Effective results for Diophantine equations over finitely generated domains

A. Bérczes

Dubrovnik, 2019

向下 イヨト イヨト

1 Introduction

- Finitely generated domains
- Results over arbitrary finitely generated domains

2 Some words on the proofs

- The method of Evertse and Győry
- Some words about the proof of the Theorem on division points

向下 イヨト イヨト

Topic of the talk

- Let A = ℤ[z₁,..., z_r] be an integral domain of characteristic 0 which is finitely generated over ℤ.
- Assume that r > 0.
- We consider several types of Diophantine problems over A:
 - Thue equations
 - hyper- and superelliptic equations
 - the Schinzel-Tijdeman equation
 - unit points on curves
 - division points on curves

Main goal

Prove effective results for such equations, i.e. results which imply that these equations have finitely many solutions and provide a theoretical way to find all these solutions

イロン イヨン イヨン イヨン

Historical remarks – The 1980's

- Győry in the 1980's introduced effective specializations to prove effective results over a special type of finitely generated domain
- Using this method Győry proved effective results over special finitely generated domains for
 - unit equations
 - norm form equations
 - index form equations
 - discriminant form equations
 - polynomials and integral elements of given discriminant
- Brindza, Pintér, Végső and others used this method to prove results for several other types of equations

・ 同 ト ・ ヨ ト ・ ヨ ト

Historical remarks – Recent years

- In 2011 Evertse and Győry extended the method of Győry making possible to prove effective finiteness results for arbitrary finitely generated domains.
- Using the improved method several effective results have been proved for diophantine equations over finitely generated domains:
 - unit equations in two unknowns Evertse and Győry, 2011
 - Thue equations B., Evertse and Győry, 2014
 - hyper- and superelliptic equations B., Evertse and Győry, 2014
 - the Schinzel-Tijdeman equation B., Evertse and Győry, 2014
 - unit points on curves Bérczes, 2015
 - division points on curves Bérczes, 2015
 - the generalized Catalan equation Koymans, 2017
 - discriminant equations Evertse and Győry, 2017
 - decomposable form equations Győry, 20??

The finitely generated domain A

• Let
$$A = \mathbb{Z}[z_1, \ldots, z_r]$$
 be as above, and put

$$I := \{ f \in \mathbb{Z}[X_1, ..., X_r] \mid f(z_1, ..., z_r) = 0 \}.$$

Then we have

$$A \cong \mathbb{Z}[X_1,\ldots,X_r]/I.$$

Further, the ideal I is finitely generated, say

$$I=(f_1,\ldots,f_t).$$

- We may view f_1, \ldots, f_t as a representation for A.
- A is a domain of char $0 \iff I$ is a prime ideal with $I \cap \mathbb{Z} = (0)$
- Given a set of generators $\{f_1, \ldots, f_t\}$ for *I* this can be checked effectively

イロト イポト イラト イラト 一日

Representing elements of A

Let A be as above and let K be its quotient field.

- For $\alpha \in A$, we call f a *representative* for α , or we say that f represents α , if $f \in \mathbb{Z}[X_1, \ldots, X_r]$ and $\alpha = f(z_1, \ldots, z_r)$.
- Further, for α ∈ K we call (f,g) a representation pair for α, or say that (f,g) represents α if f, g ∈ Z[X₁,...,X_r], g ∉ I and α = f(z₁,...,z_r)/g(z₁,...,z_r).
- Using an ideal membership algorithm for $\mathbb{Z}[X_1, \ldots, X_r]$ one can decide effectively
 - whether two polynomials $f', f'' \in \mathbb{Z}[X_1, \ldots, X_r]$ represent the same element of A, i.e., $f' f'' \in I$
 - whether two pairs (f', g'), (f'', g'') in $\mathbb{Z}[X_1, \ldots, X_r]$ represent the same element of K, i.e., $g' \notin I$, $g'' \notin I$ and $f'g'' f''g' \in I$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

Effective computations in A

- Based on results of Aschenbrenner one can perform arithmetic operations on A and K by using representatives.
- For $0 \neq f \in \mathbb{Z}[X_1, \dots, X_r]$, denote by
 - $\deg f$ the total degree of f
 - h(f) the logarithmic height of f, i.e. the logarithm of the maximum of the absolute values of its coefficients.
 - s(f) the size of f, which is defined by

$$\begin{split} s(f) &:= \max(1, \deg f, h(f)) \qquad \text{for} \quad f \neq 0\\ s(0) &:= 1 \end{split}$$

 It is clear that there are only finitely many polynomials in ℤ[X₁,...,X_r] of size below a given bound, and these can be determined effectively.

The result on unit equations

Theorem (Evertse and Győry, 2013)

Assume that $r \ge 1$. Let $a, b, c \in A \setminus \{0\}$ and let $\tilde{a}, \tilde{b}, \tilde{c}$ be representatives for a, b, c, respectively. Assume that f_1, \ldots, f_t and $\tilde{a}, \tilde{b}, \tilde{c}$ all have degree at most d and logarithmic height at most h, where $d \ge 1, h \ge 1$. Then for each solution (ε, η) of the equation

$$\mathsf{a}arepsilon+\mathsf{b}\eta=\mathsf{c}\qquad \mathsf{in}\ arepsilon,\eta\in\mathsf{A}^*$$

there are representatives $\tilde{\varepsilon}, \tilde{\varepsilon'}, \tilde{\eta}, \tilde{\eta'}$ of $\varepsilon, \varepsilon^{-1}, \eta, \eta^{-1}$, respectively, such that

$$s(ilde{arepsilon}), s(ilde{arepsilon'}), s(ilde{\eta}); s(ilde{\eta'}) \leq \exp\left((2d)^{c'}(h+1)
ight)$$

where c is an effectively computable absolute constant > 1.

イロト イポト イヨト イヨト

3

The Thue equation over finitely generated domains

The equation.

We consider the Thue equation over A,

$$F(x,y) = \delta$$
 in $x, y \in A$, (1)

where

$$F(X,Y) = a_0X^n + a_1X^{n-1}Y + \cdots + a_nY^n \in A[X,Y]$$

is a binary form of degree $n \ge 3$ with discriminant $D_F \ne 0$, and $\delta \in A \setminus \{0\}$. Choose representatives

$$\tilde{a_0}, \tilde{a_1}, \ldots, \tilde{a_n}, \tilde{\delta} \in \mathbb{Z}[X_1, \ldots, X_r]$$

of $a_0, a_1, \ldots, a_n, \delta$, respectively.

We must have $\tilde{\delta} \not\in I$, $D_{\tilde{F}} \not\in I$ which can be checked effectively.

The result on Thue equations over A

Let

$$\max(\deg f_1, \dots, \deg f_t, \deg \tilde{a_0}, \deg \tilde{a_1}, \dots, \deg \tilde{a_n}, \deg \tilde{\delta}) \leq d$$
$$\max(h(f_1), \dots, h(f_t), h(\tilde{a_0}), h(\tilde{a_1}), \dots, h(\tilde{a_n}), h(\tilde{\delta})) \leq h,$$
(2)

where $d \ge 1$, $h \ge 1$.

Theorem (Bérczes, Evertse and Győry, 2014)

Every solution x, y of equation (1) has representatives \tilde{x}, \tilde{y} such that

$$s(\tilde{x}), s(\tilde{y}) \leq \exp\left(n!(nd)^{\exp O(r)}(h+1)\right).$$
(3)

・ロト ・回ト ・ヨト ・ヨト

Effectiveness of the above Theorem

The above result on Thue equations implies that the equation is effectively solvable in the sense that one can compute in principle a finite list, consisting of one pair of representatives for each solution (x, y) of the equation. Indeed:

- Let f₁,..., f_t ∈ ℤ[X₁,..., X_r] be given such that A is a domain, and let representatives ã₀, ã₁,..., ã_n, δ of a₀, a₁,..., a_n, δ be given such that δ, D_Ĕ ∉ I.
- Let C be the upper bound from (3).
- Check for each pair of polynomials $\tilde{x}, \tilde{y} \in \mathbb{Z}[X_1, \ldots, X_r]$ of size at most C whether $\tilde{F}(\tilde{x}, \tilde{y}) \tilde{\delta} \in I$.
- Check for all pairs x, y passing this test whether they are equal modulo I, and keep a maximal subset of pairs that are different modulo I.

Hyper- and superelliptic equations

The equation.

We now consider the equation

$$F(x) = \delta y^m$$
 in $x, y \in A$, (4)

where

$$F(X) = a_0 X^n + a_1 X^{n-1} + \dots + a_n \in A[X]$$

is a polynomial of degree *n* with discriminant $D_F \neq 0$, and where $\delta \in A \setminus \{0\}$. We assume that either m = 2 and $n \ge 3$ (hyperelliptic equation), or $m \ge 3$ and $n \ge 2$ (superelliptic equation). Choose again representatives

$$\widetilde{a_0}, \widetilde{a_1}, \dots, \widetilde{a_n}, \widetilde{\delta} \in \mathbb{Z}[X_1, \dots, X_r]$$

for $a_0, a_1, \ldots, a_n, \delta$, respectively.

We must have $\widetilde{\delta} \not\in I$, $D_{\widetilde{F}} \not\in I$ which can be checked effectively.

ヘロン 人間 とくほど くほとう

Results for hyper- and superelliptic equations

Let

$$\max(\deg f_1, \dots, \deg f_t, \deg \tilde{a_0}, \deg \tilde{a_1}, \dots, \deg \tilde{a_n}, \deg \tilde{\delta}) \leq d \max(h(f_1), \dots, h(f_t), h(\tilde{a_0}), h(\tilde{a_1}), \dots, h(\tilde{a_n}), h(\tilde{\delta})) \leq h,$$
(5)

where $d \ge 1$, $h \ge 1$.

Theorem (Bérczes, Evertse and Győry, 2014)

Every solution x, y of equation (7) has representatives \tilde{x}, \tilde{y} such that

$$s(\tilde{x}), s(\tilde{y}) \leq \exp\left(m^3(nd)^{\exp O(r)}(h+1)\right).$$
(6)

イロト イポト イヨト イヨト

Effectiveness of the Theorem on hyper/superelliptic equations

The above result on hyper- and superelliptic equations implies that the equation is effectively solvable in the sense that one can compute in principle a finite list, consisting of one pair of representatives for each solution (x, y) of the equation. Indeed:

- Let f₁,..., f_t ∈ ℤ[X₁,..., X_r] be given such that A is a domain, and let representatives ã₀, ã₁,..., ã_n, δ of a₀, a₁,..., a_n, δ be given such that δ, D_˜ ∉ I.
- Let C be the upper bound from (6).
- Check for each pair of polynomials $\tilde{x}, \tilde{y} \in \mathbb{Z}[X_1, \dots, X_r]$ of size at most C whether $\tilde{F}(\tilde{x}) \tilde{\delta}\tilde{y}^m \in I$.
- Check for all pairs x, y passing this test whether they are equal modulo I, and keep a maximal subset of pairs that are different modulo I.

Result on the Schinzel-Tijdeman equation

We now consider again the equation

$$F(x) = \delta y^m \quad \text{in} \quad x, y \in A, m \in \mathbb{Z}_{\geq 2}, \tag{7}$$

but now in three variables x, y, m. Under the above assumption on A, F and δ we have

Theorem (Bérczes, Evertse and Győry, 2014)

Assume that in (7), F has non-zero discriminant and $n \ge 2$. Let $x, y \in A$, $m \in \mathbb{Z}_{\ge 2}$ be a solution of (7). Then

$$m \le \exp\left((nd)^{\exp O(r)}(h+1)\right)$$
(8)
if $y \in \overline{\mathbb{Q}}, y \ne 0, y$ is not a root of unity,
 $m \le (nd)^{\exp O(r)}$ if $y \notin \overline{\mathbb{Q}}.$ (9)

Unit points on curves

- A := ℤ[z₁,..., z_r] a domain which is finitely generated over ℤ, as ℤ-algebra
- K the quotient field of A
- \overline{K} the algebraic closure of K
- A^* , K^* , \overline{K}^* denotes the unit group of A, K, \overline{K} , respectively.
- Γ a finitely generated subgroup of K^*
- $\overline{\Gamma}$ the division group of Γ
- F(X, Y) ∈ A[X, Y] a polynomial, such that F is not divisible by any polynomial of the form

$$X^m Y^n - \alpha$$
 or $X^m - \alpha Y^n$ (10)

for any $m, n \in \mathbb{Z}_{\geq 0}$, not both zero, and any $\alpha \in A$.

Consider the equation

$$F(x,y) = 0$$
 in $x, y \in \Gamma$

(11)

Introduction Some words on the proofs

Historical remarks for unit points and division points on curves

Let

$$C := \{(x, y) \in (\mathbb{C}^*)^2 \mid F(x, y) = 0\}$$

- Lang (1960) finiteness of $\mathcal{C} \cap \Gamma^2$ (ineffective)
- Liardet (1974) finiteness of $\mathcal{C} \cap \overline{\Gamma}^2$ (ineffective)
- Bombieri and Gubler (2006) effective finiteness of $\mathcal{C}\cap\Gamma^2$ in the algebraic case
- B., Evertse and Győry (2009) explicit effective finiteness of $C \cap \overline{\Gamma}^2$ in the algebraic case

Goal:

Prove effective versions of the results of Lang and Liardet in the case of arbitrary finitely generated groups.

Recall that

- $A = \mathbb{Z}[z_1, \dots, z_r]$ integral domain finitely generated over \mathbb{Z}
- We assume that r > 0

•
$$A \cong \mathbb{Z}[X_1, \dots, X_r]/\mathcal{I}$$
 for
 $\mathcal{I} := \{f \in \mathbb{Z}[X_1, \dots, X_r] \mid f(z_1, \dots, z_r) = 0\}$

• we have $\mathcal{I} = (f_1, \ldots, f_t)$

Let $I \subset \mathbb{Z}^2_{\geq 0}$ be a non-empty set, and let

$$F(X,Y) = \sum_{(i,j)\in I} a_{ij}X^iY^j \in A[X,Y]$$

be a polynomial which fulfils the following condition:

F is not divisible by any non-constant polynomial of the form $X^m Y^n - \alpha$ or $X^m - \alpha Y^n$, where $m, n \in \mathbb{Z}_{\geq 0}$ and $\alpha \in \overline{K}^*$. (12)

(ロ) (同) (E) (E) (E)

Unit points on curves over finitely generated domains

- *F* is given by representatives $\tilde{a}_{ij} \in \mathbb{Z}[X_1, \dots, X_r]$ of its coefficients $a_{ij} \in A$
- We assume that d > 1 and h > 1 are real numbers with

$$\begin{array}{l} \deg f_1, \dots, \deg f_t, \deg \tilde{a}_{ij} \leq d \quad \text{for every} \quad (i, j) \in I \\ h(f_1), \dots, h(f_t), h(\tilde{a}_{ij}) \leq h \quad \text{for every} \quad (i, j) \in I. \end{array}$$

$$(13)$$

Theorem (Bérczes, 2015)

If A is a finitely generated domain as above, and F fulfils the condition (12) then for all elements (x, y) of the set

$$\mathcal{C} := \{ (x, y) \in (A^*)^2 | F(x, y) = 0 \}$$
(14)

there exist representatives \tilde{x} , \tilde{y} , \tilde{x}' and \tilde{y}' of x, y, x^{-1} and y^{-1} , respectively, with their sizes bounded by

$$\exp\left\{(2d)^{\exp O(r)}(2N)^{(\log^* N)\cdot \exp O(r)}\cdot (h+1)^3\right\}$$

Effectiveness of the above Theorem

The above result is effective, i.e. it provides an algorithm to determine, at least in principle, all elements of the set C.

- there are only finitely many polynomials of $\mathbb{Z}[X_1, \ldots, X_r]$ below our bound in the theorem
- (x, y) ∈ C is clearly fulfilled if and only if there are polynomials x̃, ỹ, x̃', ỹ' ∈ Z[X₁,...,X_r] with their sizes below the bound (5), which fulfil

$$\tilde{x} \cdot \tilde{x}' - 1, \ \tilde{y} \cdot \tilde{y}' - 1, \ \tilde{F}(\tilde{x}, \tilde{y}) \in \mathcal{I}.$$
 (15)

- so we can enlist all 4-tuples $(\tilde{x}, \tilde{y}, \tilde{x}', \tilde{y}')$ with $s(\tilde{x}), s(\tilde{y}), s(\tilde{x}'), s(\tilde{y}')$ being smaller than our bound
- ullet using an ideal membership algorithm check if (15) is fulfilled
- finally, group all the tuples in which (\tilde{x}, \tilde{y}) represent the same pair $(x, y) \in (A^*)^2$ and pick out one pair from each group
- so we get a list consisting of one representative for each element of the set C.

Assumptions for the results on division points

- $F(X, Y) \in A[X, Y]$ is a polynomial as above
- $\gamma_1, \ldots, \gamma_s \in K^*$ are arbitrary non-zero elements of K
- they are given by corresponding representation pairs $(g_1, h_1), \ldots, (g_s, h_s)$

•
$$\Gamma := \left\{ \gamma_1^{l_1} \dots \gamma_s^{l_s} \mid l_1, \dots, l_s \in \mathbb{Z} \right\}$$

• $\overline{\Gamma} := \left\{ \delta \in \overline{K} \mid \exists \ m \in \mathbb{Z}_{>0} : \ \delta^m \in \Gamma \right\}$

Further, we assume that

 $\deg f_1, \dots, \deg f_t, \deg g_1, \dots, \deg g_s, \deg h_1, \dots, \deg h_s, \deg \tilde{a}_{ij} \leq d$ $h(f_1), \dots, h(f_t), h(g_1), \dots, h(g_s), h(h_1), \dots, h(h_s), h(\tilde{a}_{ij}) \leq h,$

where $(i,j) \in I$ and d, h are real numbers with d > 1 and h > 1.

Division points on curves I.

Theorem (Theorem for division points on curves – part (i))

(i) Let A, $\overline{\Gamma}$, and F be as specified above. Define the set

$$\mathcal{C} := \{ (x, y) \in (\overline{\Gamma})^2 | F(x, y) = 0 \}.$$

$$(16)$$

Then there exists a suitably large effectively computable constant C_1 such that for

$$M_0 := \left[N^6 (2d)^{\exp\{C_1(r+s)\}} (h+1)^{4s} \right]$$

and $m := \text{lcm}(1, \ldots, M_0)$ we have

 $x^m \in \Gamma$ and y'

 $y^m \in \Gamma$,

for every $(x, y) \in C$.

Division points on curves II.

Theorem (Theorem for division points on curves – part (ii))

(ii) Let m be the exponent fixed in part (i) and recall that

$$\mathcal{C} := \{ (x, y) \in (\overline{\Gamma})^2 | F(x, y) = 0 \}.$$
(17)

Then there exists an effectively computable constant C_2 and integers $t_{1,x}, \ldots, t_{s,x}, t_{1,y}, \ldots, t_{s,y}$ with

$$t_{i,x}, t_{i,y} \le \exp\left\{\exp\left\{N^{12}(2d)^{\exp\{C_2(r+s)\}}(h+1)^{8s}\right\}\right\}$$
(18)

for $i = 1, \ldots, s$, such that

$$x^{m} = \gamma_{1}^{t_{1,x}} \dots \gamma_{s}^{t_{s,x}}, \qquad y^{m} = \gamma_{1}^{t_{1,y}} \dots \gamma_{s}^{t_{s,y}}.$$
 (19)

・ロト ・同ト ・ヨト ・ヨト

Reduction to a larger domain B

- z_1, \ldots, z_q maximal alg. independent subset of z_1, \ldots, z_r
- $A_0 := \mathbb{Z}[z_1, \ldots, z_q]$, $K_0 := \mathbb{Q}(z_1, \ldots, z_q)$
- The field K is a finite extension of K_0 , i.e. $K = K_0(w)$
- We shall construct an integral extension B of A in K such that

$$A \subseteq B := A_0[w, f^{-1}],$$
 (20)

where $f \in A_0$ and w is a primitive element of K over K_0 which is integral over A_0 , with minimal polynomial $\mathcal{F}(X) = X^D + \mathcal{F}_1 X^{D-1} + \cdots + \mathcal{F}_D \in A_0[X]$, and with

 $D, \deg f, \deg \mathcal{F}_k, h(f), h(\mathcal{F}_k) \leq C(d, h, r)$

- Further, we choose *f* in such a way that some "important" elements are units in *B*.
- We bound the size of the solutions of our equation in x ∈ B, which yields the same bound for the solutions x ∈ A.

Measuring in the domain B

• To
$$\alpha \in K$$
 we associate the up to sign unique tuple
 $(P_{\alpha,0}, \dots, P_{\alpha,D-1}, Q_{\alpha}) \in A_0^{D+1}$ such that
 $\alpha = Q_{\alpha}^{-1} \sum_{j=0}^{D-1} P_{\alpha,j} w^j$ with
 $Q_{\alpha} \neq 0, \quad \gcd(P_{\alpha,0}, \dots, P_{\alpha,D-1}, Q_{\alpha}) = 1.$
(21)

• We put

$$\begin{cases} \overline{\deg} \alpha := \max(\deg P_{\alpha,0}, \dots, \deg P_{\alpha,D-1}, \deg Q_{\alpha}) \\ \overline{h}(\alpha) := \max(h(P_{\alpha,0}), \dots, h(P_{\alpha,D-1}), h(Q_{\alpha})), \end{cases}$$
(22)

where deg P, h(P) denote the total degree and logarithmic height of a polynomial P with rational integer coefficients.

• For $\alpha \in A$ deg α , $h(\alpha)$ and deg $\tilde{\alpha}$, $h(\tilde{\alpha})$ can be bounded by each other. (The bounds also contain some parameter of A.)

Bounding the $\overline{\text{deg}}$ of elements of *B* using function field results

- We look at K (more precisely at an extension of K) as a function field in one variable, over an algebraically closed field
- We do this for all variables z_1, \ldots, z_q , where this is a maximal algebraically independent subset of z_1, \ldots, z_r
- Using results (mainly of Mason) we bound the function field heights of the element in question in each such function field
- Next we use a result of Evertse and Győry, to estimate the deg of the element by a bound depending on their function field heights and parameters of the domain *A*.

(日) (四) (王) (王) (王)

Kronecker-Győry Specializations – Bounding heights h(x)

• Let
$$A = Z[z_1, \dots, z_r] = Z[X_1, \dots, X_r]/(f_1, \dots, f_m)$$
 and let
 $\varphi : A \to \overline{\mathbb{Q}} : z_i \mapsto \xi_i \in \overline{\mathbb{Q}} \quad (i = 1, \dots, r)$

be a specialization homomorphism. Then

$$\varphi(A) \subseteq \varphi(B) \subseteq \mathcal{O}_S$$

where \mathcal{O}_S is a suitable S-integer ring in some number field.

- Thus, φ maps the solutions of the equation under investigation to the solutions of a similar equation over O_S.
- We apply 'many' specializations to A and apply our effective results to the resulting equations over \mathcal{O}_S
- This gives, for each solution x and specialization φ , effective upper bounds for the number field heights of $\varphi(x)$ and its field conjugates.
- Using these and a result of Evertse and Győry we deduce upper bounds for $\overline{h}(x)$.

Main steps of the proof of the Theorem on division points

Recall part (i) of the Theorem for division points on curves

(i) Let A, $\overline{\Gamma},$ and F be as specified above. Define the set

$$\mathcal{C} := \{ (x, y) \in (\overline{\Gamma})^2 | F(x, y) = 0 \}.$$
(23)

Then there exists a suitably large effectively computable constant C_1 such that for

$$M_0 := \left[N^6 (2d)^{\exp\{C_1(r+s)\}} (h+1)^{4s} \right]$$

and $m := \operatorname{lcm}(1, \ldots, M_0)$ we have

$$x^m \in \Gamma$$
 and $y^m \in \Gamma$,

for every $(x, y) \in C$.

Main steps of the proof of part (i) of the Theorem on division points

- for $(x, y) \in \mathcal{C}$ we bound the degree of the field K(x, y)
- we estimate the smallest positive integer exponent M such that for (x, y) ∈ C we have x^M, y^M ∈ Γ_K, where Γ_K denotes the K closure of Γ, i.e. the largest subgroup of Γ which belongs to K*
- for $\gamma \in \Gamma_K$ we estimate the smallest positive integer exponent $m(\gamma)$ such that $\gamma^{m(\gamma)} \in \Gamma$
- The number $m_0 := M \cdot m(x^M) \cdot m(y^M)$ will have the property $x^{m_0}, y^{m_0} \in \Gamma$, however it depends on (x, y).
- Since we have the estimate

$$m_0 \leq N^6(2d)^{\exp(O(r+s))}(h+1)^{4s} := M_0.$$

the number $m := \text{lcm}(1, ..., M_0)$ will be a uniform exponent with $x^m, y^m \in \Gamma$.

Recall part (ii) of the Theorem on division points

Theorem (Theorem for division points on curves – part (ii))

(ii) Let m be the exponent fixed in part (i) and recall that

$$\mathcal{C} := \{ (x, y) \in (\overline{\Gamma})^2 | F(x, y) = 0 \}.$$
(24)

Then there exists an effectively computable constant C_2 and integers $t_{1,x}, \ldots, t_{s,x}, t_{1,y}, \ldots, t_{s,y}$ with

$$t_{i,x}, t_{i,y} \le \exp\left\{\exp\left\{N^{12}(2d)^{\exp\{C_2(r+s)\}}(h+1)^{8s}\right\}\right\}$$
(25)

for $i = 1, \ldots, s$, such that

$$x^{m} = \gamma_{1}^{t_{1,x}} \dots \gamma_{s}^{t_{s,x}}, \qquad y^{m} = \gamma_{1}^{t_{1,y}} \dots \gamma_{s}^{t_{s,y}}.$$
(26)

・ロト ・同ト ・ヨト ・ヨト

Reformulation of part (ii) of the Theorem on division points

Let us fix m to be the integer specified in part (i) of our Theorem and consider the set

$$\mathcal{C}_1 := \{ (x_0, y_0) \in \Gamma^2 \mid \exists x, y \in \overline{\Gamma} : x^m = x_0, y^m = y_0, F(x, y) = 0 \}.$$
(27)

Proposition

Let $(x_0, y_0) \in C_1$. Then there exist representatives \tilde{x}_0 and \tilde{y}_0 for x_0 and y_0 , respectively, with the property

$$\deg \tilde{x}_{0}, \deg \tilde{y}_{0} \leq \exp \left\{ N^{6} (2d)^{\exp O(r+s)} (h+1)^{4s} \right\}$$

$$h(\tilde{x}_{0}), h(\tilde{y}_{0}) \leq \exp \left\{ \exp \left\{ N^{12} (2d)^{\exp O(r+s)} (h+1)^{8s} \right\} \right\}$$
(28)

イロト イヨト イヨト イヨト

æ

Reducing our equation to an equation over Γ

• Let
$$\rho$$
 be a primitive m^{th} root of unity. There exists
 $G(U, V) = \sum_{(i,j)\in\mathcal{J}} b_{ij}U^iV^j \in A[U, V]$ with $b_{ij} \neq 0$ and
 $G(X^m, Y^m) = \prod_{k=0}^{m-1} \prod_{l=0}^{m-1} F(\rho^k X, \rho^l Y)$ (29)

and such that b_{ij} have representatives \tilde{b}_{ij} with bounded size.

- G(X, Y) is divisible by a non-constant polynomial of the form X^aY^b α or X^a αY^b with α ∈ K^{*}, a, b ∈ Z_{≥0} if and only if F(X, Y) is divisible by a non-constant polynomial of the form X^uY^v β or X^u βY^v with β ∈ K^{*}, u, v ∈ Z_{≥0}.
- The set

$$\mathcal{C}_1 := \left\{ (x_0, y_0) \in \Gamma^2 \mid \exists x, y \in \overline{\Gamma} : x^m = x_0, y^m = y_0, F(x, y) = 0 \right\}$$

is equal to the set

$$\mathcal{C}_2 := \{ (x_0, y_0) \in \Gamma^2 \mid G(x_0, y_0) = 0 \}.$$

Effectiveness of the Theorem on division points

- Consider the above defined polynomial G(X, Y)
- For all values of the exponents t_{ix} , t_{iy} below the bound specified in part (ii) of our Theorem we check

$$G(\gamma_1^{t_{1x}}\ldots\gamma_s^{t_{sx}},\gamma_1^{t_{1y}}\ldots\gamma_s^{t_{sy}})=0.$$

• If this is true then the elements

$$x_0 = \gamma_1^{t_{1x}} \dots \gamma_s^{t_{sx}}, \qquad y_0 = \gamma_1^{t_{1y}} \dots \gamma_s^{t_{sy}}$$

have at least one m^{th} root x and y, respectively, such that

$$F(x,y)=0.$$

Further, each element of $\mathcal C$ can be obtained in such a way.

・ 同 ト ・ ヨ ト ・ ヨ ト

An open question

In this talk I presented effective finiteness results for the equation

$$f(x,y) = 0$$
 in $x, y \in \mathcal{G}$

where \mathcal{G} is the group

- $\mathcal{G} = A^*$,
- $\mathcal{G} = \overline{\Gamma}$.

Open problem

Give effective result for the above equation for $\mathcal{G} = \overline{A^*}$.

Why is this open?

We do not know how to effectively determine a set of generators of A^* when $A = \mathbb{Z}[z_1, \ldots, z_r]$.

イロト イヨト イヨト イヨト

э

Thank you for your attention!

イロト イポト イヨト イヨト

3