Introduction Multivariate discrete orthogonal polynomials The higher rank Racah algebra

The Racah algebra and multivariate Racah polynomials

Hendrik De Bie

Ghent University

joint work with Vincent Genest, Luc Vinet (CRM, Montreal) Plamen Iliev (GAtech) Wouter van de Vijver (UGent)

Dubrovnik, 27 June 2019

Introduction

Discrete orthogonal polynomials The Askey scheme Univariate Racah polynomials and Racah algebra

Multivariate discrete orthogonal polynomials

The higher rank Racah algebra

Construction Connection with multivariate Racah polynomials Algebraic reinterpretation

Introduction

Multivariate discrete orthogonal polynomials The higher rank Racah algebra Discrete orthogonal polynomials The Askey scheme Univariate Racah polynomials and Racah algebra

Outline

Introduction

Discrete orthogonal polynomials The Askey scheme Univariate Racah polynomials and Racah algebra

Multivariate discrete orthogonal polynomials

The higher rank Racah algebra

- Construction
- Connection with multivariate Racah polynomials
- Algebraic reinterpretation

Introduction Di Multivariate discrete orthogonal polynomials The higher rank Racah algebra Ur

Discrete orthogonal polynomials The Askey scheme Univariate Racah polynomials and Racah algebra

Discrete orthogonal polynomials

What?

- family of polynomials $\phi_n(x)$, n = 0, 1, ...
- deg $\phi_n(x) = n$
- orthogonal w.r.t. discrete measure

$$\sum_{x\in S} w(x)\phi_m(x)\phi_n(x) = \gamma_n \delta_{mn}$$

Introduction Discrete orthogonal polynomials Multivariate discrete orthogonal polynomials The higher rank Racah algebra Univariate Racah polynomials and Racah algebra

Example: Krawtchouk polynomials

Put, for $n = 0, \ldots, N$

$$K_n(x; p, N) = {}_2F_1\left[\begin{array}{c} -n, -x \\ -N \end{array}; \frac{1}{p}\right]$$

- x variable
- ▶ p parameter, 0
- N grid length
- of hypergeometric type

Orthogonality:

$$\sum_{x=0}^{N} \underbrace{\binom{N}{x} p^{x} (1-p)^{N-x}}_{\text{weight } w(x)} K_{m}(x; p, N) K_{n}(x; p, N) = \gamma_{n} \delta_{mn}$$

Discrete orthogonal polynomials The Askey scheme Univariate Racah polynomials and Racah algebra

The Askey scheme

Orthogonal polynomials:

- univariate
- of hypergeometric type
- continuous or discrete orthogonality
- satisfying some generalization of Bochner's theorem

have been classified in the so-called Askey scheme

R. Askey, J. Wilson,

Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Memoirs of the American Mathematical Society, 54 (1985): iv+55

R. Koekoek, P. A. Lesky, and R. F. Swarttouw.

Hypergeometric Orthogonal Polynomials and Their *q*-Analogues. *Springer*, 2010.

Introduction Discrete orthogonal polynomials Multivariate discrete orthogonal polynomials The higher rank Racah algebra Univariate Racah polynomials and Racah algebra

Askey Scheme of Hypergeometric Orthogonal Polynomials

Hendrik De Bie

The Racah algebra and multivariate Racah polynomials

Introduction	Discrete orthogonal polynomials
Multivariate discrete orthogonal polynomials	The Askey scheme
The higher rank Racah algebra	Univariate Racah polynomials and Racah algebra

Racah polynomials

Definition

The Racah polynomials are defined as

$$r_n(\alpha,\beta,\gamma,\delta;x) := (\alpha+1)_n(\beta+\delta+1)_n(\gamma+1)_n$$
$$\times {}_4F_3 \left[{}^{-n,n+\alpha+\beta+1,-x,x+\gamma+\delta+1}_{\alpha+1,\beta+\delta+1,\gamma+1};1 \right]$$

- most complicated discrete OPs in Askey scheme
- appear in many different contexts
- highly complicated
- rather unpleasant to work with
- no need to remember definition!

Racah algebra

Algebra with 2 generators satisfying:

$$\begin{split} & [K_1, K_2] = K_3 \\ & [K_2, K_3] = K_2^2 + \{K_1, K_2\} + dK_2 + e_1 \\ & [K_3, K_1] = K_1^2 + \{K_1, K_2\} + dK_1 + e_2 \end{split}$$

d, e_1 and e_2 structure constants

Y.A. Granovskii, A.S. Zhedanov, Nature of the symmetry group of the 6*j*-symbol. *Sov. Phys. JETP* 67:1982-1985, 1988.
 Introduction
 Discrete orthogonal polynomials

 Multivariate discrete orthogonal polynomials
 The Askey scheme

 The higher rank Racah algebra
 Univariate Racah polynomials and Racah algebra

The standard realization

$$\begin{split} & \mathcal{K}_1 := x(x+\gamma+\delta+1) \\ & \mathcal{K}_2 := B(x)\mathcal{E}_x - (B(x)+D(x))\mathbb{I} + D(x)\mathcal{E}_x^{-1} \end{split}$$

with the shift operator $E_x(x) = x + 1$ and

$$B(x) := \frac{(x+\alpha+1)(x+\beta+\delta+1)(x+\gamma+1)(x+\gamma+\delta+1)}{(2x+\gamma+\delta+1)(2x+\gamma+\delta+2)}$$
$$D(x) := \frac{x(x-\alpha+\gamma+\delta)(x-\beta+\gamma)(x+\delta)}{(2x+\gamma+\delta)(2x+\gamma+\delta+1)}$$

Introduction	Discrete orthogonal polynomials
Multivariate discrete orthogonal polynomials	The Askey scheme
The higher rank Racah algebra	Univariate Racah polynomials and Racah algebra

Racah polynomials

Definition

The Racah polynomials are defined as

$$r_n(\alpha,\beta,\gamma,\delta;x) := (\alpha+1)_n(\beta+\delta+1)_n(\gamma+1)_n$$
$$\times {}_4F_3 \left[\begin{smallmatrix} -n,n+\alpha+\beta+1,-x,x+\gamma+\delta+1\\ \alpha+1,\beta+\delta+1,\gamma+1 \end{smallmatrix} \right]$$

 K_2 has Racah polynomials as eigenvectors:

$$K_2 r_n(\alpha, \beta, \gamma, \delta; x) = n(n + \alpha + \beta + 1)r_n(\alpha, \beta, \gamma, \delta; x)$$

Introduction	Discrete orthogonal polynomials
Multivariate discrete orthogonal polynomials	The Askey scheme
The higher rank Racah algebra	Univariate Racah polynomials and Racah algebra

Racah polynomials

Definition

The Racah polynomials are defined as

$$r_n(\alpha,\beta,\gamma,\delta;x) := (\alpha+1)_n(\beta+\delta+1)_n(\gamma+1)_n$$
$$\times {}_4F_3 \left[\begin{smallmatrix} -n,n+\alpha+\beta+1,-x,x+\gamma+\delta+1\\ \alpha+1,\beta+\delta+1,\gamma+1 \end{smallmatrix} \right]$$

 K_2 has Racah polynomials as eigenvectors:

$$K_2 r_n(\alpha, \beta, \gamma, \delta; x) = n(n + \alpha + \beta + 1) r_n(\alpha, \beta, \gamma, \delta; x)$$

- algebra simpler than polynomials
- ► can be made even simpler, by taking linear combinations of generators K₁, K₂ and K₃

Introduction Discrete orthogonal polynomials Multivariate discrete orthogonal polynomials The higher rank Racah algebra Univariate Racah polynomials and Racah algebra

The centrally extended Racah algebra

Rewrite Racah algebra as:

$$C_{123} = C_{12} + C_{23} + C_{13} - C_1 - C_2 - C_3$$

$$[C_{12}, C_{23}] =: 2F$$

$$[C_{23}, C_{13}] = 2F$$

$$[C_{13}, C_{12}] = 2F$$

$$[C_{12}, F] = C_{23}C_{12} - C_{12}C_{13} + (C_2 - C_1)(C_3 - C_{123})$$

$$[C_{23}, F] = C_{13}C_{23} - C_{23}C_{12} + (C_3 - C_2)(C_1 - C_{123})$$

$$[C_{13}, F] = C_{12}C_{13} - C_{13}C_{23} + (C_1 - C_3)(C_2 - C_{123})$$

with C_1 , C_2 , C_3 and C_{123} central elements

S. Gao, Y. Wang, and B. Hou.

The classification of Leonard triples of Racah type. *Linear Algebra and Appl.*, 439:1834–1861, jan 2013.

V. X. Genest, L. Vinet, and A. Zhedanov.

The equitable Racah algebra from three $\mathfrak{su}(1, 1)$ algebras. *J. Phys. A*, 47:025203, 2014. Introduction Multivariate discrete orthogonal polynomials The higher rank Racah algebra

Outline

Introduction

Discrete orthogonal polynomials The Askey scheme Univariate Racah polynomials and Racah algebra

Multivariate discrete orthogonal polynomials

The higher rank Racah algebra

Construction

Connection with multivariate Racah polynomials

Algebraic reinterpretation

Multivariate discrete orthogonal polynomials

Two possible generalizations:

- 1. Macdonald-Koornwinder polynomials related to root systems
- 2. Tratnik-Gasper-Rahman polynomials

we are concerned with type 2

Introduction Multivariate discrete orthogonal polynomials The higher rank Racah algebra

Tratnik-Gasper-Rahman polynomials

Multivariate Racah (or XX) polynomials

- are a product of univariate Racah (or XX) polynomials
- entangled: variable of first polynomial appears as parameter of subsequent one etc.
- explicit formulas cumbersome
- discrete orthogonality on subset of \mathbb{R}^n

M.V. Tratnik,

Some multivariable orthogonal polynomials of the Askey tableau-discrete families. J. Math. Phys. 32 (1991), 2337–2342.

G. Gasper and M. Rahman,

Some systems of multivariable orthogonal Askey-Wilson polynomials. In: Theory and applications of special functions, p. 209–219, *Dev. Math.* 13, Springer, New York, 2005.

G. Gasper and M. Rahman,

Some systems of multivariable orthogonal *q*-Racah polynomials. *Ramanujan J.* **13** (2007), 389–405.

Can we understand these multivariate polynomials algebraically?

Multivariate Krawtchouk:

• understood in terms of representation theory of \mathfrak{sl}_{n+1}

Can we understand these multivariate polynomials algebraically?

Multivariate Krawtchouk:

• understood in terms of representation theory of \mathfrak{sl}_{n+1}

Multivariate Racah:

- 2 abelian algebras of (complicated) difference operators that diagonalize these polynomials
- bispectral (in sense of Duistermaat and Grünbaum)
- further algebraic foundation unclear

Can we understand these multivariate polynomials algebraically?

Multivariate Krawtchouk:

• understood in terms of representation theory of \mathfrak{sl}_{n+1}

Multivariate Racah:

- 2 abelian algebras of (complicated) difference operators that diagonalize these polynomials
- bispectral (in sense of Duistermaat and Grünbaum)
- further algebraic foundation unclear

P. Iliev,

A Lie-theoretic interpretation of multivariate hypergeometric polynomials, *Compositio Math.* 148 (2012), no. 3, 991-1002.

J.S. Geronimo, P. Iliev,

Bispectrality of multivariable Racah-Wilson polynomials. *Constr. Approx.* 31: 417-457, 2010.

Goals:

- Generalize Racah algebra to higher rank \checkmark
- \blacktriangleright Establish connection with multivariate Racah polynomials \checkmark
- Initiate algebraic study of Racah algebra: in progress

Introduction Multivariate discrete orthogonal polynomials The higher rank Racah algebra Construction Connection with multivariate Racah polynomials Algebraic reinterpretation

Outline

Introduction

Discrete orthogonal polynomials The Askey scheme Univariate Racah polynomials and Racah algebra

Multivariate discrete orthogonal polynomials

The higher rank Racah algebra

Construction Connection with multivariate Racah polynomials Algebraic reinterpretation

Construction:

Start from $\mathfrak{su}(1,1)$ generated by J_{\pm} and A_0 :

$$[J_{-}, J_{+}] = 2A_0, \qquad [A_0, J_{\pm}] = \pm J_{\pm}.$$

 $\mathcal{U}(\mathfrak{su}(1,1))$ contains the Casimir element:

$$C := A_0^2 - A_0 - J_+ J_-$$

Introduction Constr Multivariate discrete orthogonal polynomials The higher rank Racah algebra Algebr

Construction Connection with multivariate Racah polynomials Algebraic reinterpretation

Consider in the following algebra

$$\bigotimes_{i=1}^n \mathcal{U}(\mathfrak{su}(1,1))$$

the element

$$\Delta = \sum_{j=1}^{n} \underbrace{1 \otimes \ldots \otimes 1}_{j-1 \text{ times}} \otimes J_{-} \otimes \underbrace{1 \otimes \ldots \otimes 1}_{n-j \text{ times}}$$

The following elements immediately commute with this operator:

$$C_{\{\ell\}} := \underbrace{1 \otimes \ldots \otimes 1}_{\ell-1 \text{ times}} \otimes C \otimes \underbrace{1 \otimes \ldots \otimes 1}_{n-\ell \text{ times}}$$

we want more commuting elements

Definition

The comultiplication μ^{\ast} is an algebra morphism

$$\mu^*:\mathcal{U}(\mathfrak{su}(1,1))
ightarrow\mathcal{U}(\mathfrak{su}(1,1))\otimes\mathcal{U}(\mathfrak{su}(1,1))$$

acting as follows on the generators

$$\mu^*(J_{\pm}) = J_{\pm} \otimes 1 + 1 \otimes J_{\pm},$$

$$\mu^*(A_0) = A_0 \otimes 1 + 1 \otimes A_0.$$

The comultiplication is coassociative:

$$(1\otimes\mu^*)\mu^*=(\mu^*\otimes1)\mu^*$$

Introduction Multivariate discrete orthogonal polynomials The higher rank Racah algebra **Construction** Connection with multivariate Racah polynomials Algebraic reinterpretation

We have the following operators

$$\mathbf{C}_1 := C, \qquad \mathbf{C}_k := (\underbrace{1 \otimes \ldots \otimes 1}_{k-2 \text{ times}} \otimes \mu^*)(\mathbf{C}_{k-1})$$

We have the following operators

$$\mathbf{C}_1 := C, \qquad \mathbf{C}_k := (\underbrace{1 \otimes \ldots \otimes 1}_{k-2 \text{ times}} \otimes \mu^*)(\mathbf{C}_{k-1})$$

Let A ⊂ [n] := {1,..., n}. Using the τ map we define the generators

$$C_{\mathcal{A}} := \left(\prod_{k \in [n] \setminus \mathcal{A}}^{\longrightarrow} \tau_{k}\right) \left(\mathbf{C}_{|\mathcal{A}|}\right)$$

 $\tau_k(A_1 \otimes \ldots \otimes A_l) := A_1 \otimes \ldots \otimes A_{k-1} \otimes 1 \otimes A_k \otimes \ldots \otimes A_l$

We have the following operators

$$C_1 := C,$$
 $C_k := (\underbrace{1 \otimes \ldots \otimes 1}_{k-2 \text{ times}} \otimes \mu^*)(C_{k-1})$

Let A ⊂ [n] := {1,..., n}. Using the τ map we define the generators

$$C_{\mathcal{A}} := \left(\prod_{k \in [n] \setminus \mathcal{A}}^{\longrightarrow} \tau_k\right) \left(\mathbf{C}_{|\mathcal{A}|}\right)$$

 $au_k(A_1 \otimes \ldots \otimes A_l) := A_1 \otimes \ldots \otimes A_{k-1} \otimes 1 \otimes A_k \otimes \ldots \otimes A_l$

An example

$$\mathcal{C}_{24} = au_3(au_1(\mathbf{C}_2))$$
 with $\mathbf{C}_2 = \mu^*(\mathcal{C})$

For ease of notation we write C_{24} instead of $C_{\{2,4\}}$

Using the comultiplication we find Casimirs that commute with $\boldsymbol{\Delta}$ in

$\mathcal{U}(\mathfrak{su}(1,1))\otimes\mathcal{U}(\mathfrak{su}(1,1))\otimes\mathcal{U}(\mathfrak{su}(1,1))$

Using the comultiplication we find Casimirs that commute with $\boldsymbol{\Delta}$ in

$$\mathcal{U}(\mathfrak{su}(1,1))\otimes\mathcal{U}(\mathfrak{su}(1,1))\otimes\mathcal{U}(\mathfrak{su}(1,1))$$

The lower Casimirs:

$$C_1:= C \otimes 1 \otimes 1 \qquad C_2:= 1 \otimes C \otimes 1 \qquad C_3:= 1 \otimes 1 \otimes C$$

Using the comultiplication we find Casimirs that commute with $\boldsymbol{\Delta}$ in

$$\mathcal{U}(\mathfrak{su}(1,1))\otimes\mathcal{U}(\mathfrak{su}(1,1))\otimes\mathcal{U}(\mathfrak{su}(1,1))$$

The lower Casimirs:

 $C_1 := C \otimes 1 \otimes 1$ $C_2 := 1 \otimes C \otimes 1$ $C_3 := 1 \otimes 1 \otimes C$

The intermediate Casimirs

 $C_{12} := \mu^*(C) \otimes 1$ $C_{23} := 1 \otimes \mu^*(C)$ $C_{13} := \tau_2(\mu^*(C))$

with $\tau_2(a \otimes b) := a \otimes 1 \otimes b$

Using the comultiplication we find Casimirs that commute with $\boldsymbol{\Delta}$ in

$$\mathcal{U}(\mathfrak{su}(1,1))\otimes\mathcal{U}(\mathfrak{su}(1,1))\otimes\mathcal{U}(\mathfrak{su}(1,1))$$

The lower Casimirs:

 $C_1:= C \otimes 1 \otimes 1 \qquad C_2:= 1 \otimes C \otimes 1 \qquad C_3:= 1 \otimes 1 \otimes C$

The intermediate Casimirs

$$\mathcal{C}_{12} := \mu^*(\mathcal{C}) \otimes 1 \qquad \mathcal{C}_{23} := 1 \otimes \mu^*(\mathcal{C}) \qquad \mathcal{C}_{13} := \tau_2(\mu^*(\mathcal{C}))$$

with $\tau_2(a \otimes b) := a \otimes 1 \otimes b$

The total Casimir

$$\mathcal{C}_{123} := (1 \otimes \mu^*)(\mu^*(\mathcal{C}))$$

Introduction Multivariate discrete orthogonal polynomials The higher rank Racah algebra Construction Connection with multivariate Racah polynomials Algebraic reinterpretation

The centrally extended Racah algebra R(3)

$$C_{123} = C_{12} + C_{23} + C_{13} - C_1 - C_2 - C_3$$

$$[C_{12}, C_{23}] =: 2F$$

$$[C_{23}, C_{13}] = 2F$$

$$[C_{13}, C_{12}] = 2F$$

$$[C_{12}, F] = C_{23}C_{12} - C_{12}C_{13} + (C_2 - C_1)(C_3 - C_{123})$$

$$[C_{23}, F] = C_{13}C_{23} - C_{23}C_{12} + (C_3 - C_2)(C_1 - C_{123})$$

$$[C_{13}, F] = C_{12}C_{13} - C_{13}C_{23} + (C_1 - C_3)(C_2 - C_{123})$$

with C_1 , C_2 , C_3 and C_{123} central operators

S. Gao, Y. Wang, and B. Hou.

The classification of Leonard triples of Racah type. Linear Algebra and Appl., 439:1834–1861, jan 2013.

V. X. Genest, L. Vinet, and A. Zhedanov.

The equitable racah algebra from three $\mathfrak{su}(1, 1)$ algebras. *J. Phys. A*, 47:025203, 2014.

The higher rank Racah algebra

- The Racah algebra R(n) is the subalgebra of (U(su(1,1)))^{⊗n} generated by the set {C_A|A ⊂ [n]}
- ▶ $\{C_{jk} | 1 \leq j < k \leq n\} \cup \{C_j | 1 \leq j \leq n\}$ is a generating set as

$$\mathcal{C}_{\mathcal{A}} = \sum_{\{i,j\}\subset\mathcal{A}} \mathcal{C}_{ij} - (|\mathcal{A}| - 2) \sum_{i\in\mathcal{A}} \mathcal{C}_{ij}$$

- If either A ⊂ B or B ⊂ A or A ∩ B = Ø then C_A and C_B commute.
- ▶ rank is n 2 as it contains abelian subalgebra of dimension n - 2. E.g.

$$\mathcal{Y}_1 = \langle C_{12}, C_{123}, C_{1234}, \dots, C_{[n-1]} \rangle$$

or

$$\mathcal{Y}_2 = \langle C_{23}, C_{234}, C_{2345}, \dots, C_{[2...n]} \rangle$$

Relations:

- If either $A \subset B$ or $B \subset A$ or $A \cap B = \emptyset$ then $[C_A, C_B] = 0$
- ▶ Let K, L and M be three disjoint subsets of [n]. The subalgebra generated by the set

$$\{C_K, C_L, C_M, C_{K\cup L}, C_{K\cup M}, C_{L\cup M}, C_{K\cup L\cup M}\}$$

is isomorphic to the rank 1 algebra R(3). Introduce the operator F:

$$2F := [C_{KL}, C_{LM}] = [C_{KM}, C_{KL}] = [C_{LM}, C_{KM}].$$

Then

$$\begin{aligned} & [C_{KL}, F] = C_{LM}C_{KL} - C_{KL}C_{KM} + (C_L - C_K)(C_M - C_{KLM}), \\ & [C_{LM}, F] = C_{KM}C_{LM} - C_{LM}C_{KL} + (C_M - C_L)(C_K - C_{KLM}), \\ & [C_{KM}, F] = C_{KL}C_{KM} - C_{KM}C_{LM} + (C_K - C_M)(C_L - C_{KLM}). \end{aligned}$$

How to find connection with multivariate Racah polynomials?

- rank one Racah R(3) algebra acts on univariate Racah polynomials
- rank n − 2 Racah algebra R(n) should act naturally on multivariate (n − 2) Racah polynomials (defined by Tratnik)

How to find connection with multivariate Racah polynomials?

- rank one Racah R(3) algebra acts on univariate Racah polynomials
- rank n − 2 Racah algebra R(n) should act naturally on multivariate (n − 2) Racah polynomials (defined by Tratnik)

Our approach:

- we work with specific realization of R(n)
- constructed using Dunkl operators
- module of Dunkl harmonics of fixed homogeneity

M. V. Tratnik.

Some multivariable orthogonal polynomials of the Askey tableau-discrete families. *J. Math. Phys.*, 32:2337–2342, 1991.

Dunkl-operators

Definition

The Dunkl operators, corresponding to the abelian group \mathbb{Z}_2^n , are defined as follows:

$$T_i := \partial_{x_i} + \frac{\mu_i}{x_i} \left(1 - R_i \right)$$

with real parameters $\mu_i > 0$ and reflection operators: $R_i f(x_1, \ldots, x_i, \ldots, x_n) = f(x_1, \ldots, -x_i, \ldots, x_n).$

Definition

The \mathbb{Z}_n^2 Laplace-Dunkl operator

$$\Delta = \sum_{i=1}^{n} T_i^2$$

Introduction Multivariate discrete orthogonal polynomials The higher rank Racah algebra Construction Connection with multivariate Racah polynomials Algebraic reinterpretation

Fits in our abstract framework

•
$$\mathfrak{su}(1,1) = \operatorname{span}(x^2, T^2, E + \gamma)$$

 $[T^2, x^2] = 4(E+\gamma), \quad [E+\gamma, x^2] = 2x^2, \quad [E+\gamma, T^2] = -2T^2$

The Casimir

$$C := \frac{1}{4} \left((E + \gamma)^2 - 2(E + \gamma) - x^2 T^2 \right)$$

As R(n) commutes with Δ it acts on

$$\mathcal{H}_k(\mathbb{R}^n) = \mathcal{P}_k(\mathbb{R}^n) \cap \ker \Delta,$$

the space of Dunkl harmonics of degree k

Strategy of proof:

- ► spaces H_k(ℝⁿ) of Dunkl harmonics of fixed degree carry representation of R(n)
- construct explicitly 2 ON bases for Dunkl harmonics
- first ON basis diagonalizes

$$\mathcal{Y}_1 = \langle C_{12}, C_{123}, C_{1234}, \dots, C_{[n-1]} \rangle$$

second ON basis diagonalizes

$$\mathcal{Y}_2 = \langle C_{23}, C_{234}, C_{2345}, \dots, C_{[2\dots n]} \rangle$$

- connection coefficients between 2 bases can be written as multivariate Racah polynomials
- ► action of R(n) on H_k(ℝⁿ) can be lifted to action on the connection coefficients

Hendrik De Bie, Wouter van de Vijver

A discrete realization of the higher rank Racah algebra. To appear, Constr. Approx., 24 pages.

Conclusions:

- \blacktriangleright Generalized Racah algebra to higher rank \checkmark
- \blacktriangleright Established connection with multivariate Racah polynomials \checkmark

Conclusions:

- \blacktriangleright Generalized Racah algebra to higher rank \checkmark
- Established connection with multivariate Racah polynomials \checkmark

Next steps:

- Compare with approach of lliev (superintegrable quantum systems)
- Initiate algebraic study of Racah algebra

H. De Bie, V.X. Genest, L. Vinet, W. van de Vijver, A higher rank Racah algebra and the $(\mathbb{Z}_2)^n$ Laplace-Dunkl operator.

J. Phys. A: Math. Theor. 51 025203 (20pp), 2018.

P

P. Iliev,

The generic quantum superintegrable system on the sphere and Racah operators. *Lett. Math. Phys.* 107 no. 11: 2029-2045, 2017.

P. Iliev,

Symmetry algebra for the generic superintegrable system on the sphere, *J. High Energy Phys.*, 44 no. 2, front matter+22 pp, 2018.

Further algebraic study:

R(n) is defined as subalgebra of $\mathcal{A} = \bigotimes_{i=1}^n \mathcal{U}(\mathfrak{su}(1,1))$

- fairly complicated algebra ${\cal A}$
- need *n*-fold tensor product for rank n-2 algebra
- so two factors/variables 'too many'?

Further algebraic study:

R(n) is defined as subalgebra of $\mathcal{A} = \bigotimes_{i=1}^n \mathcal{U}(\mathfrak{su}(1,1))$

- fairly complicated algebra \mathcal{A}
- need *n*-fold tensor product for rank n 2 algebra
- so two factors/variables 'too many'?

Claim

R(n) can also be embedded as a subalgebra of $\mathcal{U}(\mathfrak{sl}_{n-1})$

No proof yet!

Evidence

- R(3) can be embedded in a single $\mathcal{U}(\mathfrak{sl}_2)$
- ▶ statement is true for *R*(4) (computer computation)
- ► statement is true for two specific realizations of R(n) and U(sl_{n-1})
- I'll focus on the last step

V. X. Genest, L. Vinet, and A. Zhedanov.

The equitable racah algebra from three $\mathfrak{su}(1, 1)$ algebras. *J. Phys. A*, 47:025203, 2014.

H. De Bie, P. Iliev, L. Vinet,

Bargmann and Barut-Girardello models for the Racah algebra. J. Math. Phys. 60, 011701 (2019).

Introduce, for $\nu > 0$, the following operators

$$K_{0} = x\partial_{x} + \nu$$
$$K_{-} = \partial_{x}$$
$$K_{+} = x^{2}\partial_{x} + 2\nu x$$

It is easy to verify that they satisfy the $\mathfrak{su}(1,1)$ relations:

$$[K_0, K_{\pm}] = \pm K_{\pm}, \qquad [K_-, K_+] = 2K_0.$$

Consider in *n*-fold tensor product

$$\begin{split} \Delta &= \mathcal{K}_{-}^{[n]} = \sum_{j=1}^{n} \partial_{x_j} \\ \mathcal{K}_{+}^{[n]} &= \sum_{j=1}^{n} (x_j^2 \partial_{x_j} + 2\nu_j x_j) \\ \mathcal{K}_{0}^{[n]} &= \sum_{j=1}^{n} x_j \partial_{x_j} + \sum_{j=1}^{n} \nu_j \end{split}$$

which again generate $\mathfrak{su}(1,1)$.

We define the space of Bargmann harmonics

$$\mathcal{H}_k(\mathbb{R}^n) = \mathcal{P}_k(\mathbb{R}^n) \cap \ker K^{[n]}_-$$

with $\mathcal{P}_k(\mathbb{R}^n)$ the space of homogeneous polynomials of degree k.

Proposition

The space $\mathcal{P}_k(\mathbb{R}^n)$ decomposes as

$$\mathcal{P}_k(\mathbb{R}^n) = \bigoplus_{j=0}^k \left(\mathcal{K}^{[n]}_+ \right)^j \mathcal{H}_{k-j}(\mathbb{R}^n).$$

here
$$K_{+}^{[n]} = \sum_{j=1}^{n} (x_{j}^{2} \partial_{x_{j}} + 2\nu_{j} x_{j})$$

This is decomposition into irreps of $\mathcal{P}_k(\mathbb{R}^n)$ under $\mathfrak{su}(1,1) \times R(n)$

Indeed, consider for a subset $B \subset [n]$, $\mathfrak{su}(1,1)$ generated by

$$\begin{split} \mathcal{K}^B_- &= \sum_{j \in B} \partial_{x_j} \\ \mathcal{K}^B_+ &= \sum_{j \in B} (x_j^2 \partial_{x_j} + 2\nu_j x_j) \\ \mathcal{K}^B_0 &= \sum_{j \in B} x_j \partial_{x_j} + \sum_{j \in B} \nu_j \end{split}$$

Its Casimir is given by

$$C_B := \left(K_0^B\right)^2 - K_0^B - K_+^B K_-^B.$$

- The collection of C_B , for all $B \subset [n]$, generate R(n)
- R(n) acts naturally on $\mathcal{H}_k(\mathbb{R}^n)$

- The operators C_B are defined using *n* variables.
- However, the algebra is only of rank n-2.

- The operators C_B are defined using *n* variables.
- However, the algebra is only of rank n-2.

The space $\mathcal{H}_k(\mathbb{R}^n)$ has a basis

$$(x_1 - x_2)^{k - j_1 - j_2 - \dots - j_{n-2}} (x_3 - x_2)^{j_1} (x_4 - x_3)^{j_2} \dots (x_n - x_{n-1})^{j_{n-2}}$$

= $(x_1 - x_2)^k u_1^{j_1} u_2^{j_2} \dots u_{n-2}^{j_{n-2}}$

with j_{ℓ} positive integers with $\sum_{\ell=1}^{n-2} j_{\ell} \leq k$ and n-2 new variables $\{u_1, u_2, \ldots, u_{n-2}\}$ given by

$$u_j := \frac{x_{j+2} - x_{j+1}}{x_1 - x_2}, \qquad j \in \{1, \dots, n-2\}.$$

Introduction Multivariate discrete orthogonal polynomials The higher rank Racah algebra Construction Connection with multivariate Racah polynomials Algebraic reinterpretation

Gauging the operators C_B by $(x_1 - x_2)^k$ to

$$\widetilde{C_B} = (x_1 - x_2)^{-k} C_B (x_1 - x_2)^k$$

then yields a realization of \mathcal{R}_n on Π_k^{n-2} with

$$\Pi_k^{n-2} = \oplus_{\ell=0}^k \mathcal{P}_\ell(u_1,\ldots,u_{n-2})$$

Theorem

The space $\prod_{k=1}^{n-2}$ of all polynomials of degree k in n-2 variables carries a realization of the rank n-2 Racah algebra R(n). This realization is given explicitly by

$$\widetilde{C}_{ij} = -\left(\sum_{\ell=j-1}^{i-2} u_{\ell}\right)^{2} \left(\partial_{u_{i-2}} - \partial_{u_{i-1}}\right) \left(\partial_{u_{j-2}} - \partial_{u_{j-1}}\right) + 2\nu_{j} \left(\sum_{\ell=j-1}^{i-2} u_{\ell}\right) \left(\partial_{u_{i-2}} - \partial_{u_{i-1}}\right) - 2\nu_{i} \left(\sum_{\ell=j-1}^{i-2} u_{\ell}\right) \left(\partial_{u_{j-2}} - \partial_{u_{j-1}}\right) + (\nu_{i} + \nu_{j})(\nu_{i} + \nu_{j} - 1)$$

and similar formulas for limiting cases such as C_{1j} and C_{2j} .

Next steps:

- ► there also exists realization of sl_{n-1} by differential operators in the variables u_j
- ▶ it is relatively straightforward to write the generators C_{ij} of R(n) as algebraic expressions of the generators of sl_{n-1}
- ► this gives us a guess for what should be the abstract embedding of R(n) into U(sl_{n-1})

Generalizations:

What about q-deformed orthogonal polynomials?

Generalizations:

What about q-deformed orthogonal polynomials?

- classified in q Askey scheme
- most complicated: q-Racah or Askey-Wilson
- multivariate counterparts exist (Tratnik-Gasper-Rahman)

Similar construction can be made for Askey-Wilson algebra

- now starting from quantum algebra $\mathfrak{osp}_q(1|2)$
- much more complicated to obtain relations
- algebraic structure underlying multivariate Askey-Wilson (or q-Racah) polynomials
- ▶ q = 1 limit gives Racah case
- *q* = −1 limit gives other interesting case (Bannai-Ito algebra, Dirac operator)

A. S. Zhedanov,

"Hidden symmetry" of the Askey-Wilson polynomials. Theor. Math. Phys. 89 (1991), 1146-1157.

H. De Bie, H. De Clercq, W. van de Vijver,

The higher rank *q*-deformed Bannai-Ito and Askey-Wilson algebra. arXiv:1805.06642, 37 pages.

Hendrik De Bie, Hadewijch De Clercq

The q-Bannai-Ito algebra and multivariate (-q)-Racah and Bannai-Ito polynomials arXiv:1902.07883, 55 pages.