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The atlas Software

Motivating Goal: Compute the Unitary Dual of reductive Lie
groups.
Given an irreducible representation, atlas decides
whether it is unitarizable.

Example (Finite-dimensional representations of SL(2,R))
atlas> set G=SL(2,R)
Variable G: RealForm
atlas> set t=trivial(G)
Variable t: Param
atlas> is_unitary(t)
Value: true

Specify a finite-dimensional representation by its highest weight:

atlas> set p=finite_dimensional(G,[2])
Variable p: Param
atlas> dimension(p)
Value: 3
atlas> is_unitary(p)
Value: false



Unitarity

Does atlas give the correct answers?
We checked this on an example for which the unitary dual
is known due to Baldoni-Silva and Knapp (1989):
G = Sp(6,2).
We considered two series of representations: spherical
and with lowest K -type triv ⊗ (2,2).
Because of the shape of the unitary dual, only a finite
number of representations need to be tested. The
signature of the invariant Hermitian form can change only
at reducibility points.



Example: Spherical Representations of Sp(6,2)



Example: Sp(6,2) with LKT triv ⊗ (2,2)



Nilpotent Orbits: Questions

Let G be a semisimple Lie group over C or R with Lie algebra g.
We are interested in orbits of nilpotent elements in g under the
adjoint action of G.

Goal: List and describe these orbits.

Explicitly list the (finite) collection of such orbits: element in
g, weighted Dynkin diagram, Bala-Carter label, etc.
Calculate properties/invariants: dimension etc.
Fundamental group π1(O).
Component group A(O) of the centralizer in G.



Why do we need atlas to find this?

Much of this information is available in the literature (e.g.,
Collingwood & McGovern), especially over algebraically closed
fields; however:

Convenience: All information can be found in one place.
More general cases, such as if G is not adjoint or simply
connected, not simple.
Real case and K -orbits.
We can use atlas to compute more details.
Use of orbit information for other atlas calculations.



Complex Orbits

In atlas, a complex group G is represented by a root datum:
Character and cocharacter lattices identified with Zn for n
the rank, and finite subsets of each to indicate the simple
roots and coroots.
The Cartan subalgebra of the Lie algebra can be identified
with X∗ ⊗Z C (in atlas, X∗ ⊗Z Q).

Complex nilpotent orbit: Pair (G,H), where H ∈ X∗ is the
semisimple element of a standard sl2-triple {H,X ,Y} (unique
up to W ).

Example (Orbits in Sp(4,C))
atlas> set G=Sp(4)
Variable G: RootDatum
atlas> set orbs=complex_nilpotent_orbits (G)
Variable orbs: [ComplexNilpotent]
atlas> for orb in orbs do prints(orb) od
simply connected root datum of Lie type ’C2’()[ 0, 0 ]
simply connected root datum of Lie type ’C2’()[ 1, 0 ]
simply connected root datum of Lie type ’C2’()[ 1, 1 ]
simply connected root datum of Lie type ’C2’()[ 3, 1 ]



Complex Orbits

Some known terminology/facts about complex orbits:

A nilpotent element X in g is distinguished if it is not
contained in any Levi subalgebra l of g. In that case the
corresponding nilpotent orbit is called distinguished.
Every nilpotent element in g is distinguished in a unique
(up to conjugation) Levi subalgebra l. We call this Levi
subalgebra the “Bala Carter Levi” of the orbit.
The Lie type of its derived algebra, possibly with one or
more pieces of data, is the “Bala Carter label” of the orbit.



Complex Orbits

Algorithm: List all (conjugacy classes of) Levi subalgebras l of
g, then find the distinguished orbits in each l.

To find all Levi subalgebras, take the subsets of the simple
roots.

Proposition

Two Levi subalgebras l1 and l2 are conjugate if and only if ρ(l1)
and ρ(l2) are W-conjugate.

The semisimple element H corresponding to X may be
taken to be of the form: 2 times the sum of the coweights
of some simple roots (in l).
X is then distinguished in l if dim l0 = dim l2 (which is
computable). These are the 0 and 2 eigenspaces of ad H
in l.



Example

Example (One Orbit in Sp(4,C))
atlas> orb
Value: (simply connected root datum of Lie type ’C2’,(),[ 1, 1 ])
atlas> diagram(orb)
Value: [0,2]

This is the weighted Dynkin diagram.

atlas> Levi_of_H([1,1],G)
Value: ([0],[ 1, -1 ])
atlas> Bala_Carter_Levi (orb)
Value: (root datum of Lie type ’A1.T1’,[ 1, -1 ])
atlas> set (BC,)=Bala_Carter_Levi (orb)
atlas> fundamental_coweights(BC)
Value: [[ 1, -1 ]/2]

atlas> dim_nilpotent (orb)
Value: 6
atlas> minimal_orbits(G)
Value: [(simply connected root datum of Lie type ’C2’,(),[ 1, 0 ])]
atlas> principal_orbit (G)
Value: (simply connected root datum of Lie type ’C2’,(),[ 3, 1 ])
atlas> subregular_orbits(G)
Value: [(simply connected root datum of Lie type ’C2’,(),[ 1, 1 ])]



Real Groups in atlas

A real group G may be specified by a complex group G
and a Cartan involution θ. The complexification of the
maximal compact subgroup K is then Gθ. This determines
the real form.
In atlas, the complex group G, a maximal torus T, and a
Borel B are fixed (by fixing the root datum). Instead of
moving between Cartan subgroups of a fixed real group,
we change the Cartan involution, which then changes the
real forms of T.
For a real group G, the Cartan involutions are given by a
(finite) set of K\G/B orbits (kgb elements), related by
Cayley transforms and cross actions.
In atlas, a given kgb element x specifies both the root
datum and the involution; also: which simple roots are real,
complex, noncompact imaginary, compact.



Real Orbits

A real nilpotent orbit is a real form of a complex nilpotent
orbit O; or a K-orbit of nilpotent elements in the −1
eigenspace of the Cartan involution θ in the Lie algebra of
G. Here K = Gθ.
In atlas, a real nilpotent orbit in a real Lie algebra g is
given by a pair (H,x), where H is the semisimple element
determining O, and x is a kgb element satisfying certain
compatibility conditions.

Example (Real orbits in Sp(4,R))
atlas> set G=Sp(4,R)
Variable G: RealForm
atlas> for orb in real_nilpotent_orbits(G) do prints(orb) od
[ 0, 0 ]KGB element #0()
[ 1, 0 ]KGB element #1()
[ 1, 0 ]KGB element #2()
[ 1, 1 ]KGB element #2()
[ 1, 1 ]KGB element #3()
[ 1, 1 ]KGB element #0()
[ 3, 1 ]KGB element #0()
[ 3, 1 ]KGB element #1()



Listing the Real Forms of an Orbit O

Algorithm: Given a complex nilpotent orbit O with semisimple
element H and distinguished in the Bala-Carter Levi L, and a
real form G of G,

Find the real forms L of L in G: Given a kgb element x,
check whether θx preserves L. Several kgb elements may
define the same real form of L. This is easy to do in
atlas, using code written for other calculations.
For each L, check whether H defines a real orbit in l0.
If we had the element X (which atlas doesn’t)∗, this
would be easy: Check that θx fixes H and takes X to −X .
One can also write down a condition in terms of roots and
weights suitable for atlas.
Check for conjugacy: (H1,x1) and (H2,x2) may specify the
same orbit.



Real Orbits in F4 (split)

[ 0, 0, 0, 0 ]KGB element #0()
[ 2, 3, 2, 1 ]KGB element #7()
[ 2, 4, 3, 2 ]KGB element #10()
[ 2, 4, 3, 2 ]KGB element #1()
[ 3, 6, 4, 2 ]KGB element #11()
[ 3, 6, 4, 2 ]KGB element #0()
[ 4, 6, 4, 2 ]KGB element #5()
[ 4, 6, 4, 2 ]KGB element #11()
[ 4, 6, 4, 2 ]KGB element #0()
[ 4, 8, 6, 4 ]KGB element #3()
[ 4, 8, 6, 3 ]KGB element #0()
[ 6, 10, 7, 4 ]KGB element #0()
[ 6, 10, 7, 4 ]KGB element #7()
[ 5, 10, 7, 4 ]KGB element #1()
[ 6, 11, 8, 4 ]KGB element #0()
[ 6, 11, 8, 4 ]KGB element #8()
[ 6, 12, 8, 4 ]KGB element #0()
[ 6, 12, 8, 4 ]KGB element #2()
[ 6, 12, 8, 4 ]KGB element #8()
[ 10, 18, 12, 6 ]KGB element #10()
[ 10, 18, 12, 6 ]KGB element #0()
[ 10, 19, 14, 8 ]KGB element #0()
[ 10, 20, 14, 8 ]KGB element #0()
[ 10, 20, 14, 8 ]KGB element #2()
[ 14, 26, 18, 10 ]KGB element #0()
[ 14, 26, 18, 10 ]KGB element #4()
[ 22, 42, 30, 16 ]KGB element #0()



Component Groups

If O is a complex or real nilpotent orbit, X ∈ O, then the
component group A(O) := CG(X )/C0

G(X ) is of interest.
Characters of A(O) give information about the
representation theory of G.
This group depends on the isogeny of G, and is in general
quite small.

Example (Component Groups in Sp(4,C))
It is not difficult to calculate by hand that for the non-zero orbits
in sp(4,C) the centralizers in Sp(4,C) have two components,
those in the adjoint group PSp(4,C) are connected, except for
the subregular orbit, which has two components.



How to Compute Component Groups over C
Our algorithm is based on the following result from 2002:

Theorem (G. J. McNinch, E. Sommers)
Let G be connected and reductive (over an alg. closed field of
good characteristic). There is a bijection between G-conjugacy
classes of:

(L, sZ 0
L ,u)←→ (u, sC0

G(u)),

where L is a pseudo-Levi subgroup of G with center ZL,
sZ 0

L ∈ ZL/Z 0
L a coset such that L = C0

G(sZ 0
L ), u ∈ L is a

unipotent element, distinguished in L, and sC0
G(u) an element

in A(u).

Over C, we can replace the element u by X ∈ g.
This provides an algorithm to calculate representatives for
the conjugacy classes in A(O).
The case of G simple adjoint complex is somewhat easier
(and was analyzed by Eric Sommers in 1998).



What is a Pseudo-Levi Subgroup?

Definition
A pseudo-Levi subgroup L in G is the identity component of
the centralizer in G of a semisimple element t in G.

Every Levi subgroup of G is a pseudo-Levi subgroup.
For example, in Sp(2(p+q),C), L = Sp(2p,C)×Sp(2q,C)
is a pseudo-Levi that is not a Levi subgroup.
While Levis may be given by subsets of the simple roots,
pseudo-Levis are given by subsets of the set of simple
roots and the highest root (i. e., remove vertices from the
extended Dynkin diagram).
We need to find them up to conjugacy. This is more difficult
than for Levi subgroups: If the ρ(L) are conjugate, we need
to check whether the sets of simple roots are
(simultaneously) conjugate.
This slows down the algorithm.



The Algorithm for Simple Adjoint G

Why is this situation easier?
The center of Levi subgroups is connected, so the Bala
Carter Levi contributes only the identity element to A(O).
The center of each pseudo-Levi has cyclic component
group, and all non-identity elements are conjugate. So
each pseudo-Levi contributes precisely one conjugacy
class to A(O).
The order of an element in this conjugacy class is easy to
compute: It is the g.c.d. dL of the coefficients of the simple
roots NOT occurring in the highest root.

Algorithm: Given G and a complex nilpotent orbit O in g,
Find all pseudo-Levi subgroups L (up to G-conjugacy) in
which O is distinguished.
For each L, calculate the number dL.
The result is a list of integers representing the conjugacy
classes in A(O).



The General Algorithm

Given a (complex) nilpotent orbit O in g and the complex group
G,

Find all pseudo-Levi subgroups L (up to G-conjugacy) in
which O is distinguished.
For each such L, find generators t for the center of ZL/TL,
where TL = Z 0

L is the central (connected) torus of L.
Keep only the regular t , i. e., those for which
L = CentG(tTL).
Check for conjugacy of t1TL and t2TL by the centralizer of
X in G.
For each t , calculate the order modulo C0

G(X ).
The result is a list of conjugacy classes in the group A(O),
with the orders, as well as a representative t .



Example: The Subregular Orbit in G2

atlas> set G=adjoint(G2)
Variable G: RootDatum
atlas> set orb=subregular_orbits(G)[0]
Variable orb: ComplexNilpotent
atlas> orb
Value: (simply connected adjoint root datum of Lie type ’G2’,(),[ 0, 2 ])

atlas> print_component_info(orb)

Component info for orbit:
H=[ 0, 2 ] diagram:[0,2] dim:10
orders:[1,2,3]
pseudo_Levi Generators
2A1 [[ 0, -1 ]/2]
A2 [[ -1, 0 ]/3]
G2 [[ 0, 0 ]/1]

The component group is isomorphic to S3. The elements listed are elements in the Lie

algebra which exponentiate to t .



Orbits for Sp(4,C)

PSp(4,C)

Component info for orbit:
H=[ 0, 0 ] diagram:[0,0] dim:0
orders:[1]
pseudo_Levi Generators

[[ 0, 0 ]/1]

Component info for orbit:
H=[ 1, 0 ] diagram:[1,0] dim:4
orders:[1]
pseudo_Levi Generators
A1 [[ 0, 0 ]/1]

Component info for orbit:
H=[ 0, 2 ] diagram:[0,2] dim:6
orders:[1,2]
pseudo_Levi Generators
A1 [[ 0, 0 ]/1]
2A1 [[ -1, 0 ]/2]

Component info for orbit:
H=[ 2, 2 ] diagram:[2,2] dim:8
orders:[1]
pseudo_Levi Generators
C2 [[ 0, 0 ]/1]

Sp(4,C)

Component info for orbit:
H=[ 0, 0 ] diagram:[0,0] dim:0
orders:[1]
pseudo_Levi Generators

[[ 0, 0 ]/1]

Component info for orbit:
H=[ 1, 0 ] diagram:[1,0] dim:4
orders:[1,2]
pseudo_Levi Generators
A1 [[ 0, 0 ]/1,[ 0, 1 ]/2]

Component info for orbit:
H=[ 1, 1 ] diagram:[0,2] dim:6
orders:[1,2]
pseudo_Levi Generators
A1 [[ 0, 0 ]/1]
2A1 [[ 0, 1 ]/2]

Component info for orbit:
H=[ 3, 1 ] diagram:[2,2] dim:8
orders:[1,2]
pseudo_Levi Generators
C2 [[ 0, 0 ]/1,[ 1, 1 ]/2]



Component Groups: SO(9) and Spin(9)

SO(9)

i diag dim A(O)
0 [0,0,0,0] 0 [1]
1 [0,1,0,0] 12 [1]
2 [2,0,0,0] 14 [1,2]
3 [0,0,0,1] 16 [1]
4 [1,0,1,0] 20 [1,2]
5 [0,2,0,0] 22 [1,2]
6 [2,2,0,0] 24 [1,2]
7 [0,0,2,0] 24 [1]
8 [0,2,0,1] 26 [1]
9 [2,1,0,1] 26 [1]
10 [2,0,2,0] 28 [1,2,2,2]
11 [2,2,2,0] 30 [1,2]
12 [2,2,2,2] 32 [1]

Spin(9)

i diag dim A(O)
0 [0,0,0,0] 0 [1]
1 [0,1,0,0] 12 [1]
2 [2,0,0,0] 14 [1,2]
3 [0,0,0,1] 16 [1,2]
4 [1,0,1,0] 20 [1,2]
5 [0,2,0,0] 22 [1,2]
6 [2,2,0,0] 24 [1,2]
7 [0,0,2,0] 24 [1]
8 [0,2,0,1] 26 [1,2]
9 [2,1,0,1] 26 [1,2]
10 [2,0,2,0] 28 [1,2,2,2,4]
11 [2,2,2,0] 30 [1,2]
12 [2,2,2,2] 32 [1,2]



A Non-Simple Reductive Example

atlas> set rd=GL(2)*SL(2)
atlas> print_component_info(rd)

Component info for orbit:
H=[ 0, 0, 0 ] diagram:[0,0] dim:0
orders:[1]
pseudo_Levi Generators

[[ 0, 0, 0 ]/1]

Component info for orbit:
H=[ 1, -1, 0 ] diagram:[2,0] dim:2
orders:[1]
pseudo_Levi Generators
A1 [[ 0, 0, 0 ]/1]

Component info for orbit:
H=[ 0, 0, 1 ] diagram:[0,2] dim:2
orders:[1,2]
pseudo_Levi Generators
A1 [[ 0, 0, 0 ]/1,[ 0, 0, 1 ]/2]

Component info for orbit:
H=[ 1, -1, 1 ] diagram:[2,2] dim:4
orders:[1,2]
pseudo_Levi Generators
2A1 [[ 0, 0, 0 ]/1,[ 0, 0, 1 ]/2]



Are the Results Correct?

We compared the atlas results with tables and results in
Collingwood & McGovern.
This enabled us to make some corrections...
Now everything we checked matches, except one
component group in simply-connected E7. (Eric Sommers
tells us that this mistake is known.)
We will continue to find ways to check the calculations.
Please use atlas and let us know if there are any errors,
or if you have questions!

Remark: Eric Sommers also has written software
implementing his results.



Recent Improvements: The Centralizer

In addition to conjugacy classes in the component group of the
centralizer, it is of interest to know the reductive part C of the
centralizer of the orbit itself. (It has the same component group
as the full centralizer.)

C is the centralizer of the sl(2) containing the nilpotent
element X .
The identity component of the center of the Bala-Carter
Levi L is a maximal torus TC of C.
The roots are certain restrictions of roots of G to TC : The
set of roots with a given restriction αC to TC has an action
of the orbit-SL(2), so its span carries an SL(2)
representation. If that representation contains the trivial
representation, then αC is a root of C.
Then find the coroots.



Example Sp(4,C)

Example

atlas> show_nilpotent_orbits_long(Sp(4))

Nilpotent orbits for C2
i H diagram dim Cent A(O)
0 [0,0] [0,0] 0 B2 [1]
1 [1,0] [1,0] 4 A1 [1,2]
2 [1,1] [0,2] 6 e [1,2]
3 [3,1] [2,2] 8 e [1,2]

atlas has more information than the Lie type: Root Datum hence the isogeny.



One More Example

Example (F4)
atlas> show_nilpotent_orbits_long(simply_connected(F4))

Nilpotent orbits for F4
i H diagram dim Cent A(O)
0 [0,0,0,0] [0,0,0,0] 0 F4 [1]
1 [2,3,2,1] [1,0,0,0] 16 C3 [1]
2 [2,4,3,2] [0,0,0,1] 22 A3 [1,2]
3 [3,6,4,2] [0,1,0,0] 28 2A1 [1]
4 [4,6,4,2] [2,0,0,0] 30 A2 [1,2]
5 [4,8,6,4] [0,0,0,2] 30 G2 [1]
6 [4,8,6,3] [0,0,1,0] 34 A1 [1]
7 [6,10,7,4] [2,0,0,1] 36 2A1 [1,2]
8 [5,10,7,4] [0,1,0,1] 36 A1 [1]
9 [6,11,8,4] [1,0,1,0] 38 A1 [1,2]
10 [6,12,8,4] [0,2,0,0] 40 e [1,2,2,3,4]
11 [10,18,12,6] [2,2,0,0] 42 A1 [1]
12 [10,19,14,8] [1,0,1,2] 42 A1 [1]
13 [10,20,14,8] [0,2,0,2] 44 e [1,2]
14 [14,26,18,10] [2,2,0,2] 46 e [1,2]
15 [22,42,30,16] [2,2,2,2] 48 e [1]



What To Do Next

Things to do:

Compute/display the actual component group (not just
conjugacy classes)
Component groups for real orbits.
New and interesting questions keep coming up as we
work....



The End

THANK YOU!


