and $a\geq 2$ then $N\leq 6$ and if a=1 then $N\leq 7$.
- iv) If $c \ge c_5^-$ or $c \ge c_4^-$ and $a \ge 35$ then N = 0.

Corollary

Let $\{a, b, c\}$ be a D(4)-triple. If $a < b \le 6.85a$ then $N \le 6$.

Thank you for your attention.