Nilpotent Orbits in atlas

Annegret Paul

Western Michigan University

Representation Theory XVI Dubrovnik, Croatia, June 24-29, 2019 This is joint work with:

Jeffrey Adams

Marc Van Leeuwen

David Vogan

...and it is in progress.

The atlas Software

- Motivating Goal: Compute the Unitary Dual of reductive Lie groups.
- Given an irreducible representation, atlas decides whether it is unitarizable.

Example (Finite-dimensional representations of $SL(2, \mathbb{R})$)

```
atlas> set G=SL(2,R)
Variable G: RealForm
atlas> set t=trivial(G)
Variable t: Param
atlas> is_unitary(t)
Value: true
```

Specify a finite-dimensional representation by its highest weight:

```
atlas> set p=finite_dimensional(G,[2])
Variable p: Param
atlas> dimension(p)
Value: 3
atlas> is_unitary(p)
Value: false
```

- Does atlas give the correct answers?
- We checked this on an example for which the unitary dual is known due to Baldoni-Silva and Knapp (1989):
 G = Sp(6, 2).
- We considered two series of representations: spherical and with lowest *K*-type *triv* ⊗ (2, 2).
- Because of the shape of the unitary dual, only a finite number of representations need to be tested. The signature of the invariant Hermitian form can change only at reducibility points.

Example: Spherical Representations of Sp(6,2)

Figure 4: Known unitary points in Sp(6,2) for σ trivial

Example: Sp(6,2) with LKT $triv \otimes (2,2)$

Figure 3: Unitary points in Sp(6,2) with minimal K type 2e8 + 2e7

Let *G* be a semisimple Lie group over \mathbb{C} or \mathbb{R} with Lie algebra \mathfrak{g} . We are interested in orbits of nilpotent elements in \mathfrak{g} under the adjoint action of *G*.

Goal: List and describe these orbits.

- Explicitly list the (finite) collection of such orbits: element in g, weighted Dynkin diagram, Bala-Carter label, etc.
- Calculate properties/invariants: dimension etc.
- Fundamental group $\pi_1(\mathcal{O})$.
- Component group $A(\mathcal{O})$ of the centralizer in *G*.

Much of this information is available in the literature (e.g., Collingwood & McGovern), especially over algebraically closed fields; however:

- Convenience: All information can be found in one place.
- More general cases, such as if *G* is not adjoint or simply connected, not simple.
- Real case and *K*-orbits.
- We can use atlas to compute more details.
- Use of orbit information for other atlas calculations.

Complex Orbits

In atlas, a complex group G is represented by a root datum:

- Character and cocharacter lattices identified with \mathbb{Z}^n for *n* the rank, and finite subsets of each to indicate the simple roots and coroots.
- The Cartan subalgebra of the Lie algebra can be identified with X_{*} ⊗_Z C (in atlas, X_{*} ⊗_Z Q).

Complex nilpotent orbit: Pair (*G*, *H*), where $H \in X_*$ is the semisimple element of a standard \mathfrak{sl}_2 -triple $\{H, X, Y\}$ (unique up to *W*).

Example (Orbits in $Sp(4, \mathbb{C})$)

```
atlas> set G=Sp(4)
Variable G: RootDatum
atlas> set orbs=complex_nilpotent_orbits (G)
Variable orbs: [ComplexNilpotent]
atlas> for orb in orbs do prints(orb) od
simply connected root datum of Lie type 'C2'()[ 0, 0 ]
simply connected root datum of Lie type 'C2'()[ 1, 0 ]
simply connected root datum of Lie type 'C2'()[ 1, 1 ]
simply connected root datum of Lie type 'C2'()[ 3, 1 ]
```

Some known terminology/facts about complex orbits:

- A nilpotent element X in g is distinguished if it is not contained in any Levi subalgebra I of g. In that case the corresponding nilpotent orbit is called distinguished.
- Every nilpotent element in g is distinguished in a unique (up to conjugation) Levi subalgebra I. We call this Levi subalgebra the "Bala Carter Levi" of the orbit.
- The Lie type of its derived algebra, possibly with one or more pieces of data, is the "Bala Carter label" of the orbit.

Algorithm: List all (conjugacy classes of) Levi subalgebras l of g, then find the distinguished orbits in each l.

• To find all Levi subalgebras, take the subsets of the simple roots.

Proposition

Two Levi subalgebras l_1 and l_2 are conjugate if and only if $\rho(l_1)$ and $\rho(l_2)$ are W-conjugate.

- The semisimple element *H* corresponding to *X* may be taken to be of the form: 2 times the sum of the coweights of some simple roots (in l).
- X is then distinguished in ι if dim ι₀ = dim ι₂ (which is computable). These are the 0 and 2 eigenspaces of ad H in ι.

Example (One Orbit in $Sp(4, \mathbb{C})$)

```
atlas> orb
Value: (simply connected root datum of Lie type 'C2',(),[ 1, 1 ])
atlas> diagram(orb)
Value: [0,2]
```

This is the weighted Dynkin diagram.

```
atlas> Levi of H([1,1],G)
Value: ([0], [ 1, -1 ])
atlas> Bala Carter Levi (orb)
Value: (root datum of Lie type 'A1.T1', [ 1, -1 ])
atlas> set (BC,)=Bala Carter Levi (orb)
atlas> fundamental coweights (BC)
Value: [[ 1, -1 ]/2]
atlas> dim_nilpotent (orb)
Value: 6
atlas> minimal orbits(G)
Value: [(simply connected root datum of Lie type 'C2',(),[1,0])]
atlas> principal orbit (G)
Value: (simply connected root datum of Lie type 'C2', (), [3, 1])
atlas> subregular orbits(G)
Value: [(simply connected root datum of Lie type 'C2',(),[1,1])]
```

Real Groups in atlas

- A real group G may be specified by a complex group G and a Cartan involution θ. The complexification of the maximal compact subgroup K is then G^θ. This determines the real form.
- In atlas, the complex group G, a maximal torus T, and a Borel B are fixed (by fixing the root datum). Instead of moving between Cartan subgroups of a fixed real group, we change the Cartan involution, which then changes the real forms of T.
- For a real group G, the Cartan involutions are given by a (finite) set of K\G/B orbits (kgb elements), related by Cayley transforms and cross actions.
- In atlas, a given kgb element x specifies both the root datum and the involution; also: which simple roots are real, complex, noncompact imaginary, compact.

Real Orbits

- A real nilpotent orbit is a real form of a complex nilpotent orbit *O*; or a K-orbit of nilpotent elements in the -1 eigenspace of the Cartan involution *θ* in the Lie algebra of G. Here K = G^θ.
- In atlas, a real nilpotent orbit in a real Lie algebra g is given by a pair (H, x), where H is the semisimple element determining O, and x is a kgb element satisfying certain compatibility conditions.

Example (Real orbits in $Sp(4, \mathbb{R})$)

```
atlas> set G=Sp(4,R)
Variable G: RealForm
atlas> for orb in real_nilpotent_orbits(G) do prints(orb) od
[ 0, 0 ]KGB element #0()
[ 1, 0 ]KGB element #1()
[ 1, 0 ]KGB element #2()
[ 1, 1 ]KGB element #2()
[ 1, 1 ]KGB element #3()
[ 1, 1 ]KGB element #0()
[ 3, 1 ]KGB element #0()
[ 3, 1 ]KGB element #1()
```

Algorithm: Given a complex nilpotent orbit \mathcal{O} with semisimple element *H* and distinguished in the Bala-Carter Levi L, and a real form *G* of **G**,

- Find the real forms L of L in G: Given a kgb element x, check whether θ_x preserves L. Several kgb elements may define the same real form of L. This is easy to do in atlas, using code written for other calculations.
- For each *L*, check whether *H* defines a real orbit in l_0 .
- If we had the element X (which atlas doesn't)*, this would be easy: Check that θ_x fixes H and takes X to -X.
- One can also write down a condition in terms of roots and weights suitable for atlas.
- Check for conjugacy: (H₁, x₁) and (H₂, x₂) may specify the same orbit.

Real Orbits in F_4 (split)

[Ο,	Ο,	Ο,	0] KG	В	eler	nent	#0()	
[2,	З,	2,	1] KG	В	eler	nent	#7()	
[2,	4,	З,	2] KG	В	eler	nent	#10(()
[2,	4,	З,	2] KG	В	eler	nent	#1()	
[З,	6,	4,	2] KG	В	eler	nent	#11(()
[З,	6,	4,	2] KG	В	eler	nent	#0()	
[4,	6,	4,	2] KG	В	eler	nent	#5()	
[4,	6,	4,	2] KG	В	eler	nent	#11(()
[4,	6,	4,	2] KG	В	eler	nent	#0()	
[4,	8,	6,	4] KG	В	eler	nent	#3()	
[4,	8,	6,	3] KG	В	eler	nent	#O()	
[6,	10),	7,	4	1	KGB	eler	nent	#0()
[6,	10),	7,	4	1	KGB	eler	nent	#7()
[5,	10),	7,	4	1	KGB	eler	nent	#1()
[6,	11	,	8,	4	1	KGB	eler	nent	#0()
[6,	11	,	8,	4	1	KGB	eler	nent	#8()
[6,	12	2,	8,	4	1	KGB	eler	nent	#0()
[6,	12	2,	8,	4]	KGB	eler	nent	#2()
[6,	12	2,	8,	4	1	KGB	eler	nent	#8()
[10,	18	β,	12,	6]	KGB	eler	nent	#10()
[10,	18	β,	12,	6]	KGB	eler	nent	#0()
[10,	19),	14,	8	1	KGB	eler	nent	#0()
[10,	20),	14,	8	1	KGB	eler	nent	#0()
[10,	20),	14,	8	1	KGB	eler	nent	#2()
[14,	26	5,	18,	10	1	KGB	eler	nent	#0()
[14,	26	Б,	18,	10	1	KGB	eler	nent	#4()
[22,	42	2,	30,	16	1	KGB	eler	nent	#0()

- If *O* is a complex or real nilpotent orbit, *X* ∈ *O*, then the component group *A*(*O*) := *C_G*(*X*)/*C⁰_G*(*X*) is of interest.
- Characters of *A*(*O*) give information about the representation theory of *G*.
- This group depends on the isogeny of *G*, and is in general quite small.

Example (Component Groups in $Sp(4, \mathbb{C})$)

It is not difficult to calculate by hand that for the non-zero orbits in $\mathfrak{sp}(4,\mathbb{C})$ the centralizers in $Sp(4,\mathbb{C})$ have two components, those in the adjoint group $PSp(4,\mathbb{C})$ are connected, except for the subregular orbit, which has two components.

How to Compute Component Groups over $\ensuremath{\mathbb{C}}$

Our algorithm is based on the following result from 2002:

Theorem (G. J. McNinch, E. Sommers)

Let G be connected and reductive (over an alg. closed field of good characteristic). There is a bijection between G-conjugacy classes of:

$$(L, sZ_L^0, u) \longleftrightarrow (u, sC_G^0(u)),$$

where L is a pseudo-Levi subgroup of G with center Z_L , $sZ_L^0 \in Z_L/Z_L^0$ a coset such that $L = C_G^0(sZ_L^0)$, $u \in L$ is a unipotent element, distinguished in L, and $sC_G^0(u)$ an element in A(u).

- Over \mathbb{C} , we can replace the element *u* by $X \in \mathfrak{g}$.
- This provides an algorithm to calculate representatives for the conjugacy classes in A(O).
- The case of *G* simple adjoint complex is somewhat easier (and was analyzed by Eric Sommers in 1998).

Definition

A **pseudo-Levi** subgroup L in G is the identity component of the centralizer in G of a semisimple element t in G.

- Every Levi subgroup of *G* is a pseudo-Levi subgroup.
- For example, in Sp(2(p+q), C), L = Sp(2p, C) × Sp(2q, C) is a pseudo-Levi that is not a Levi subgroup.
- While Levis may be given by subsets of the simple roots, pseudo-Levis are given by subsets of the set of simple roots and the highest root (i. e., remove vertices from the *extended* Dynkin diagram).
- We need to find them up to conjugacy. This is more difficult than for Levi subgroups: If the ρ(L) are conjugate, we need to check whether the sets of simple roots are (simultaneously) conjugate.
- This slows down the algorithm.

The Algorithm for Simple Adjoint G

Why is this situation easier?

- The center of Levi subgroups is connected, so the Bala Carter Levi contributes only the identity element to A(O).
- The center of each pseudo-Levi has cyclic component group, and all non-identity elements are conjugate. So each pseudo-Levi contributes precisely one conjugacy class to A(O).
- The order of an element in this conjugacy class is easy to compute: It is the g.c.d. d_L of the coefficients of the simple roots NOT occurring in the highest root.

Algorithm: Given G and a complex nilpotent orbit \mathcal{O} in \mathfrak{g} ,

- Find all pseudo-Levi subgroups *L* (up to *G*-conjugacy) in which \mathcal{O} is distinguished.
- For each *L*, calculate the number d_L .
- The result is a list of integers representing the conjugacy classes in A(O).

Given a (complex) nilpotent orbit \mathcal{O} in \mathfrak{g} and the complex group G,

- Find all pseudo-Levi subgroups *L* (up to *G*-conjugacy) in which \mathcal{O} is distinguished.
- For each such *L*, find generators *t* for the center of Z_L/T_L , where $T_L = Z_L^0$ is the central (connected) torus of *L*.
- Keep only the *regular* t, i. e., those for which $L = Cent_G(tT_L)$.
- Check for conjugacy of t₁ T_L and t₂ T_L by the centralizer of X in G.
- For each *t*, calculate the order modulo $C_G^0(X)$.
- The result is a list of conjugacy classes in the group *A*(*O*), with the orders, as well as a representative *t*.

Example: The Subregular Orbit in G_2

```
atlas> set G=adjoint(G2)
Variable G: RootDatum
atlas> set orb=subregular_orbits(G)[0]
Variable orb: ComplexNilpotent
atlas> orb
Value: (simply connected adjoint root datum of Lie type 'G2',(),[ 0, 2
```

atlas> print_component_info(orb)

```
Component info for orbit:

H=[ 0, 2 ] diagram:[0,2] dim:10

orders:[1,2,3]

pseudo_Levi Generators

2A1 [[ 0, -1 ]/2]

A2 [[ -1, 0 ]/3]

G2 [[ 0, 0 ]/1]
```

The component group is isomorphic to S_3 . The elements listed are elements in the Lie algebra which exponentiate to *t*.

Orbits for $Sp(4, \mathbb{C})$

$PSp(4, \mathbb{C})$

```
Component info for orbit:
H=[ 0, 0 ] diagram:[0,0] dim:0
orders:[1]
pseudo_Levi Generators
            [[0, 0]/1]
Component info for orbit:
H=[ 1, 0 ] diagram:[1,0] dim:4
orders: [1]
pseudo Levi Generators
A1 [[ 0, 0 ]/1]
Component info for orbit:
H=[ 0, 2 ] diagram: [0,2] dim:6
orders: [1,2]
pseudo Levi Generators
A1 [[0, 0]/1]
2A1 [[-1, 0]/2]
Component info for orbit:
H=[ 2, 2 ] diagram:[2,2] dim:8
orders:[1]
pseudo Levi Generators
C2
           [[ 0, 0 ]/1]
```

Sp(4, ℂ)

```
Component info for orbit:
H = [0, 0] diagram: [0, 0] dim: 0
orders:[1]
pseudo Levi Generators
            [[ 0, 0 ]/1]
Component info for orbit:
H=[ 1, 0 ] diagram:[1,0] dim:4
orders: [1,2]
pseudo Levi Generators
A1
            [[ 0, 0 ]/1, [ 0, 1 ]/2]
Component info for orbit:
H=[ 1, 1 ] diagram:[0,2] dim:6
orders: [1,2]
pseudo Levi Generators
A1
            [[ 0, 0 ]/1]
2A1
            [[ 0, 1 ]/2]
Component info for orbit:
H=[ 3, 1 ] diagram: [2,2] dim:8
orders: [1,2]
pseudo Levi Generators
C2
            [[ 0, 0 ]/1, [ 1, 1 ]/2]
```

<i>SO</i> (9)						
i	diag	dim	A (O)			
0	[0,0,0,0]	0	[1]			
1	[0,1,0,0]	12	[1]			
2	[2,0,0,0]	14	[1,2]			
3	[0,0,0,1]	16	[1]			
4	[1,0,1,0]	20	[1,2]			
5	[0,2,0,0]	22	[1,2]			
6	[2,2,0,0]	24	[1,2]			
7	[0,0,2,0]	24	[1]			
8	[0,2,0,1]	26	[1]			
9	[2,1,0,1]	26	[1]			
10	[2,0,2,0]	28	[1,2,2,2]			
11	[2,2,2,0]	30	[1,2]			
12	[2,2,2,2]	32	[1]			

Spin(9)					
i	diag	dim	A(0)		
0	[0,0,0,0]	0	[1]		
1	[0,1,0,0]	12	[1]		
2	[2,0,0,0]	14	[1,2]		
3	[0,0,0,1]	16	[1,2]		
4	[1,0,1,0]	20	[1,2]		
5	[0,2,0,0]	22	[1,2]		
6	[2,2,0,0]	24	[1,2]		
7	[0,0,2,0]	24	[1]		
8	[0,2,0,1]	26	[1,2]		
9	[2,1,0,1]	26	[1,2]		
10	[2,0,2,0]	28	[1,2,2,2,4]		
11	[2,2,2,0]	30	[1,2]		
12	[2,2,2,2]	32	[1,2]		

A Non-Simple Reductive Example

```
atlas> set rd=GL(2)*SL(2)
atlas> print component info(rd)
Component info for orbit:
H=[ 0, 0, 0 ] diagram:[0,0] dim:0
orders:[1]
pseudo Levi Generators
            [[0, 0, 0]/1]
Component info for orbit:
H=[ 1, -1, 0 ] diagram:[2,0] dim:2
orders:[1]
pseudo_Levi Generators
A1 [[ 0, 0, 0 ]/1]
Component info for orbit:
H=[ 0, 0, 1 ] diagram: [0,2] dim:2
orders: [1,2]
pseudo Levi Generators
A1 [[ 0, 0, 0 ]/1, [ 0, 0, 1 ]/2]
Component info for orbit:
H=[ 1, -1, 1 ] diagram:[2,2] dim:4
orders:[1,2]
pseudo Levi Generators
2A1 [[ 0, 0, 0 ]/1, [ 0, 0, 1 ]/2]
```

- We compared the atlas results with tables and results in Collingwood & McGovern.
- This enabled us to make some corrections...
- Now everything we checked matches, except one component group in simply-connected *E*₇. (Eric Sommers tells us that this mistake is known.)
- We will continue to find ways to check the calculations.
- Please use atlas and let us know if there are any errors, or if you have questions!

Remark: Eric Sommers also has written software implementing his results.

In addition to conjugacy classes in the component group of the centralizer, it is of interest to know the reductive part C of the centralizer of the orbit itself. (It has the same component group as the full centralizer.)

- C is the centralizer of the $\mathfrak{sl}(2)$ containing the nilpotent element X.
- The identity component of the center of the Bala-Carter Levi *L* is a maximal torus *T_C* of *C*.
- The roots are certain restrictions of roots of *G* to *T_C*: The set of roots with a given restriction α_C to *T_C* has an action of the orbit-*SL*(2), so its span carries an *SL*(2) representation. If that representation contains the trivial representation, then α_C is a root of *C*.
- Then find the coroots.

Example

atlas> show_nilpotent_orbits_long(Sp(4))

Ni	lpotent	orbits for C2				
i	Н	diagram	dim	Cent	A(O)	
0	[0,0]	[0,0]	0	В2	[1]	
1	[1,0]	[1,0]	4	A1	[1,2]	
2	[1,1]	[0,2]	6	е	[1,2]	
3	[3,1]	[2,2]	8	е	[1,2]	

atlas has more information than the Lie type: Root Datum hence the isogeny.

Example (F_4)

atlas> show_nilpotent_orbits_long(simply_connected(F4))

Nilpotent orbits for F4

i	Н	diagram	dim	Cent	A(O)
0	[0,0,0,0]	[0,0,0,0]	0	F4	[1]
1	[2,3,2,1]	[1,0,0,0]	16	C3	[1]
2	[2,4,3,2]	[0,0,0,1]	22	A3	[1,2]
3	[3,6,4,2]	[0,1,0,0]	28	2A1	[1]
4	[4,6,4,2]	[2,0,0,0]	30	A2	[1,2]
5	[4,8,6,4]	[0,0,0,2]	30	G2	[1]
6	[4,8,6,3]	[0,0,1,0]	34	A1	[1]
7	[6,10,7,4]	[2,0,0,1]	36	2A1	[1,2]
8	[5,10,7,4]	[0,1,0,1]	36	A1	[1]
9	[6,11,8,4]	[1,0,1,0]	38	A1	[1,2]
10	[6,12,8,4]	[0,2,0,0]	40	е	[1,2,2,3,4]
11	[10,18,12,6]	[2,2,0,0]	42	A1	[1]
12	[10,19,14,8]	[1,0,1,2]	42	A1	[1]
13	[10,20,14,8]	[0,2,0,2]	44	е	[1,2]
14	[14,26,18,10]	[2,2,0,2]	46	е	[1,2]
15	[22,42,30,16]	[2,2,2,2]	48	е	[1]

Things to do:

- Compute/display the actual component group (not just conjugacy classes)
- Component groups for real orbits.
- New and interesting questions keep coming up as we work....

THANK YOU!