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(g,K )-modules

It is always easier to study representations of the Lie algebra, and
then derive properties of the representations of the Lie group.

For real reductive groups, these are the (g,K )−modules.

Following Harish-Chandra, one associates a (g,K )−module to each
representation of the group. Let V be an admissible representation
V of G , i.e., dim Hom(Vδ,V ) <∞ for all irreducible
K -representations Vδ.

Let VK be the space of K -finite vectors in V . These vectors are
smooth i.e. one can differentiate the group action to get an action
of the Lie algebra. g = (g0)C, the complexification of the real Lie
algebra acts automatically.



Definition
A (g,K )−module is a vector space V , with a Lie algebra action of
g and a locally finite action of K , which are compatible, i.e.,
induce the same action of k0 = the Lie algebra of K . (If K is
disconnected, one requires also that the action g⊗ V → V is
K−equivariant). Such a V can be decomposed under K as

V =
⊕
δ∈K̂

mδVδ.

V is called a Harish-Chandra module if it is finitely generated and
all mδ <∞.



Casimir element

In general, can define Casg in the center of the enveloping
algebraU(g):

Fix a nondegenerate invariant symmetric bilinear form B on g (e.g.
trXY ).

Take dual bases bi , di of g with respect to B.

Write
Casg =

∑
bidi .



Infinitesimal character

The center Z (g) of U(g) is a polynomial algebra; one of the
generators is Casg.

All elements of Z (g) act as scalars on irreducible modules.

This defines the infinitesimal character of M, χM : Z (g)→ C.

Harish-Chandra proved that Z (g) ∼= P(h∗)W , so infinitesimal
characters correspond to h∗/W .

(h is a Cartan subalgebra of g; in examples, the diagonal matrices.
W is the Weyl group of (g, h); it is a finite reflection group.)



The Clifford algebra for G

Let g = k⊕ p be the Cartan decomposition.

(k and p are the ±1 eigenspaces of the Cartan involution;

k is the complexified Lie algebra of the maximal compact subgroup
K of G .)

Let C (p) be the Clifford algebra of p with respect to B:

the associative algebra with 1, generated by p, with relations

xy + yx + 2B(x , y) = 0.



The Dirac operator for G

Let bi be any basis of p; let di be the dual basis with respect to B.
Dirac operator:

D =
∑

i

bi ⊗ di ∈ U(g)⊗ C (p)

D is independent of bi and K -invariant.



D2 is the spin Laplacian:

D2 = −Casg⊗1 + Cask∆
+ constant.

Here Casg, Cask∆
are the Casimir elements of U(g), U(k∆);

k∆ is the diagonal copy of k in U(g)⊗ C (p) defined by

k ↪→ g ↪→ U(g) and k→ so(p) ↪→ C (p).

The constant is explicitly computed as −||ρ||2 + ||ρk||2.

Atiyah-Schmid, Schmid, and Parthasarthy use these ideas to
construct Discrete Series.



Dirac cohomology
Motivated by the Dirac inequality and its uses to compute spectral
gaps, Vogan introduced the notion of Dirac Cohomology.

Let M be an admissible (g,K )-module. Let S be a spin module for
C (p); it is constructed as S =

∧
p+ for p+ ⊂ p max isotropic.

Then D acts on M ⊗ S .

Dirac cohomology of M:

HD(M) = KerD/ ImD ∩ KerD

HD(M) is a module for the spin double cover K̃ of K . It is
finite-dimensional if M is of finite length.

If M is unitary, then D is self adjoint wrt an inner product. So

HD(M) = KerD = KerD2,

and D2 ≥ 0 (Dirac inequality).



Vogan’s conjecture

Let h = t⊕ a be a fundamental Cartan subalgebra of g. View
t∗ ⊂ h∗ via extension by 0 over a.

The following was conjectured by Vogan in 1997, and proved by
Huang-P. in 2002.

Theorem
Assume M has infinitesimal character and HD(M) contains a
K̃ -type Eγ of highest weight γ ∈ t∗.

Then the infinitesimal character of M is γ + ρk (up to Weyl group
Wg).



Vogan’s conjecture - structural version

Let ζ : Z (g)→ Z (k) ∼= Z (k∆) be the homomorphism
corresponding under Harish-Chandra isomorphism to the restriction
map P(h∗)Wg → P(t∗)Wk .

For any z ∈ Z (g), there is a ∈ (U(g)⊗ C (p))K such that

z ⊗ 1 = ζ(z) + Da + aD.

This implies the above module version, since Da + aD acts as zero
on HD(M).
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Motivation

I unitarity: Dirac inequality and its improvements.

I irreducible unitary M with HD 6= 0 are interesting (discrete
series, Aq(λ) modules, unitary highest weight modules, some
unipotent representations...) They should form a nice part of
the unitary dual.

I HD is related to classical topics like generalized Weyl character
formula, generalized Bott-Borel-Weil Theorem, construction
of discrete series, multiplicities of automorphic forms

I There are nice constructions of representations with HD 6= 0;
e.g., Parthasarthy and Atiyah-Schmid constructed the discrete
series representations using spin bundles on G/K .



Complex Groups

Let G be a complex reductive group viewed as a real group. Let K
be a maximal compact subgroup of G . Let Θ be the corresponding
Cartan involution, and let g0 = k0 + s0 be the corresponding
Cartan decomposition of the Lie algebra g0 of G . Let H = TA be a
θ−stable Cartan subgroup of G , with Lie algebra h0 = t0 + a0, a
θ−stable Cartan subalgebra of g0. We assume that t0 ⊆ k0 and
a0 ⊆ s0.
Let B = HN be a Borel subgroup of G . Let (λL, λR) ∈ h0 × h0 be
such that µ := λL + λR is integral. Write ν := λL − λR . We can
view µ as a weight of T and ν as a character of A. Let

X (λL, λR) := IndG
B [Cµ ⊗ Cν ⊗ 11]K−finite .

Then the K−type with extremal weight µ occurs in X (λL, λR)
with multiplicity 1. Let L(λL, λR) be the unique irreducible
subquotient containing this K−type.



Admissible Representations

Theorem ([Zh], [PRV])

1. Every irreducible admissible (g,K ) module is of the form
L(λL, λR).

2. Two such modules L(λL, λR) and L(λ′L, λ
′
R) are equivalent if

and only if the parameters are conjugate by
∆(W ) ⊂Wc

∼= W ×W . In other words, there is w ∈W such
that wµ = µ′ and wν = ν ′.

3. L(λL, λR) admits a nondegenerate hermitian form if and only
if there is w ∈W such that wµ = µ, wν = −ν.

This result is a special case of the more general Langlands
classification, which can be found for example in [Kn], Theorem
8.54.



Spin Representation
We next describe the spin representation of the group K̃ . Let
ρ := 1

2

∑
α∈∆(b,h) α. Let r denote the rank of g.

Lemma
The spinor representation Spin viewed as a K̃ -module is a direct
sum of [ r

2 ] copies of the irreducible representation E (ρ) of K̃ with
highest weight ρ.

Lemma 4 implies that in calculating HD(π) for unitary π, one can
replace Spin by E (ρ) and then in the end simply multiply the result
by multiplicity [ r

2 ].
So a unitary representation L(λL, λR) has nonzero Dirac
cohomology if and only if there is (w1,w2) ∈Wc such that

w1λL + w2λR = 0, w1λL − w2λR = τ + ρ (1)

where τ is the highest weight of a K̃−type which occurs in
L(λL, λR)⊗ E (ρ). More precisely

[HD(π) : E (τ)] =
∑
µ

[
r

2
] [π : E (µ)] [E (µ)⊗ E (ρ) : E (τ)], (2)

where the sum is over all K -types E (µ) of π.



Dirac Cohomology for Unitary Representations
Write λ := λL. The first equation in (1) implies that
λR = −w−1

2 w1λ. The second one says that 2w1λ = τ + ρ, so that
w1λ must be regular, and 2w1λ regular integral. Replace w1λ by
λ. Thus we can write the parameter of π as (λ,−sλ) with λ
dominant, and s ∈W . Since L(λ,−sλ) is assumed unitary, it is
hermitian. So there is w ∈W such that

w(λ+ sλ) = λ+ sλ, w(λ− sλ) = −λ+ sλ. (3)

This implies that wλ = sλ, so w = s since λ is regular, and
wsλ = s2λ = λ. So s must be an involution.
Thus to compute HD(π) for π that are unitary, we need to know

1. L(λ,−sλ) that are unitary with

2λ = τ + ρ, (4)

in particular 2λ is regular integral,

2. The multiplicity[
L(λ,−sλ)⊗ E (ρ) : E (τ)

]
. (5)



Unitary Dual

Theorem (Classical Groups, [B])

A hermitian module with infinitesimal character (λ,−λ) with 2λ
integral is unitary if and only if it is unitarily induced from a
unipotent representation. The unipotent representations for all
complex groups are listed in [BP]. For the classical groups, (aside
from the trivial representation) they are

Type A λ = (a, . . . ,−a, b − 1/2, . . . ,−b + 1/2), a, b ∈ N,
Type B Θ−lifts of the trivial representation of an Sp in the

stable range,
λ = (−K0 + 1/2, . . . ,−1/2,−N0, . . . ,−1) K0 ≥ N0

Type C The components of the metaplectic representation,
λ = (−K0 + 1/2, . . . ,−1/2),

Type D Θ−lifts of the metaplectic representation,
λ = (−N0, . . . ,−1, 0,−K0 + 1/2, . . . ,−1/2)
K0 ≤ N0.



Sketch of Proof I

We need to compute the Dirac cohomology of a unitarily induced
module. We consider the Dirac cohomology of a representation π
which is unitarily induced from a unitary representation of the Levi
component M of a parabolic subgroup P = MN.
We write π := IndG

P [Cξ ⊗ πm] where ξ is a unitary character of M,
and πm is a unitary representation of M such that the center of M
acts trivially. It is straightforward that πm has Dirac cohomology if
and only if Cξ ⊗ πm has Dirac cohomology.
The representation πm = Lm(λm,−sλm) satisfies

λm + sλm = µm, 2λm = µm + νm, (6)

λm − sλm = νm, 2sλm = µm − νm, (7)

with s ∈Wm.
Assume that πm has Dirac cohomology. So

2λm = µm + νm = τm + ρm (8)



Sketch of Proof II

is regular integral for a positive system ∆m. Here τm is dominant
with respect to ∆m, and ρm is the half sum of the roots in ∆m.
Also, [

πm ⊗ F (ρm) : F (τm)
]
6= 0. (9)

For a dominant m-weight χ, let F (χ) denote the finite-dimensional
m-module with highest weight χ. For a dominant g-weight η, let
E (η) denote the finite-dimensional g-module with highest weight
η. We are also going to use analogous notation when χ and η are
not necessarily dominant, but any extremal weights of the
corresponding modules.
The lowest K−type subquotient of π is L(λ,−sλ). It has
parameters

λ = ξ/2 + λm, µ = ξ + µm,

sλ = ξ/2 + sλm, ν = νm.
(10)



Sketch of Proof III

We assume that ξ is dominant for ∆(n) the roots of N. This is
justified in view of the results in [V1] and [B] which say that any
unitary representation is unitarily induced irreducible from a
representation πm on a Levi component with these properties. In
order to have Dirac cohomology, 2λ must be regular integral; so
assume this is the case. Let ∆′ be the positive system such that λ
is dominant. Then

2λ = ξ + µm + νm = τ ′ + ρ′. (11)

Here ρ′ is the half sum of the roots in ∆′, and τ ′ is dominant with
respect to ∆′. In order to see that π has nonzero Dirac
cohomology, we need the following lemma.

Lemma



Sketch of Proof IV

The restriction of the g-module E (ρ) to m is isomorphic to
F (ρm)⊗ C−ρn ⊗

∧∗ n, where F (ρm) denotes the irreducible
m-module with highest weight ρm and ρn denotes the half sum of
roots in ∆(n).

Proof.
Since g and m have the same rank, we can use Lemma 4 to replace
E (ρ) and F (ρm) by the corresponding spin modules. Recall that
the spin module Spinm can be constructed as

∧∗m+, where m+ is
a maximal isotropic subspace of m. We can choose m+ so that it
contains all the positive root subspaces for m, as well as a maximal
isotropic subspace h+ of the Cartan subalgebra h. To construct
Sping, we can use the maximal isotropic subspace g+ = m+ ⊕ n of
g. It follows that Sping = Spinm ⊗C−ρn ⊗

∧∗ n. The ρ-shift comes
from the fact that the highest weight of Spinm is ρm and the
highest weight of Sping is ρ, while the highest weight of
Spinm ⊗

∧∗ n is ρm + 2ρn = ρ+ ρn.



Sketch of Proof V
Since π is unitary, the computation for its Dirac cohomology is[

π ⊗ E (ρ) : E (τ ′)
]

=
[
πm ⊗ Cξ ⊗ E (−τ ′) |m : E (ρ) |m

]
=[

πm ⊗ Cξ ⊗ E (−τ ′) |m : F (ρm)⊗ C−ρn ⊗
∧

n?
]

=[
Cξ+ρn ⊗ πm ⊗ F (ρm)⊗ E (−τ ′) |m :

∧
n?
]
.

(12)
Here the first equality used Frobenius reciprocity, while the second
equality used Lemma 6. Note that the dual of E (τ ′) is the module
E (−τ ′) which has lowest weight −τ ′ with respect to ∆′.
Using (11) and (8), we can write

− τ ′ = −2λ+ ρ′ = −ξ−µm− νm + ρ′ = −ξ− τm− ρm + ρ′. (13)

We have assumed ξ to be dominant for ∆(n), and 2λm is
dominant for ∆(m). Thus ∆m ⊂ ∆,∆′. Because of (9), the LHS
of the last line of (12) contains the representation

Cξ+ρn ⊗ F (τm)⊗ E (−τ ′) |m⊇ Cξ+ρn ⊗ F (τm − τ ′).



Sketch of Proof VI

Namely, F (τm − τ ′) is the PRV component of
F (τm)⊗ F (−τ ′) ⊆ F (τm)⊗ E (−τ ′) |m. By (11) and (8),
τm − τ ′ = −ξ − ρm + ρ′, so

Cξ+ρn ⊗ F (τm − τ ′) ⊇ F (ρn − ρm + ρ′) = F (wmρ+ ρ′),

where wm is the longest element of the Weyl group of m. Namely,
wm sends all roots in ∆m to negative roots for m, while permuting
the roots in ∆(n), so wmρ = −ρm + ρn.
So we see that the LHS of the last line of (12) contains the
m-module F (wmρ+ ρ′) = F (wmρ

′ + ρ). Namely, both wmρ+ ρ′

and wmρ
′ + ρ = wm(wmρ+ ρ′) are extremal weights for the same

module.
We will show that [

F (wmρ
′ + ρ) :

∧
n
]
6= 0. (14)



Sketch of Proof VII

This will prove that (12) is nonzero, and consequently that π has
nonzero Dirac cohomology.
Note that wmρ

′ + ρ is a sum of roots in ∆(n), and antidominant
for ∆m, because for any simple γ ∈ ∆m, 〈ρ′, γ̌〉 ∈ N+ and
〈ρ, γ̌〉 = 1. Moreover,

wmρ
′ + ρ =

∑
〈α,wmρ′〉>0, 〈α,ρ〉>0

α. (15)

To show that (14) holds, it is enough to show that

v :=
∧

〈α,ρ〉>0, 〈α,wmρ′〉>0

eα ∈
∧

n? (16)

is a lowest weight vector for ∆m. Here eα denotes a root vector for
the root α.



Sketch of Proof VIII

Let γ ∈ ∆m. Then, up to constant factors,

ad e−γeα =

{
0 if α− γ is not a root,

e−γ+α if α− γ is a root.
(17)

But 〈−γ,wmρ
′〉 > 0, and 〈α,wmρ

′〉 > 0 by assumption, so

〈−γ + α,wmρ
′〉 > 0 + 0 = 0. (18)

Also, if −γ + α is a root, then it is in ∆(n), since α ∈ ∆(n) and n
is an m-module. So 〈−γ + α, ρ〉 > 0. Thus every e−γ+α appearing
in (17) is one of the factors in (16).
The claim now follows from the formula

ad e−γ
∧

eα =
∑

eα1 ∧ · · · ∧ ad e−γeαi ∧ . . . . (19)



Sketch of Proof IX

In each summand either ad e−γeαi equals 0, or is a multiple of one
of the root vectors already occurring in the same summand. So
ad e−γv = 0. We have proved the following theorem.

Theorem
Let P = MN be a parabolic subalgebra of G and let
∆ = ∆m ∪∆(n) be the corresponding system of positive roots. Let
πm := Lm(λ,−sλ) be an irreducible unitary representation of M
with nonzero Dirac cohomology such that its parameter is zero on
the center of m. Let ξ be a unitary character of M which is
dominant with respect to ∆. Suppose that twice the infinitesimal
character of π = IndG

P [πm ⊗ ξ] is regular and integral. Then π has
nonzero Dirac cohomology.

The multiplcity ≤ 1 requires a finer analysis of equation (12).
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