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This talk is based on a joint work with Kazufumi Kimoto .

If 71: GL(V,) — GL(V,) and m,: GL(V,) — GL(V3) are
polynomial representations with characters y; and x», then the
character of

My O T : GL(Vl) = GL(V3)

is called the plethysm of y; and x, and is denoted by x; o x;.
Example. If Vi = C", V, = §"(C"), V3 = SK(V,) = SK(§™(C")),

then x1 = hy,, x2=hr (complete symmetric polynomials)
and xz o x1 = hy o hy,.

Plethysm can be extended to an operation on symmetric
functions.
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Open problem in combinatorics: Express the plethysm
sy o s, of two Schur polynomials as a linear combination of
Schur polynomials.

Not much is known about this.

Answers for hy o hy, is only known for k < 4.
k=2,3: Thrall (1942)
k=4: Foulkes (1954)

Equivalent problem in representation theory: Decompose
the GL, representation S¥($™(C")) into a direct sum of
irreducible representations and find the multiplicities.

The case k < 4 was done in the paper “GL,, GL,,)-duality and
symmetric plethysm” by Howe in 1988.
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Our goal:

Find all the GL, highest weight vectors in $?(5"(C")) and in
S3(s™(C™M)).

The results will give more explicit information on these
representations. In particular,

highest weight vectors = multiplicities.
Strategy: For fixed k, define a graded algebra which can be
decomposed as >, SK(S™(C)).

Then the GL, highest weight vectors in this algebra spans a
subalgebra.

Find generators and relations, and a basis for this subalgebra.
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Construction of the algebra P;°_, S*(s"(C"))
We have

SH(S™(C) = (S"(C) ® - @ S"(C")) ™
where &, is the symmetric group on {1,2, ..., k}.

Let P(C") = {polynomial functions on C"}.
For g € GL, and f € P(C"),

(8/)(X) =f(g'X) XecC"

Then as a representation of GL,,

m>0 m>0
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Next, consider
PMy) = PC'@C'o---CHEPCHRPCH®---@P(C
(P sm ) e (@ sm(EC)) - (P s™(C)

m; >0 mp >0 m >0

P smCHesm(C)e---8S™(C).

2
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Next, consider
PMy) = PC'aoC'q---CHZPCHRPC"®- - P(C"

>~ (P sm(C)e(@smC) e (P s™C)
m; >0 mp >0 m >0

> P C)RCH O - @ ST
Myye.., mk>0

Let @ C P(My) with
—_ k
Q=P O, where Q,=S"(C)®- - -®5"(C").

m=0

Extract &, -invariants

Q% =P oy, where Qgt = sk(s™(C")).
m=0
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Q% =P oy, where Qpt = sk(s™(CM)).
m=0

QS+ is a graded algebra, and each S¥(s™(C")) is a
homogeneous component of Q%«.

Next step: Find all the GL, highest weight vectors in Q%*.
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Some notaton:

Young diagrams

[ ]

D= = (6,4,4,2) or (6,4,4,2,0) etc.

¢(D) = 4, the number of rows in D.

Young diagram D o polynomial representation
with /(D) < n pP of GL, = GL,(C)

If D = (k) has only one row, then p\° 2 s(C™).
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151 O 1 >|<
EGLy p, Un=
0o . 0o .

For D = (\q, ..., \y), let

Ay =<t

WP A, = C, () =1
Then
p? = irreducible GL, module with highest weight )°

and y
(02" =Cep, 1&p=[WP(1)]&p, Vi€A,
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So to find GL, highest weight vectors in 9%, we consider the
algebra .

(Q%)Ur = {U, invariants in Q%¢}.
Since the actions by &, and U, commute with each other,

(QG/()UH — (QUI'I)GI(.

A nice basis for the algebra QU» may be deduced from SMT
(standard monomial theory).
Project the basis to (QUY")%* to obtain a spanning set of (QUr)5x,

Finally get a basis for (QU»)®* from this spanning set.
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Standard Monomial Theory states that the algebra

P(Mnk)U" ~ @ [Sml((cn) ® "2 ((Cn) ® - ® Smk((cn)]Un

m:(ml,...,mk)EZkZO

is generated by {6; : 1 <iy <ip <--- <i, <k} where

Xy X, v Xl

X2ip  X2ip, x2i,,
op=1 . .

Xpiy  Xpiy t Xpip

and a set of products of the form 6,4y, - - - d;, (called standard
monomials) forms a basis for P(M,;)"".
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Standard Monomial Theory states that the algebra

P(Mnk)U" ~ @ [Sml((cn) ® "2 ((Cn) ® - ® Smk((cn)]Un

m:(ml,...,mk)EZkZO

is generated by {6; : 1 <iy <ip <--- <i, <k} where

Xy X, v Xl

X2ip  X2ip, x2i,,
op=1 . .

Xpiy  Xpiy t Xpip

and a set of products of the form 6,4y, - - - d;, (called standard
monomials) forms a basis for P(M,;)"".

The basis elements which belong to QU forms a basis for
QUH_



Highest weight vectors in plethysms

The case k =2
Find the highest weight vectors in 52(5"(C"))

X1 X12
P =P(M,2(C)) = polynomial algebra on -
S
P = PMp)=2PC"aC")=PC") P(C")
P sme)esmer

my,my >0

1
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The case k =2
Find the highest weight vectors in 52(5"(C"))

X1 X12
P =P(M,2(C)) = polynomial algebra on e
Xnl Xn2

P = PMp)=P(C"®C") =P(C") 2 P(C"
@ Sm (Cn) ® sz((cn)

my,my >0

1

QCP with Q=Hs"(C")as"(C.
m>0

Q62 o @ (Sm((cn) ® Sm((cn))Gz ~ @52 (Sm(Cn))

m>0 m>0
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By STM, the algebra P! is generated by

X11 X12
X21  X22

X11, X12,

Proposition. The algebra QU = @, .((S™(C") ® S™(C"))Y is
a polynomial algebra generated freely by

X111 X12
X1 X22

o = X11X12 and v =

bl

and for each m, the set
{94 :0<a<m}

is a basis for (§”(C") @ §™(C"))"".
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GL,, weight of v = ‘ A ' is (1,1,0,...,0).
X21  X22

So GL, weight of "~ %4*is (2m — a, a, 0, ..., 0),

Sm((cn) ® Sm((cn) ) @ p’(12mfa,a)7
0<a<m

and a”~9~“ is the unique GL, highest weight vector in p{*" .
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GL, Welght ofa = X11X12 is (2, 0,0,..., 0).

GL,, weight of v = ‘ A ' is (1,1,0,...,0).
X21  X22

So GL, weight of "~ %4*is (2m — a, a, 0, ..., 0),

Sm((cn) ® Sm((cn) ) @ p’(12mfa,a)7
0<a<m

and a”~9~“ is the unique GL, highest weight vector in p{*" .

Now §"(C") ® §™(C") = §2(S™(C")) @ A*(S™(C")).

Which of the representations p{*"~““ are in S2(5"(C"))?
Just check how the transposition (1 2) € &, transforms the
highest weight vectors.
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The transposition (1 2) € &, acts by (1 2).x;; = x;» and
(1 2).)6,'2 = Xi1.
X12  X11

So(12)a=xpx11=qa, (12)y=
(12) 12X11 (12).y S

(1 2)am—a,ya = (_1)aam—a,ya
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The transposition (1 2) € &, acts by (1 2).x;; = x;» and
(1 2).)6,'2 = Xi1.

X12  X11
X22  X21

So (1 2).a = X12X11 = Q, (1 2)")/ =

(1 2)am—a,ya = (_1)aam—a,ya

So a4y € S2(S™(C™)) if and only if a is even, and this gives

sEmen) = @

0<a<m
a even

AXSMC) = @ P
1<a<m
aodd
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The case k = 3: Find highest weight vectors in $?(5"(C"))

X1 X12 X3
X22  X23

P =P(M,3(C)) = polynomial algebra on

Xnl Xn2  Xn3

P = P(C)ePC")PC
) @ S"“((C”) ® sz((cn) ® S ((Cn)

my,my,m3>0
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The case k = 3: Find highest weight vectors in $?(5"(C"))

X1 X12 X3
X211 X22 X23

P =P(M,3(C)) = polynomial algebra on

Xnl Xn2  Xn3

P = P(C)ePC")PC
) @ S"“((C”) ® sz((cn) ® S ((Cn)

my,my,m3>0

QcP with 9=Hs"(C")aS"(C")&S"(C").

m>0

963 ~ 6953 (s™(CM)).

m>0
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<Q63>U" = (QU)® P s* (s(C).

m>0

Proposition. (SMT + some work) For 1 < j <3, let

X111 X122 X13

X1i  Xij
I and v =[x X xo3 -

0=\
X2i  X2j

X31  X32 X33

Then the algebra QU = @,((5"(C") ® §"(C") ® §"(C")) %" is
generated by

a1 = X11X12X13, B2 = x13012, B3 = x12013,

Y, Y2 = 012013023.
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MainTheorem. Let o, = 83 + 83 — 3,33 and
a3 =2(B5 + 33) — 3(82835 + B253). Then the set

B = {Eapedes) = afabasy iV L a,b,d, e € Zso,c,f € {0,1}}

is a basis for (Q%3)U» = (QUn)®s,
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MainTheorem. Let o, = 83 + 83 — 3,33 and
a3 =2(B5 + 33) — 3(82835 + B253). Then the set

a - 2d+f 2
B = {g(a,b,c,d,ef) = alagagfyl -herZE-‘yif : a,b,d,e E ZEO; cvf € {Oa 1}}
is a basis for (Q%3)U» = (QUn)®s,

The GL, weight of £, 5 c.d.) IS
D = ()\1 5 /\2, )\3) where

m | GL, weight
a 1 1(?)1 A1 = 3a +4b + 6¢ +2d + 6e + 4f
n (LL1D X2 = 2b + 3¢ + 2d + 6e + 4f
02]2| (42 Ay =2d+f
72 2 (3¢3) :
a3 | 3|  (6,3)

and g(a,b,c,d,e,f) S 53 (Sm(Cn))
where m = a + 2b + 3¢ + 2d + 4e + 3f.
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Examples

Highest weight vectors in $3(S'(C"))

S3(sH(Cm)) = $3(C") = pS) is irreducible and has only one
highest weight vector

Q1 = X11X12X13-
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Highest weight vectors in $3(S?(C"))

m GL, weight
Al1+1=2[(3)+3)=(6)
as 2 (4,2)

77 2 (2,2,2)

Thus,
(6)

$(S(C) = ot @ pi

@ pn (272’2) .

D pn
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Highest weight vectors in $3($3(C"))

m GL, weight
o3 [1+1+1=3] 3)+(3)+(3)=(9)
ajay | 1+2=3 B3) + (4,2) = (7,2)
@ 3 (6,3)
a?| 1+2=3 |[(3)+(2,22) =(,2,2)
Y172 3 (4,4, 1)

Thus,
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Highest weight vectors in $3(S*(C"))

m GL, weight
of l+1+1+1=4 4(3) = (12)
aFay 2+2=4 (6) + (4,2) = (10,2)
o103 1+3=4 (3) ( ) ( )
a3y7 2+2=4 (6) +(2,2,2) = (8,2,2)
alm) [ T+3=4 (3)+ (4.41) = (7,41
az 2+2=4 2(4,2) = (8,4)
7] 2+2=4 (4,2) + (2,2,2) = (6,4,2)
(72)? 22) =4 2(2,2,2) = (4,4,9)
% 4 (6,6)
S3 (5'4((Cn)) _ pr(112) ® pr(llo,z) @ p(9 ,3) @ p(S 4) ® pr(18,2,2)
® p£l7,4,1) ® pglé,()) & pl(16,4,2) & p’(14,4,4)‘
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Highest weight vectors in $3($°(C"))

m GL,, weight

ay 5(1)=5 5(3) = (15)

a?ag 3+2=5 3(3) + (4,2) = (13,2)
o [ 1+2(2)=5 (3) +2(4,2) = (11,4)
ajos 2+3=5 2(3) +(6,3) = (12,3)

iyl |3()+2=5 3(3) +(2,2,2) = (11 2,2)
a(¥)? [1+22)=5 (3) +2(2,2,2) = (7,4,4)
oai(ny) [2)+3 =5 2(3) + (4,4,1) = (10,4, 1)

oy 1+4=5 (3) + (6,6) = (9,6)
are? | 1+2+2 [ B)+ (42)+(2,2,2) = (9,4,2)

03 24+3=5 (4,2) + (6,3) = (10,5)
042(’71'72) 24+3=5 ( ) )+ (47471) (8’671)

ayr | 3+2=5 (6,3) + (2,2,2) = (8,5,2)
Ymy) | 2+3=5 (2,2,2) + (4,4,1) = (6,6,3)
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Thus,
S3 (SS((Cn)) _ pslls)@pgllz)@pgu,?a)@pgl1,4)@p£ll1,2,2)®pr(llo,5)®pr(llo,4,])
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Highest weight vectors in $3(S(C"))

m GL, weight
a® 6(1) = 6 6(3) = (18)
ala, 4(1)+2=6 4(3) + (4,2) = (16,2)
afal 2(1) +2(2) = 6 2(3) 4 2(4,2) = (14, 4)
ajay 3(1)+3=6 3(3) + (6,3) = (15, 3)
ai: 4(1)+2=6 4(3) + (2,2,2) = (14,2,2)
2(11)? 2(1) +2(2) = 6 2(3) 4+ 2(2,2,2) = (10,4,4)
i (1172) 3()+3=6 33) + (4,4, 1) = (13,4, 1)
ol 2(1) +4=6 2(3) + (6,6) = (12,6)
aZasy? 21)+2+2=6 | 2(3) + (4,2) + (2,2,2) = (12,4,2)
ajasa; [+2+3=6 (3) + (4,2) + (6,3) = (13,5)
ajon(v172) T+2+3=6 (3) +4,2)+ 4, 4,1) =(11,6,1)
ozt 1+3+2=6 (3) + (6,3) + (2,2,2) = (11,5,2)
oty | 142+3=6 | @+ (22,2 + *41) = (9,6,3)
3 32) =6 3(4,2) = (12,6)
a3y? 2020)+2=6 2(4,2) + (2,2,2) = (10,6,2)
a(77) 24+202) =6 (4,2) +2(2,2,2) = (8,6,4)
a2 2(1) +4=6 (4,2) + (6,6) = (10, 8)
a3(7172) 3+3=6 (6,3) + 4, 4,1) =(10,7,1)
(D)3 32) =6 3(2,2,2) = (6,6,6)
Vs 2+4=6 (2,2,2) + (6,6) = (8,8,2)
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S3 (S(’((C")) _ pr(llS)@pglé,Z)EBIOSIIS,.%)@p£l4,4)@p214,2,2)@pSll},S)@pr(lBA,])

@ 2p’(112,6) @ p£12,4,2) ® p’(lll,G,l) @ pr(lll,S,Z) ® p’(110,8) @ pl(110,7,1)

@ pl(110,6,2) @ p210,4,4) ® p,(19,6,3) ® p,(18,8,2) ® p,(18,6,4) ® p’(16,6,6)‘
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What about k = 4, i.e. highest weight vectors in $*(5"(C"))?
The calculation is too complicated.

On the other hand, the method can be used to find all highest
weight vectors in $?(p?) where D = (A1, \2,0, ...,0) has at most

2 rows.

Will try the 3-row case.
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What about k = 4, i.e. highest weight vectors in $*(5"(C"))?
The calculation is too complicated.

On the other hand, the method can be used to find all highest
weight vectors in $?(p?) where D = (A1, \2,0, ...,0) has at most

2 rows.

Will try the 3-row case.

Thank you



