## Highest weight vectors in plethysms

#### Soo Teck Lee

National University of Singapore

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

#### This talk is based on a joint work with Kazufumi Kimoto .

This talk is based on a joint work with Kazufumi Kimoto.

If  $\pi_1: \operatorname{GL}(V_1) \to \operatorname{GL}(V_2)$  and  $\pi_2: \operatorname{GL}(V_2) \to \operatorname{GL}(V_3)$  are polynomial representations with characters  $\chi_1$  and  $\chi_2$ , then the character of

 $\pi_2 \circ \pi_1 : \operatorname{GL}(V_1) \to \operatorname{GL}(V_3)$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

is called the **plethysm** of  $\chi_1$  and  $\chi_2$  and is denoted by  $\chi_2 \circ \chi_1$ .

This talk is based on a joint work with Kazufumi Kimoto .

If  $\pi_1: \operatorname{GL}(V_1) \to \operatorname{GL}(V_2)$  and  $\pi_2: \operatorname{GL}(V_2) \to \operatorname{GL}(V_3)$  are polynomial representations with characters  $\chi_1$  and  $\chi_2$ , then the character of

 $\pi_2 \circ \pi_1 : \operatorname{GL}(V_1) \to \operatorname{GL}(V_3)$ 

is called the **plethysm** of  $\chi_1$  and  $\chi_2$  and is denoted by  $\chi_2 \circ \chi_1$ .

**Example.** If  $V_1 = \mathbb{C}^n$ ,  $V_2 = S^m(\mathbb{C}^n)$ ,  $V_3 = S^k(V_2) = S^k(S^m(\mathbb{C}^n))$ , then  $\chi_1 = h_m$ ,  $\chi_2 = h_k$  (complete symmetric polynomials) and  $\chi_2 \circ \chi_1 = h_k \circ h_m$ .

This talk is based on a joint work with Kazufumi Kimoto .

If  $\pi_1: \operatorname{GL}(V_1) \to \operatorname{GL}(V_2)$  and  $\pi_2: \operatorname{GL}(V_2) \to \operatorname{GL}(V_3)$  are polynomial representations with characters  $\chi_1$  and  $\chi_2$ , then the character of

 $\pi_2 \circ \pi_1 : \operatorname{GL}(V_1) \to \operatorname{GL}(V_3)$ 

is called the **plethysm** of  $\chi_1$  and  $\chi_2$  and is denoted by  $\chi_2 \circ \chi_1$ .

**Example.** If  $V_1 = \mathbb{C}^n$ ,  $V_2 = S^m(\mathbb{C}^n)$ ,  $V_3 = S^k(V_2) = S^k(S^m(\mathbb{C}^n))$ , then  $\chi_1 = h_m$ ,  $\chi_2 = h_k$  (complete symmetric polynomials) and  $\chi_2 \circ \chi_1 = h_k \circ h_m$ .

Plethysm can be extended to an operation on symmetric functions.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ クタペ

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ クタペ

Not much is known about this.

Answers for  $h_k \circ h_m$  is only known for  $k \le 4$ . k=2,3: Thrall (1942) k=4: Foulkes (1954)

Not much is known about this.

Answers for  $h_k \circ h_m$  is only known for  $k \le 4$ . k=2,3: Thrall (1942) k=4: Foulkes (1954)

**Equivalent problem in representation theory:** Decompose the  $GL_n$  representation  $S^k(S^m(\mathbb{C}^n))$  into a direct sum of irreducible representations and find the multiplicities.

Not much is known about this.

Answers for  $h_k \circ h_m$  is only known for  $k \le 4$ . k=2,3: Thrall (1942) k=4: Foulkes (1954)

**Equivalent problem in representation theory:** Decompose the  $GL_n$  representation  $S^k(S^m(\mathbb{C}^n))$  into a direct sum of irreducible representations and find the multiplicities.

The case  $k \le 4$  was done in the paper " $(GL_n, GL_m)$ -duality and symmetric plethysm" by Howe in 1988.

## Our goal:

Find all the  $GL_n$  highest weight vectors in  $S^2(S^m(\mathbb{C}^n))$  and in  $S^3(S^m(\mathbb{C}^n))$ .

The results will give more explicit information on these representations. In particular,

highest weight vectors  $\implies$  multiplicities.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ クタペ

## Our goal:

Find all the  $GL_n$  highest weight vectors in  $S^2(S^m(\mathbb{C}^n))$  and in  $S^3(S^m(\mathbb{C}^n))$ .

The results will give more explicit information on these representations. In particular,

highest weight vectors  $\implies$  multiplicities.

**Strategy:** For fixed *k*, define a graded algebra which can be decomposed as  $\bigoplus_{m=0}^{\infty} S^k(S^m(\mathbb{C}^n))$ .

Then the  $GL_n$  highest weight vectors in this algebra spans a subalgebra.

Find generators and relations, and a basis for this subalgebra.

Construction of the algebra  $\bigoplus_{m=0}^{\infty} S^k(S^m(\mathbb{C}^n))$ We have

$$S^k(S^m(\mathbb{C}^n)) = (\overbrace{S^m(\mathbb{C}^n)\otimes\cdots\otimes S^m(\mathbb{C}^n)}^k)^{\mathfrak{S}_k}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where  $\mathfrak{S}_k$  is the symmetric group on  $\{1, 2, ..., k\}$ .

Construction of the algebra  $\bigoplus_{m=0}^{\infty} S^k(S^m(\mathbb{C}^n))$ We have

$$S^{k}(S^{m}(\mathbb{C}^{n})) = (\overbrace{S^{m}(\mathbb{C}^{n}) \otimes \cdots \otimes S^{m}(\mathbb{C}^{n})}^{k})^{\mathfrak{S}_{k}}$$

where  $\mathfrak{S}_k$  is the symmetric group on  $\{1, 2, ..., k\}$ .

Let  $\mathcal{P}(\mathbb{C}^n) = \{ \text{polynomial functions on } \mathbb{C}^n \}$ . For  $g \in GL_n$  and  $f \in \mathcal{P}(\mathbb{C}^n)$ ,

$$(g.f)(X) = f(g^t X) \quad X \in \mathbb{C}^n.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Construction of the algebra  $\bigoplus_{m=0}^{\infty} S^k(S^m(\mathbb{C}^n))$ We have

$$S^{k}(S^{m}(\mathbb{C}^{n})) = (\overbrace{S^{m}(\mathbb{C}^{n}) \otimes \cdots \otimes S^{m}(\mathbb{C}^{n})}^{k})^{\mathfrak{S}_{k}}$$

where  $\mathfrak{S}_k$  is the symmetric group on  $\{1, 2, ..., k\}$ .

Let  $\mathcal{P}(\mathbb{C}^n) = \{ \text{polynomial functions on } \mathbb{C}^n \}.$ For  $g \in \text{GL}_n$  and  $f \in \mathcal{P}(\mathbb{C}^n)$ ,

$$(g.f)(X) = f(g^t X) \quad X \in \mathbb{C}^n.$$

Then as a representation of  $GL_n$ ,

$$\mathcal{P}(\mathbb{C}^n) = \bigoplus_{m \ge 0} \mathcal{P}^m(\mathbb{C}^n) \cong \bigoplus_{m \ge 0} S^m(\mathbb{C}^n).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

#### Next, consider

$$\begin{aligned} \mathcal{P}(\mathbf{M}_{nk}) &= \mathcal{P}(\mathbb{C}^n \oplus \mathbb{C}^n \oplus \cdots \mathbb{C}^n) \cong \mathcal{P}(\mathbb{C}^n) \otimes \mathcal{P}(\mathbb{C}^n) \otimes \cdots \otimes \mathcal{P}(\mathbb{C}^n) \\ &\cong (\bigoplus_{m_1 \ge 0} S^{m_1}(\mathbb{C}^n)) \otimes (\bigoplus_{m_2 \ge 0} S^{m_2}(\mathbb{C}^n)) \otimes \cdots \otimes (\bigoplus_{m_k \ge 0} S^{m_k}(\mathbb{C}^n)) \\ &\cong \bigoplus_{m_1, \dots, m_k \ge 0} S^{m_1}(\mathbb{C}^n) \otimes S^{m_2}(\mathbb{C}^n) \otimes \cdots \otimes S^{m_k}(\mathbb{C}^n). \end{aligned}$$

#### Next, consider

$$\begin{aligned} \mathcal{P}(\mathbf{M}_{nk}) &= \mathcal{P}(\mathbb{C}^n \oplus \mathbb{C}^n \oplus \cdots \mathbb{C}^n) \cong \mathcal{P}(\mathbb{C}^n) \otimes \mathcal{P}(\mathbb{C}^n) \otimes \cdots \otimes \mathcal{P}(\mathbb{C}^n) \\ &\cong (\bigoplus_{m_1 \ge 0} S^{m_1}(\mathbb{C}^n)) \otimes (\bigoplus_{m_2 \ge 0} S^{m_2}(\mathbb{C}^n)) \otimes \cdots \otimes (\bigoplus_{m_k \ge 0} S^{m_k}(\mathbb{C}^n)) \\ &\cong \bigoplus_{m_1, \dots, m_k \ge 0} S^{m_1}(\mathbb{C}^n) \otimes S^{m_2}(\mathbb{C}^n) \otimes \cdots \otimes S^{m_k}(\mathbb{C}^n). \end{aligned}$$

Let  $\mathcal{Q} \subset \mathcal{P}(M_{\textit{nk}})$  with

$$\mathcal{Q} \cong \bigoplus_{m=0}^{\infty} \mathcal{Q}_m$$
 where  $\mathcal{Q}_m \cong \widetilde{S^m(\mathbb{C}^n) \otimes \cdots \otimes S^m(\mathbb{C}^n)}$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Next, consider

$$\begin{aligned} \mathcal{P}(\mathbf{M}_{nk}) &= \mathcal{P}(\mathbb{C}^n \oplus \mathbb{C}^n \oplus \cdots \mathbb{C}^n) \cong \mathcal{P}(\mathbb{C}^n) \otimes \mathcal{P}(\mathbb{C}^n) \otimes \cdots \otimes \mathcal{P}(\mathbb{C}^n) \\ &\cong (\bigoplus_{m_1 \ge 0} S^{m_1}(\mathbb{C}^n)) \otimes (\bigoplus_{m_2 \ge 0} S^{m_2}(\mathbb{C}^n)) \otimes \cdots \otimes (\bigoplus_{m_k \ge 0} S^{m_k}(\mathbb{C}^n)) \\ &\cong \bigoplus_{m_1, \dots, m_k \ge 0} S^{m_1}(\mathbb{C}^n) \otimes S^{m_2}(\mathbb{C}^n) \otimes \cdots \otimes S^{m_k}(\mathbb{C}^n). \end{aligned}$$

Let  $\mathcal{Q} \subset \mathcal{P}(M_{\textit{nk}})$  with

$$\mathcal{Q} \cong \bigoplus_{m=0}^{\infty} \mathcal{Q}_m$$
 where  $\mathcal{Q}_m \cong \widetilde{S^m(\mathbb{C}^n) \otimes \cdots \otimes S^m(\mathbb{C}^n)}$ .

Extract  $\mathfrak{S}_k$  -invariants

$$\mathcal{Q}^{\mathfrak{S}_k} = \bigoplus_{m=0}^{\infty} \mathcal{Q}_m^{\mathfrak{S}_k}, \quad \text{where} \quad \mathcal{Q}_m^{\mathfrak{S}_k} \cong S^k(S^m(\mathbb{C}^n)).$$

æ

$$\mathcal{Q}^{\mathfrak{S}_k} = \bigoplus_{m=0}^{\infty} \mathcal{Q}_m^{\mathfrak{S}_k}, \quad \text{where} \quad \mathcal{Q}_m^{\mathfrak{S}_k} \cong S^k(S^m(\mathbb{C}^n)).$$

・ロ・・聞・・用・・用・・日・

 $\mathcal{Q}^{\mathfrak{S}_k}$  is a graded algebra, and each  $S^k(S^m(\mathbb{C}^n))$  is a homogeneous component of  $\mathcal{Q}^{\mathfrak{S}_k}$ .

$$\mathcal{Q}^{\mathfrak{S}_k} = \bigoplus_{m=0}^{\infty} \mathcal{Q}_m^{\mathfrak{S}_k}, \quad \text{where} \quad \mathcal{Q}_m^{\mathfrak{S}_k} \cong S^k(S^m(\mathbb{C}^n)).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 $\mathcal{Q}^{\mathfrak{S}_k}$  is a graded algebra, and each  $S^k(S^m(\mathbb{C}^n))$  is a homogeneous component of  $\mathcal{Q}^{\mathfrak{S}_k}$ .

**Next step:** Find all the  $GL_n$  highest weight vectors in  $\mathcal{Q}^{\mathfrak{S}_k}$ .

#### Some notaton:

## Young diagrams



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\ell(D) = 4$ , the number of rows in *D*.

#### Some notaton:

## Young diagrams



 $\ell(D) = 4$ , the number of rows in *D*.

Young diagram D  $\leftrightarrow$  polynomial representation with  $\ell(D) \le n$   $\leftrightarrow$   $\rho_n^D$  of  $\operatorname{GL}_n = \operatorname{GL}_n(\mathbb{C})$ 

(日) (日) (日) (日) (日) (日) (日)

If D = (k) has only one row, then  $\rho_n^{(k)} \cong S^k(\mathbb{C}^n)$ .

$$A_n = \left\{ t = \begin{pmatrix} t_1 & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & & t_n \end{pmatrix} \in \mathrm{GL}_n \right\}, \quad U_n = \left\{ \begin{pmatrix} 1 & \mathbf{*} \\ & \ddots & \\ \mathbf{0} & & 1 \end{pmatrix} \right\}.$$

For  $D = (\lambda_1, ..., \lambda_n)$ , let

$$\psi_n^D: A_n \to \mathbb{C}, \quad \psi(t) = t_1^{\lambda_1} \cdots t_n^{\lambda_n}.$$

#### Then

 $\rho_n^D = \text{ irreducible } \operatorname{GL}_n \text{ module with highest weight } \psi_n^D$ and  $\left(\rho_n^D\right)^{U_n} = \mathbb{C}\xi_D, \quad t.\xi_D = \left[\psi_n^D(t)\right]\xi_D, \quad \forall t \in A_n$ 

(ロ) (型) (主) (主) (三) の(で)

So to find  $GL_n$  highest weight vectors in  $\mathcal{Q}^{\mathfrak{S}_k}$ , we consider the algebra

 $(\mathcal{Q}^{\mathfrak{S}_k})^{U_n} = \{U_n \text{ invariants in } \mathcal{Q}^{\mathfrak{S}_k}\}.$ 

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

So to find  $GL_n$  highest weight vectors in  $\mathcal{Q}^{\mathfrak{S}_k}$ , we consider the algebra

 $(\mathcal{Q}^{\mathfrak{S}_k})^{U_n} = \{U_n \text{ invariants in } \mathcal{Q}^{\mathfrak{S}_k}\}.$ 

Since the actions by  $\mathfrak{S}_k$  and  $U_n$  commute with each other,

 $(\mathcal{Q}^{\mathfrak{S}_k})^{U_n} = (\mathcal{Q}^{U_n})^{\mathfrak{S}_k}.$ 

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

So to find  $GL_n$  highest weight vectors in  $\mathcal{Q}^{\mathfrak{S}_k}$ , we consider the algebra

```
(\mathcal{Q}^{\mathfrak{S}_k})^{U_n} = \{U_n \text{ invariants in } \mathcal{Q}^{\mathfrak{S}_k}\}.
```

Since the actions by  $\mathfrak{S}_k$  and  $U_n$  commute with each other,

 $(\mathcal{Q}^{\mathfrak{S}_k})^{U_n} = (\mathcal{Q}^{U_n})^{\mathfrak{S}_k}.$ 

A nice basis for the algebra  $Q^{U_n}$  may be deduced from SMT (standard monomial theory).

Project the basis to  $(\mathcal{Q}^{U_n})^{\mathfrak{S}_k}$  to obtain a spanning set of  $(\mathcal{Q}^{U_n})^{\mathfrak{S}_k}$ .

Finally get a basis for  $(\mathcal{Q}^{U_n})^{\mathfrak{S}_k}$  from this spanning set.

#### Standard Monomial Theory states that the algebra

$$\mathcal{P}(\mathbf{M}_{nk})^{U_n} \cong \bigoplus_{\mathbf{m}=(m_1,\ldots,m_k)\in\mathbb{Z}_{\geq 0}^k} [S^{m_1}(\mathbb{C}^n)\otimes S^{m_2}(\mathbb{C}^n)\otimes\cdots\otimes S^{m_k}(\mathbb{C}^n)]^{U_n}$$

is generated by  $\{\delta_I : 1 \leq i_1 < i_2 < \cdots < i_p \leq k\}$  where

$$\delta_I = \begin{vmatrix} x_{1i_1} & x_{1i_2} & \cdots & x_{1i_p} \\ x_{2i_1} & x_{2i_2} & \cdots & x_{2i_p} \\ \vdots & \vdots & & \vdots \\ x_{pi_1} & x_{pi_2} & \cdots & x_{pi_p} \end{vmatrix}$$

and a set of products of the form  $\delta_{I_1}\delta_{I_2}\cdots\delta_{I_q}$  (called standard monomials) forms a basis for  $\mathcal{P}(\mathbf{M}_{nk})^{U_n}$ .

#### Standard Monomial Theory states that the algebra

$$\mathcal{P}(\mathbf{M}_{nk})^{U_n} \cong \bigoplus_{\mathbf{m}=(m_1,\ldots,m_k)\in\mathbb{Z}_{\geq 0}^k} [S^{m_1}(\mathbb{C}^n)\otimes S^{m_2}(\mathbb{C}^n)\otimes\cdots\otimes S^{m_k}(\mathbb{C}^n)]^{U_n}$$

is generated by  $\{\delta_I : 1 \leq i_1 < i_2 < \cdots < i_p \leq k\}$  where

$$\delta_I = \begin{vmatrix} x_{1i_1} & x_{1i_2} & \cdots & x_{1i_p} \\ x_{2i_1} & x_{2i_2} & \cdots & x_{2i_p} \\ \vdots & \vdots & & \vdots \\ x_{pi_1} & x_{pi_2} & \cdots & x_{pi_p} \end{vmatrix}$$

and a set of products of the form  $\delta_{I_1}\delta_{I_2}\cdots\delta_{I_q}$  (called standard monomials) forms a basis for  $\mathcal{P}(\mathbf{M}_{nk})^{U_n}$ .

# The basis elements which belong to $\mathcal{Q}^{U_n}$ forms a basis for $\mathcal{Q}^{U_n}$ .

The case k = 2Find the highest weight vectors in  $S^2(S^m(\mathbb{C}^n))$ 

|                                                                                  | $\int x_{11}$          | $x_{12}$               |
|----------------------------------------------------------------------------------|------------------------|------------------------|
| $\Phi$ $\Phi(M_{1}(\mathbb{C}))$ reduce relationships on                         | <i>x</i> <sub>21</sub> | <i>x</i> <sub>22</sub> |
| $\mathcal{P} = \mathcal{P}(\mathbf{M}_{n2}(\mathbb{C})) =$ polynomial algebra on | :                      | :                      |
|                                                                                  | •                      | •                      |
|                                                                                  | $\int x_{n1}$          | $x_{n2}$               |

$$\mathcal{P} = \mathcal{P}(\mathbf{M}_{n2}) \cong \mathcal{P}(\mathbb{C}^n \oplus \mathbb{C}^n) \cong \mathcal{P}(\mathbb{C}^n) \otimes \mathcal{P}(\mathbb{C}^n)$$
$$\cong \bigoplus_{m_1, m_2 \ge 0} S^{m_1}(\mathbb{C}^n) \otimes S^{m_2}(\mathbb{C}^n)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The case k = 2Find the highest weight vectors in  $S^2(S^m(\mathbb{C}^n))$ 

|                                                                                  | $\int x_{11}$                          | $x_{12}$               | 1 |
|----------------------------------------------------------------------------------|----------------------------------------|------------------------|---|
|                                                                                  | <i>x</i> <sub>21</sub>                 | <i>x</i> <sub>22</sub> |   |
| $\mathcal{P} = \mathcal{P}(\mathbf{M}_{n2}(\mathbb{C})) =$ polynomial algebra on | :                                      | :                      |   |
|                                                                                  | •                                      | •                      | I |
|                                                                                  | $\begin{pmatrix} x_{n1} \end{pmatrix}$ | $x_{n2}$ /             | ł |

$$\mathcal{P} = \mathcal{P}(\mathbf{M}_{n2}) \cong \mathcal{P}(\mathbb{C}^n \oplus \mathbb{C}^n) \cong \mathcal{P}(\mathbb{C}^n) \otimes \mathcal{P}(\mathbb{C}^n)$$
$$\cong \bigoplus_{m_1, m_2 \ge 0} S^{m_1}(\mathbb{C}^n) \otimes S^{m_2}(\mathbb{C}^n)$$

$$\mathcal{Q} \subset \mathcal{P} \quad \text{with} \quad \mathcal{Q} \cong \bigoplus_{m \ge 0} S^m(\mathbb{C}^n) \otimes S^m(\mathbb{C}^n).$$
$$\mathcal{Q}^{\mathfrak{S}_2} \cong \bigoplus_{m \ge 0} (S^m(\mathbb{C}^n) \otimes S^m(\mathbb{C}^n))^{\mathfrak{S}_2} \cong \bigoplus_{m \ge 0} S^2(S^m(\mathbb{C}^n)).$$

## By STM, the algebra $\mathcal{P}^{U_n}$ is generated by

$$\begin{array}{c|cccc} x_{11}, \ x_{12}, \\ x_{21} \\ x_{21} \\ x_{22} \end{array}$$

.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

By STM, the algebra  $\mathcal{P}^{U_n}$  is generated by

$$x_{11}, x_{12}, \begin{vmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{vmatrix}$$

**Proposition.** The algebra  $\mathcal{Q}^{U_n} \cong \bigoplus_{m \ge 0} (S^m(\mathbb{C}^n) \otimes S^m(\mathbb{C}^n))^{U_n}$  is a polynomial algebra generated freely by

$$\alpha = x_{11}x_{12}$$
 and  $\gamma = \begin{vmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{vmatrix}$ ,

and for each m, the set

$$\{\alpha^{m-a}\gamma^a: 0 \le a \le m\}$$

is a basis for  $(S^m(\mathbb{C}^n) \otimes S^m(\mathbb{C}^n))^{U_n}$ .

GL<sub>n</sub> weight of 
$$\alpha = x_{11}x_{12}$$
 is  $(2, 0, 0, ..., 0)$ .  
GL<sub>n</sub> weight of  $\gamma = \begin{vmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{vmatrix}$  is  $(1, 1, 0, ..., 0)$ .  
So GL<sub>n</sub> weight of  $\alpha^{m-a}\gamma^a$  is  $(2m - a, a, 0, ..., 0)$ ,

$$S^m(\mathbb{C}^n)\otimes S^m(\mathbb{C}^n)\cong \bigoplus_{0\leq a\leq m}\rho_n^{(2m-a,a)},$$

and  $\alpha^{m-a}\gamma^a$  is the unique  $GL_n$  highest weight vector in  $\rho_n^{(2m-a,a)}$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

GL<sub>n</sub> weight of 
$$\alpha = x_{11}x_{12}$$
 is  $(2, 0, 0, ..., 0)$ .  
GL<sub>n</sub> weight of  $\gamma = \begin{vmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{vmatrix}$  is  $(1, 1, 0, ..., 0)$ .  
So GL<sub>n</sub> weight of  $\alpha^{m-a}\gamma^a$  is  $(2m - a, a, 0, ..., 0)$ ,

$$S^m(\mathbb{C}^n)\otimes S^m(\mathbb{C}^n)\cong \bigoplus_{0\leq a\leq m} \rho_n^{(2m-a,a)},$$

and  $\alpha^{m-a}\gamma^a$  is the unique GL<sub>n</sub> highest weight vector in  $\rho_n^{(2m-a,a)}$ .

Now  $S^m(\mathbb{C}^n) \otimes S^m(\mathbb{C}^n) \cong S^2(S^m(\mathbb{C}^n)) \oplus \Lambda^2(S^m(\mathbb{C}^n)).$ Which of the representations  $\rho_n^{(2m-a,a)}$  are in  $S^2(S^m(\mathbb{C}^n))$ ?

・ロト・西ト・ヨト・日下 しょうくつ

GL<sub>n</sub> weight of 
$$\alpha = x_{11}x_{12}$$
 is  $(2, 0, 0, ..., 0)$ .  
GL<sub>n</sub> weight of  $\gamma = \begin{vmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{vmatrix}$  is  $(1, 1, 0, ..., 0)$ .  
So GL<sub>n</sub> weight of  $\alpha^{m-a}\gamma^a$  is  $(2m - a, a, 0, ..., 0)$ ,

$$S^m(\mathbb{C}^n)\otimes S^m(\mathbb{C}^n)\cong \bigoplus_{0\leq a\leq m}\rho_n^{(2m-a,a)},$$

and  $\alpha^{m-a}\gamma^a$  is the unique GL<sub>n</sub> highest weight vector in  $\rho_n^{(2m-a,a)}$ .

Now  $S^m(\mathbb{C}^n) \otimes S^m(\mathbb{C}^n) \cong S^2(S^m(\mathbb{C}^n)) \oplus \Lambda^2(S^m(\mathbb{C}^n)).$ 

Which of the representations  $\rho_n^{(2m-a,a)}$  are in  $S^2(S^m(\mathbb{C}^n))$ ? Just check how the transposition  $(1 \ 2) \in \mathfrak{S}_2$  transforms the highest weight vectors.

The transposition  $(1 \ 2) \in \mathfrak{S}_2$  acts by  $(1 \ 2).x_{i1} = x_{i2}$  and  $(1 \ 2).x_{i2} = x_{i1}$ .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

The transposition  $(1 \ 2) \in \mathfrak{S}_2$  acts by  $(1 \ 2).x_{i1} = x_{i2}$  and  $(1 \ 2).x_{i2} = x_{i1}$ .

So (1 2).
$$\alpha = x_{12}x_{11} = \alpha$$
, (1 2). $\gamma = \begin{vmatrix} x_{12} & x_{11} \\ x_{22} & x_{21} \end{vmatrix} = -\gamma$ ,

$$(1\,2).\alpha^{m-a}\gamma^a = (-1)^a \alpha^{m-a}\gamma^a$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

The transposition  $(1 \ 2) \in \mathfrak{S}_2$  acts by  $(1 \ 2).x_{i1} = x_{i2}$  and  $(1 \ 2).x_{i2} = x_{i1}$ .

So (1 2).
$$\alpha = x_{12}x_{11} = \alpha$$
, (1 2). $\gamma = \begin{vmatrix} x_{12} & x_{11} \\ x_{22} & x_{21} \end{vmatrix} = -\gamma$ ,

$$(1\,2).\alpha^{m-a}\gamma^a = (-1)^a \alpha^{m-a}\gamma^a$$

So  $\alpha^{m-a}\gamma^a \in S^2(S^m(\mathbb{C}^n))$  if and only if a is even, and this gives

$$S^2(S^m(\mathbb{C}^n)) \cong \bigoplus_{\substack{0 \le a \le m \\ a \text{ even}}} \rho_n^{(2m-a,a)}$$

$$\Lambda^2(S^m(\mathbb{C}^n)) \cong \bigoplus_{\substack{1 \le a \le m \\ a \text{ odd}}} \rho_n^{(2m-a,a)}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

## The case k = 3: Find highest weight vectors in $S^3(S^m(\mathbb{C}^n))$

| ( | $x_{11}$ | $x_{12}$               | $x_{13}$               |   |
|---|----------|------------------------|------------------------|---|
|   | $x_{21}$ | <i>x</i> <sub>22</sub> | <i>x</i> <sub>23</sub> |   |
|   |          |                        |                        |   |
|   | :        | :                      | :                      | ł |
| ĺ | $x_{n1}$ | $x_{n2}$               | $x_{n3}$               | Ϊ |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\mathcal{P}=\mathcal{P}(M_{n3}(\mathbb{C}))=$$
 polynomial algebra on

$$\mathcal{P} \cong \mathcal{P}(\mathbb{C}^n) \otimes \mathcal{P}(\mathbb{C}^n) \otimes \mathcal{P}(\mathbb{C}^n)$$
$$\cong \bigoplus_{m_1, m_2, m_3 \ge 0} S^{m_1}(\mathbb{C}^n) \otimes S^{m_2}(\mathbb{C}^n) \otimes S^{m_3}(\mathbb{C}^n)$$

## The case k = 3: Find highest weight vectors in $S^3(S^m(\mathbb{C}^n))$

| ( | $x_{11}$ | $x_{12}$               | <i>x</i> <sub>13</sub> |   |
|---|----------|------------------------|------------------------|---|
| 1 | $x_{21}$ | <i>x</i> <sub>22</sub> | <i>x</i> <sub>23</sub> |   |
|   |          |                        |                        |   |
|   | :        | :                      |                        |   |
| / | $x_{n1}$ | $x_{n2}$               | $x_{n3}$               | ) |

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\mathcal{P} = \mathcal{P}(M_{n3}(\mathbb{C})) = polynomial algebra on$$

$$\mathcal{P} \cong \mathcal{P}(\mathbb{C}^n) \otimes \mathcal{P}(\mathbb{C}^n) \otimes \mathcal{P}(\mathbb{C}^n)$$
$$\cong \bigoplus_{m_1, m_2, m_3 \ge 0} S^{m_1}(\mathbb{C}^n) \otimes S^{m_2}(\mathbb{C}^n) \otimes S^{m_3}(\mathbb{C}^n)$$

$$\mathcal{Q} \subset \mathcal{P}$$
 with  $\mathcal{Q} \cong \bigoplus_{m \ge 0} S^m(\mathbb{C}^n) \otimes S^m(\mathbb{C}^n) \otimes S^m(\mathbb{C}^n).$   
 $\mathcal{Q}^{\mathfrak{S}_3} \cong \bigoplus_{m \ge 0} S^3(S^m(\mathbb{C}^n)).$ 

$$\left(\mathcal{Q}^{\mathfrak{S}_3}\right)^{U_n} = \left(\mathcal{Q}^{U_n}\right)^{\mathfrak{S}_3} \cong \bigoplus_{m \ge 0} S^3 \left(S^m(\mathbb{C}^n)\right)^{U_n}.$$

**Proposition. (SMT + some work)** For  $1 \le i, j \le 3$ , let

$$\delta_{ij} = \begin{vmatrix} x_{1i} & x_{1j} \\ x_{2i} & x_{2j} \end{vmatrix} \quad \text{and} \quad \gamma_1 = \begin{vmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{vmatrix}.$$

Then the algebra  $\mathcal{Q}^{U_n} \cong \bigoplus_{m \ge 0} (S^m(\mathbb{C}^n) \otimes S^m(\mathbb{C}^n))^{U_n}$  is generated by

$$\alpha_1 = x_{11}x_{12}x_{13}, \quad \beta_2 = x_{13}\delta_{12}, \quad \beta_3 = x_{12}\delta_{13},$$
  
 $\gamma_1, \quad \gamma_2 = \delta_{12}\delta_{13}\delta_{23}.$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

**MainTheorem.** Let  $\alpha_2 = \beta_2^2 + \beta_3^2 - \beta_2\beta_3$  and  $\alpha_3 = 2(\beta_2^3 + \beta_3^3) - 3(\beta_2^2\beta_3 + \beta_2\beta_3^2)$ . Then the set

 $\mathbf{B} = \{\xi_{(a,b,c,d,e,f)} = \alpha_1^a \alpha_2^b \alpha_3^c \gamma_1^{2d+f} \gamma_2^{2e+f}: a,b,d,e \in \mathbb{Z}_{\geq 0}, c,f \in \{0,1\}\}$ 

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is a basis for  $(\mathcal{Q}^{\mathfrak{S}_3})^{U_n} = (\mathcal{Q}^{U_n})^{\mathfrak{S}_3}$ .

**MainTheorem.** Let  $\alpha_2 = \beta_2^2 + \beta_3^2 - \beta_2\beta_3$  and  $\alpha_3 = 2(\beta_2^3 + \beta_3^3) - 3(\beta_2^2\beta_3 + \beta_2\beta_3^2)$ . Then the set

 $\mathbf{B} = \{\xi_{(a,b,c,d,e,f)} = \alpha_1^a \alpha_2^b \alpha_3^c \gamma_1^{2d+f} \gamma_2^{2e+f} : a, b, d, e \in \mathbb{Z}_{\ge 0}, c, f \in \{0,1\}\}$ is a basis for  $(\mathcal{Q}^{\mathfrak{S}_3})^{U_n} = (\mathcal{Q}^{U_n})^{\mathfrak{S}_3}.$ 

|            | m | $GL_n$ weight |
|------------|---|---------------|
| $\alpha_1$ | 1 | (3)           |
| $\gamma_1$ | 1 | (1, 1, 1)     |
| $\alpha_2$ | 2 | (4, 2)        |
| $\gamma_2$ | 2 | (3,3)         |
| $\alpha_3$ | 3 | (6,3)         |

The GL<sub>n</sub> weight of  $\xi_{(a,b,c,d,e,f)}$  is  $D = (\lambda_1, \lambda_2, \lambda_3)$  where

$$\lambda_1 = 3a + 4b + 6c + 2d + 6e + 4f$$
$$\lambda_2 = 2b + 3c + 2d + 6e + 4f$$
$$\lambda_3 = 2d + f$$

and  $\xi_{(a,b,c,d,e,f)} \in S^3(S^m(\mathbb{C}^n))$ where m = a + 2b + 3c + 2d + 4e + 3f.

#### **Examples**

## Highest weight vectors in $S^3(S^1(\mathbb{C}^n))$

 $S^3(S^1(\mathbb{C}^n))=S^3(\mathbb{C}^n)=\rho_n^{(3)}$  is irreducible and has only one highest weight vector

 $\alpha_1 = x_{11}x_{12}x_{13}.$ 

(ロ) (型) (主) (主) (主) の(で)

## Highest weight vectors in $S^3(S^2(\mathbb{C}^n))$

|              | т         | $GL_n$ weight   |
|--------------|-----------|-----------------|
| $\alpha_1^2$ | 1 + 1 = 2 | (3) + (3) = (6) |
| $\alpha_2$   | 2         | (4, 2)          |
| $\gamma_1^2$ | 2         | (2, 2, 2)       |

Thus,

$$S^{3}(S^{2}(\mathbb{C}^{n})) \cong \rho_{n}^{(6)} \oplus \rho_{n}^{(4,2)} \oplus \rho_{n}^{(2,2,2)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Highest weight vectors in $S^3(S^3(\mathbb{C}^n))$

|                       | m             | $GL_n$ weight               |
|-----------------------|---------------|-----------------------------|
| $\alpha_1^3$          | 1 + 1 + 1 = 3 | (3) + (3) + (3) = (9)       |
| $\alpha_1 \alpha_2$   | 1 + 2 = 3     | (3) + (4, 2) = (7, 2)       |
| $\alpha_3$            | 3             | (6,3)                       |
| $\alpha_1 \gamma_1^2$ | 1 + 2 = 3     | (3) + (2, 2, 2) = (5, 2, 2) |
| $\gamma_1\gamma_2$    | 3             | (4, 4, 1)                   |

Thus,

$$S^{3}(S^{3}(\mathbb{C}^{n})) = \rho_{n}^{(9)} \oplus \rho_{n}^{(7,2)} \oplus \rho_{n}^{(6,3)} \oplus \rho_{n}^{(5,2,2)} \oplus \rho_{n}^{(4,4,1)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Highest weight vectors in  $S^3(S^4(\mathbb{C}^n))$ 

|                              | m                 | $GL_n$ weight               |
|------------------------------|-------------------|-----------------------------|
| $\alpha_1^4$                 | 1 + 1 + 1 + 1 = 4 | 4(3) = (12)                 |
| $\alpha_1^2 \alpha_2$        | 2 + 2 = 4         | (6) + (4,2) = (10,2)        |
| $\alpha_1 \alpha_3$          | 1 + 3 = 4         | (3) + (6,3) = (9,3)         |
| $\alpha_1^2 \gamma_1^2$      | 2 + 2 = 4         | (6) + (2, 2, 2) = (8, 2, 2) |
| $\alpha_1(\gamma_1\gamma_2)$ | 1 + 3 = 4         | (3) + (4,4,1) = (7,4,1)     |
| $\alpha_2^2$                 | 2 + 2 = 4         | 2(4,2) = (8,4)              |
| $\alpha_2 \gamma_1^2$        | 2 + 2 = 4         | (4,2) + (2,2,2) = (6,4,2)   |
| $(\gamma_{1}^{2})^{2}$       | 2(2) = 4          | 2(2,2,2) = (4,4,4)          |
| $\gamma_2^2$                 | 4                 | (6,6)                       |

 $S^{3}(S^{4}(\mathbb{C}^{n})) = \rho_{n}^{(12)} \oplus \rho_{n}^{(10,2)} \oplus \rho_{n}^{(9,3)} \oplus \rho_{n}^{(8,4)} \oplus \rho_{n}^{(8,2,2)} \oplus \rho_{n}^{(7,4,1)} \oplus \rho_{n}^{(6,6)} \oplus \rho_{n}^{(6,4,2)} \oplus \rho_{n}^{(4,4,4)}.$ 

## Highest weight vectors in $S^3(S^5(\mathbb{C}^n))$

|                                | m            | GL <sub>n</sub> weight          |
|--------------------------------|--------------|---------------------------------|
| $\alpha_1^5$                   | 5(1) = 5     | 5(3) = (15)                     |
| $\alpha_1^3 \alpha_2$          | 3+2=5        | 3(3) + (4,2) = (13,2)           |
| $\alpha_1 \alpha_2^2$          | 1+2(2)=5     | (3) + 2(4,2) = (11,4)           |
| $\alpha_1^2 \alpha_3$          | 2 + 3 = 5    | 2(3) + (6,3) = (12,3)           |
| $\alpha_1^3 \gamma_1^2$        | 3(1) + 2 = 5 | 3(3) + (2,2,2) = (11,2,2)       |
| $\alpha_1(\gamma_1^2)^2$       | 1+2(2)=5     | (3) + 2(2, 2, 2) = (7, 4, 4)    |
| $\alpha_1^2(\gamma_1\gamma_2)$ | 2(1) + 3 = 5 | 2(3) + (4, 4, 1) = (10, 4, 1)   |
| $\alpha_1 \gamma_2^2$          | 1 + 4 = 5    | (3) + (6, 6) = (9, 6)           |
| $\alpha_1 \alpha_2 \gamma_1^2$ | 1 + 2 + 2    | (3) + (4,2) + (2,2,2) = (9,4,2) |
| $\alpha_2 \alpha_3$            | 2 + 3 = 5    | (4,2) + (6,3) = (10,5)          |
| $\alpha_2(\gamma_1\gamma_2)$   | 2 + 3 = 5    | (4,2) + (4,4,1) = (8,6,1)       |
| $\alpha_3 \gamma_1^2$          | 3 + 2 = 5    | (6,3) + (2,2,2) = (8,5,2)       |
| $\gamma_1^2(\gamma_1\gamma_2)$ | 2 + 3 = 5    | (2,2,2) + (4,4,1) = (6,6,3)     |

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## Thus,

$$S^{3}(S^{5}(\mathbb{C}^{n})) = \rho_{n}^{(15)} \oplus \rho_{n}^{(13,2)} \oplus \rho_{n}^{(12,3)} \oplus \rho_{n}^{(11,4)} \oplus \rho_{n}^{(11,2,2)} \oplus \rho_{n}^{(10,5)} \oplus \rho_{n}^{(10,4,1)} \oplus \rho_{n}^{(9,6)} \oplus \rho_{n}^{(9,4,2)} \oplus \rho_{n}^{(8,6,1)} \oplus \rho_{n}^{(8,5,2)} \oplus \rho_{n}^{(7,4,4)} \oplus \rho_{n}^{(6,6,3)}.$$

## Highest weight vectors in $S^3(S^6(\mathbb{C}^n))$

|                                           | m                | GL,, weight                             |
|-------------------------------------------|------------------|-----------------------------------------|
| $\alpha_1^6$                              | 6(1) = 6         | 6(3) = (18)                             |
| $\alpha_1^4 \alpha_2$                     | 4(1) + 2 = 6     | 4(3) + (4, 2) = (16, 2)                 |
| $\alpha_1^2 \alpha_2^2$                   | 2(1) + 2(2) = 6  | 2(3) + 2(4, 2) = (14, 4)                |
| $\alpha_1^3 \alpha_3$                     | 3(1) + 3 = 6     | 3(3) + (6, 3) = (15, 3)                 |
| $\alpha_1^4 \gamma_1^2$                   | 4(1) + 2 = 6     | 4(3) + (2, 2, 2) = (14, 2, 2)           |
| $\alpha_{1}^{2}(\gamma_{1}^{2})^{2}$      | 2(1) + 2(2) = 6  | 2(3) + 2(2, 2, 2) = (10, 4, 4)          |
| $\alpha_1^3(\gamma_1\gamma_2)$            | 3(1) + 3 = 6     | 3(3) + (4, 4, 1) = (13, 4, 1)           |
| $\alpha_1^2 \gamma_2^2$                   | 2(1) + 4 = 6     | 2(3) + (6, 6) = (12, 6)                 |
| $\alpha_1^2 \alpha_2 \gamma_1^2$          | 2(1) + 2 + 2 = 6 | 2(3) + (4,2) + (2,2,2) = (12,4,2)       |
| $\alpha_1 \alpha_2 \alpha_3$              | 1 + 2 + 3 = 6    | (3) + (4, 2) + (6, 3) = (13, 5)         |
| $\alpha_1 \alpha_2 (\gamma_1 \gamma_2)$   | 1 + 2 + 3 = 6    | (3) + (4, 2) + (4, 4, 1) = (11, 6, 1)   |
| $\alpha_1 \alpha_3 \gamma_1^2$            | 1 + 3 + 2 = 6    | (3) + (6,3) + (2,2,2) = (11,5,2)        |
| $\alpha_1 \gamma_1^2 (\gamma_1 \gamma_2)$ | 1 + 2 + 3 = 6    | (3) + (2, 2, 2) + (4, 4, 1) = (9, 6, 3) |
| $\alpha_2^3$                              | 3(2) = 6         | 3(4,2) = (12,6)                         |
| $\alpha_2^2 \gamma_1^2$                   | 2(2) + 2 = 6     | 2(4, 2) + (2, 2, 2) = (10, 6, 2)        |
| $\alpha_2(\gamma_1^2)^2$                  | 2 + 2(2) = 6     | (4, 2) + 2(2, 2, 2) = (8, 6, 4)         |
| $\alpha_2 \gamma_2^2$                     | 2(1) + 4 = 6     | (4, 2) + (6, 6) = (10, 8)               |
| $\alpha_3(\gamma_1\gamma_2)$              | 3 + 3 = 6        | (6,3) + (4,4,1) = (10,7,1)              |
| $(\gamma_{1}^{2})^{3}$                    | 3(2) = 6         | 3(2,2,2) = (6,6,6)                      |
| $\gamma_1^2 \gamma_2^2$                   | 2 + 4 = 6        | (2, 2, 2) + (6, 6) = (8, 8, 2)          |

$$S^{3}(S^{6}(\mathbb{C}^{n})) = \rho_{n}^{(18)} \oplus \rho_{n}^{(16,2)} \oplus \rho_{n}^{(15,3)} \oplus \rho_{n}^{(14,4)} \oplus \rho_{n}^{(14,2,2)} \oplus \rho_{n}^{(13,5)} \oplus \rho_{n}^{(13,4,1)} \\ \oplus 2\rho_{n}^{(12,6)} \oplus \rho_{n}^{(12,4,2)} \oplus \rho_{n}^{(11,6,1)} \oplus \rho_{n}^{(11,5,2)} \oplus \rho_{n}^{(10,8)} \oplus \rho_{n}^{(10,7,1)} \\ \oplus \rho_{n}^{(10,6,2)} \oplus \rho_{n}^{(10,4,4)} \oplus \rho_{n}^{(9,6,3)} \oplus \rho_{n}^{(8,8,2)} \oplus \rho_{n}^{(8,6,4)} \oplus \rho_{n}^{(6,6,6)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The calculation is too complicated.

The calculation is too complicated.

On the other hand, the method can be used to find all highest weight vectors in  $S^2(\rho_n^D)$  where  $D = (\lambda_1, \lambda_2, 0, ..., 0)$  has at most 2 rows.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Will try the 3-row case.

The calculation is too complicated.

On the other hand, the method can be used to find all highest weight vectors in  $S^2(\rho_n^D)$  where  $D = (\lambda_1, \lambda_2, 0, ..., 0)$  has at most 2 rows.

Will try the 3-row case.

## Thank you