THE NEUBERG CUBIC IN LOCUS PROBLEMS

ZVONKO CERIN

Herrn Professor F. Schipp zum 60. Geburtstag gewidmet

ABSTRACT. In this paper we continue the exploration of various locus problems whose so-
lutions involve the Neuberg cubic of the scalene triangle in the plane. We use analytical
geometry and the complex numbers to show that the Neuberg equation describes the es-
sential part of the locus in many geometric constructions. In this way we discover new
characteristics of the Neuberg cubic that has been extensively studied recently.

1. INTRODUCTION

Let ABC be a scalene triangle in the plane. The author has considered in [5] numerous locus
problems whose solutions involve the circular cubic N which Neuberg [18] calls the 21-point
cubic and which is known today as the Neuberg cubic of the triangle ABC. It is evident
from the extensive list of references on this curve given below that the Neuberg cubic has
attracted a lot of attention lately. The present paper is yet another such contribution. It
adds more than two dozens of new instances when the Neuberg cubic appears in various
geometric constructions. Most results utilise the notion of the homology for triangles but
there are also those that use the concurrence of lines and the concept of the power of a point
with respect to a circle.

Our proofs use the analytical geometry of complex numbers. This choice leads to the simplest
expressions and appears to be the most natural for our search for the Neuberg cubic. It is
suitable for implementation on computers. In fact, our results are all discovered with the
help of a computer (PC Pentium 200 MHz, 64 MB RAM) and the software Maple V (version
4). We leave out many details because Maple V (or any other package with symbolic algebra
computation capability) performs all factorisations and simplifications easily.

The paper is organised as follows. After the introduction we describe our notation and give
basics on the use of complex numbers in geometry. In the remaining sections we present and
prove some new results of our search for the Neuberg cubic that all give new characterisations
of this remarkable curve by various geometric constructions or locus problems. The section
titles are chosen to suggest the method of recognition.

Of course, since our results are characterisations of the same curve, in some cases one can
show easily that one method follows from the other(s). Observations of this kind and other
comments on possible extensions and special cases are included in remarks.
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2. CoMPLEX NUMBERS IN GEOMETRY

In this paper we shall use complex numbers in proofs because they provide simple expressions
and arguments. There are several books, for example [16], [9], [23], [12], [26], and [20], that
give introductions into the method which we utilise.

A point P in the Gauss plane is represented by a complex number. This number is called
the affiz of P. It is customary to denote the affix of a point P with the corresponding small
Latin letter p and to identify a point and its affix. The complex conjugate of p is denoted
p. This rule has an important exception in that the vertices A, B, and C' of the reference
triangle are represented by numbers u, v, and w on the unit circle. The letters a, b, and
¢ are reserved for the lengths of sides of ABC'. Hence, the circumcentre O of ABC' is the

origin. The affix of O is number 0 (zero) and complex conjugates of u, v, and w are u™?,

v=! and wt

Let ¢ and ¢ denote the first and the second cyclic permutation on triples of letters. For
example, p(a) = b, P(a) = ¢, p(ux) =vy, and Y(uzx) = wz. Finally, if f is an expression,

Sf and Pf replace f+ o(f) +¢(f) and fo(f)¥(f). The expressions ¢(f) and ¥(f) are
called relatives of f.

Most interesting points, curves,... associated with the triangle ABC' are expressions that in-
volve symmetric functions of u, v, and w that we denote as follows: y =uvw, o =u+ v+ w,
T=vw+wu+uv, o, =—u+v+w, o, =@(0,),0.=10(04), fta = VW, ly = WU, flc =UV,
To=—vwH+wu+uv, 7 =¢(Ta), Te = V(74), 0a = v —w, & = p(da), e = V(0,), (o = v + w,
G = p(Ca), ¢ = ¥((,)- Foreach k > 2, oy, Oka, Okp, and oy, are derived from o, o, o3, and o,
with the substitution u = u*, v = v¥, w = w*. In a similar fashion we can define analogous

expressions using letters 7, u, 6, and (.

Let us close this section on preliminaries with a few words on analytic geometry that we shall
use and on triangle notation. Any of the books mentioned above contains more than enough
information on basic constructions (line through two points, perpendicular and parallel to
a line through a point, condition for concurrence of three lines, condition for collinearity of
three points) that are needed to follow our arguments. As a convenience for the reader we
repeat them here.

In geometry lines are important so that we have the special notation [m, n] for the set of all
points P that satisfy the equation mp — mp+ n = 0, where n is purely imaginary.
Let X, Y, and Z be three points with affixes =, y, and z and let £ be a line [f, h] in the

plane. Then the line XY is [x —y, 2§ — y 7], the parallel to ¢ through X is [f, fZ — f ]
and the perpendicular to ¢ through X is [—f, —fz + f z].

The conditions for points X, Y, and Z to be collinear and for lines [m, n|, [p, ¢, and [s, t] to
be concurrent are ST (y — z) =0 and Sm (pt — sq) =0. If X, Y, and Z are not collinear,
they determine the unique circle k(X, Y, Z) which goes through them.

The centroid, the circumcentre, and the centre of the nine-point circle of the triangle XY Z
are (Sz)/3, (Szz(y—2))/(Sz (y — 2)), and (Sz (y* — 2%))/(2Sz (y — 2)).

Let P and @ be points and let ¢ be a line. Then pa(P, ¢), pe(P, {), pr(P, {), re(P, ), and
re(P, Q) denote the parallel to ¢ through P, the perpendicular to ¢ through P, the projection
of P onto ¢, the reflection of P in ¢, and the reflection of P at (), respectively.
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For a point P not on the circumcircle of a triangle XY Z, let ig(P, XY Z) be the isogonal
conjugate of P with respect to XY Z. This point is the intersection of lines which make
equal angles with internal angle bisectors as do the lines X P, Y P, and ZP.

Let G, O, H, F, K, I,,, and I, be the centroid, the circumcentre, the orthocentre, the centre
of the nine-point circle, the symmedian or Grebe-Lemoine point, the first isogonic point, and
the second isogonic point of the base triangle ABC'.

We shall need triangles A, B,C,, where the index x is either e, r, ¢, u, and v. In order to
describe A, B,C, it suffices to give description of the vertex A, because B, and C, are its
relatives. The point A, is the excentre on A, the reflection re(A, BC'), the intersection of
tangents to the circumcircle at B and C', and the apexes of equilateral triangles constructed
inwards and outwards on BC, respectively. A.B.C, is the excentral, A; B;C; the tangential,
and A, B,C, the three images triangle of ABC'.

Triangles XY 72, and X,Y575 are homologous if lines X; X5, Y1Ys, and Z;Z5 are concurrent.

3. HoMOLOGY OF TRIANGLES — CIRCUMCENTRES

Among the oldest known methods of recognising the Neuberg cubic are the following two
theorems which use the condition that two families of triangles are families of homologous
triangles. In this and the next five sections we consider some other uses of this method for
recognition of the Neuberg cubic N. Division into sections reflects different ways of defining
families of variable triangles.

Let Wy be the complement of the union of sidelines of the base triangle ABC' in the plane.
For a point P in the plane, let O,, Og, and O, denote the circumcentres of the triangles
BCP,CAP, and ABP. Neuberg [18] has first proved the following result. As a convenience
to the reader we shall give easy proofs of this and the next theorem using complex numbers.

Theorem 3.1. The locus of all points P in Wy such that ABC' is homologous to O,0z0,
is the intersection with Wy of the union of the circumcircle and the Neuberg cubic of ABC.

Proof. The O, is pq M /n,, while Og and O, are its relatives, where n, and M are equations
P+ pep—C and pp — 1 of the sideline BC' and of the circumcircle. The line AO, has
the form [ f/n,, g/(ung,)], where f =up+ pup —upp — 7, and g = M (u* — p,), while lines
BOg and CO, are its relatives. The triangles ABC and 0,030, are homologous if and only
if M NPS,n;' =0, where N=7p?’p—puop?p+ putp*> —op*+oyp— 7P is the equation
of the Neuberg cubic [16]. O

The following result is proved on page 199 of [16]. It was well known to readers of Mathesis
(see [13]) and was mentioned again recently in [21].

Theorem 3.2. The Neuberg cubic of ABC' is the locus of all points P such that ABC' is
homologous to the triangle on the reflections of P in the sidelines of ABC'.

Proof. The reflection R, of the point P in the side BC is (, — po p and the line AR, is
[pa P — Oay u g p— pytup+ ' G (u? — pg) . Hence, triangles ABC and R,RsR, are
homologous if and only if u; ' NP, = 0. O
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Our first theorem is similar to the Theorem 3.1. We just replace a point P with its isogonal
conjugate ) with respect to ABC. Let W; denote the complement of the circumcircle of
ABC in the plane.

Theorem 3.3. The locus of all points P in W1 such that ABC' is homologous to the triangle
on the circumcentres of BCQ, CAQ, and ABQ is the intersection with Wy of the Neuberg
cubic of ABC'.

Proof. The affix of the isogonal conjugate Q is (p + 79 — pp*> — 0)/M and the circumcentre
S, of BCQ is n,/M. The circumcentres S, and S, of C AQ and ABQ have analogous affixes.
The triangles ABC and

S4SpS. are homologous if and only if M2 NP§,/u? = 0. O

In the next theorems, we shall replace circumcentres of triangles BC'Q), C'AQ, and ABQ
with the circumcentres of B, C,.Q), C, A,.Q, and A,B,(Q, where A,, B,, and C, are vertices of
the three images triangle of ABC.

The locus of all points P whose isogonal conjugates lie on the sideline B,.C, of A,B,.C, is
a conic A,. Let W3 denote the complement in the plane of the union of the circumcircle of
ABC, of the conic A,, and of two other related conics A, and A..

Theorem 3.4. The locus of all points P in W3 such that ABC' is homologous to the triangle
on the circumcentres of the triangles B,C,Q, C,A,Q, and A,B,.Q is the intersection with
W3 of the union of the sidelines and the Neuberg cubic of ABC and a quartic which goes
through the vertices of ABC.

Proof. From the proof of previous theorem we know the affix of () and since the affixes of
B,, and C, are 7,/v and 7./w, we can find the affix of the circumcentre S, of B,C,.Q. The
circumcentres S, and S, of C.A,.Q) and A, B,.Q have analogous affixes. The triangles ABC
and

5,55, are homologous if and only if K M2 NP §,n,/(u L,) = 0, where K and L, denote ex-
pressions 2 (o p3 p+ 2 oo pp®) + (472 — 0272 +4pod —15pu07+ 12p2) p? P> +(dp —o7)(p> + p? p3) + (8
—72 = 2p0)2p* —op)+ (07 —po? —2u7)2up®* —7p) +3(0*1? —2p0 -2+ Tpo
=120 pp+2(po® —6puot+8u?) and 7, p* + (Coq u? — Co (Coa — fta) U + pla Coa) PP — U
(CQa +u Ca)p + Mg Oq ]52_ Ha (Ma sz + u<2a>]§ + (U2 + :ub)(w2 + ,uc)~ Notice that K = 0 1s
the equation of a quartic which goes through the vertices of ABC while L, = 0 is the equa-
tion of the conic A,. O

Instead of the homology with ABC, the following result looks at the homology of 0,030,
with the triangle on circumcentres of B,C,.P, C.A,P, and A,.B,P. Let W,y denote the
complement of the union of sidelines of triangles ABC and A, B,C, in the plane.

Theorem 3.5. The locus of all points P in W, such that the triangle O,O30, on cir-
cumcentres of BCP, CAP, and ABP is homologous to the triangle on the circumcentres of
the triangles B,C,. P, C.A,.P, and A,B,P is the intersection with W,y of the union of the
circumcircle of A,.B,.C,., the circumcircle of ABC, and the Neuberg cubic of ABC.

Proof. Since the affixes of A,, B,, and C, are 7,/u, 7,/v, and 7./w, the circumcentre O of the
triangle B,C.P is (uTapp + 2 pta (o — u?)p — 04 1 7) B,C.(P) ™!, where B,C,.(P) denotes
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the value at P of the equation of the line B,C,. Now we can determine the line O,O",
find the lines O30; and O,O; using the usual substitutions, and discover that these lines
are concurrent if and only if k(A,, B,, C,)(P) M NPu~'62 B.C.(P)~' BC(P)~! = 0, where
k(A,, B, C,)(P) is the value at P of the equation of the circumcircle of A, B,C,. O

Remark 1. We can get analogous results to the above two theorems by replacing A, B,C.
with either A,B,C, or A,B,C,.

4. HOMOLOGY OF TRIANGLES — ANTIPEDAL TRIANGLES

The common feature of results in this section is that the homology of the antipedal triangle
of a variable point P with triangles on circumcentres is used to recognise the Neuberg cubic.

Theorem 4.1. The locus of all points P in Wy such that the antipedal triangle P®PP°P"
of P with respect to ABC' is homologous to the triangle on the circumcentres of BC'H,,
CAHg, and ABH.,, where H,, Hg, and H., are orthocentres of BCP, CAP, and ABP, is
the intersection with Wy of the union of the circumcircle and the Neuberg cubic of ABC.

Proof. The point H, has affix (p?> — pa pP + pta Ca D — C24)/Ma S0 that the affix of the circum-
centre S, of BCH, is (Cap + ptaCaD — ftaP P — Coa — Ha)/Nq. The lines P?S, and PSS, are
relatives of P*S,. These three lines are concurrent if and only if 2M NPJ,/(un,) =0. O

Remark 2. Let R, denote the reflection of a point P at the sideline BC'. The triangles BC H,,
and BC R, have the same circumcentre so that in the above theorem the orthocentres H,,
Hg, and H., could be replaces with the reflections R,, R, and R, of P at the sidelines of
ABC.

Let W5 be the complement in the plane of the union of the three sidelines of ABC' and the
three circles with sides of ABC' as diameters.

Theorem 4.2. The locus of all points P in Wy such that the antipedal triangle P*PPPY
of P with respect to ABC' is homologous to the triangle on the circumcentres of BCO,,
CAOg, and ABO,, where O, Og, and O, are circumcentres of BOP, CAP, and ABP, is
the intersection with Wy of the union of the circumcircle and the Neuberg cubic of ABC.

Proof. The point O,, has affix p, M /n, so that the affix of the circumcentre S, of BCO,, is

fa (Ba (P*D° — paD* — 1) = P> + Goa —2U) /(o U), where U =2papp— Cup— HaCaP + Coa
is the equation of the circle with BC' as diameter. The lines P?S, and PSS, are relatives of
P*S,. These three lines concur if and only if 2M NP6, (p — u)(up —1)/(Un,) = 0. O

5. HOMOLOGY OF TRIANGLES — ORTHOCENTRES

Here we obtain the Neuberg cubic in homologies with triangles on the orthocentres of variable
triangles. The last result also uses the centres of the nine-point circles.

Theorem 5.1. The locus of all points P in Wy such that ABC' is homologous to the triangle
on the orthocentres of the triangles OO0, OO0,0,, and 00,0 is the intersection with
Wy of the union of the circumcircle and the Neuberg cubic of ABC.
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Proof. The orthocentre H, of 0030, has affix w(, M (p — u)/(nyn.). Of course, the other
two orthocentres H, and H, have analogous affixes. Hence, the triangles ABC and H,H,H,
are homologous if and only if M NP6,/(un,) = 0. O

Remark 3. We get an analogous result to the above theorem by replacing ABC' with the
triangle G,G 3G, on centroids of BOP, CAP, and ABP.

Theorem 5.2. The locus of all points P in Wy such that ABC' is homologous to the triangle
on the orthocentres of the triangles GGgG., GGG, and GG,Gg is the intersection with
Wy of the union of the circumcircle and the Neuberg cubic of ABC.

Proof. The orthocentre H, of GGG, has aflix (2pu,pp+up+pup—7—pa)/(3n,). The
other two orthocentres H, and H, are relatives of H,. It follows that the triangles ABC and
H,HyH, are homologous if and only if 2% M NP6, /(un,) =0. O

Remark 4. We get a similar result to the above theorem by replacing ABC' with the triangle
0,030, on circumcentres of BCP, CAP, and ABP.

Theorem 5.3. The Neuberg cubic of the triangle ABC' is the locus of all points P such
that ABC' is homologous to the triangle on either the centres of the nine-point circles or the
orthocentres of RgR,P, R R, P, and R,RgP, where R,, Rg, and R, are reflections of P at
the sidelines BC', C'A, and AB.

Proof. The orthocentre H, of RgR,P is p + (T — pta) p + (.. The orthocentres H, and H. of
R,R,P, and R,RgP are relatives of H,. The triangles ABC and H,H,H. are homologous
if and only if ji5 ' NP6, = 0.

For the second part observe that the centre of nine-point circle of RgR, P is collinear with
the points A and H,. O

6. HOMOLOGY OF TRIANGLES — SYMMEDIAN AND ISOGONIC POINTS

The second theorem in this section is analogous to the following theorem which is an exercise
on page 200 of [16]. It was restated as the Superior Locus Problem by J. Tabov in [24] and
it was resolved by the author in [3] (see also [4]).

Theorem 6.1. The locus of all points P in Wy such that the Euler lines of the triangles
ABP, CAP, and BCP are concurrent (at the point on the FEuler line of ABC) is the
intersection with Wy of the union of the circumcircle and the Neuberg cubic of ABC'.

Proof. We know the circumcentre O, of the triangle BC'P and since its centroid G, is
(p+ C.)/3 it follows that the Euler line G,O, of this triangle is
[n;I (p2 =2 PP+ paCaD + o — C2CL)7 n;l M(p - ,uaﬁ)].

Hence, the Euler lines G,O,, G3Og, and G0, concur if and only if MNP, nt =0.
Notice that these lines intersect on the Euler line GO of ABC. ]

Recall that the Brocard diameter or the Brocard azis are the names for the central line joining
the circumcentre with the symmedian point (or the Grebe-Lemoine point) of a triangle.



THE NEUBERG CUBIC IN LOCUS PROBLEMS 7

Theorem 6.2. The locus of all points P in Wy such that the Brocard diameters of the
triangles ABP, CAP, and BCP are concurrent (at the point on the Brocard azis of ABC')
is the intersection with Wy of the union of the circumcircle and the Neuberg cubic of ABC.

Proof. The affix of Ky is (pa CapD + 2 (a — C2a) P — 2 f12a P + Ha Ca) /Ua, where the com-
plex number U, is ((2p — (u)(2ap — Cu) — 362)/2 and thus is never zero. The affix of
Oy 18 g M/n,, so that the triangles K,KzK, and 0,030, are homologous if and only
if SM NP6, (p—u)(up—1)/(n,U,) =0. Notice that the lines O,K,, OsK3, and O, K,
intersect on the Brocard axis KO of ABC. Il

The second theorem in this section is similar to the Theorem 3.1. In it we replace the
circumcentres with isogonic points. Let W5 be the complement in the plane of the apexes
Ay, By, and C,, of equilateral triangles built towards inside on the sides of ABC.

Theorem 6.3. The locus of all points P in Wy such that ABC' is homologous to the triangle
Luoluplyy on the second isogonic points of BCP, CAP, and ABP is the intersection with
Wy of the union of the equilateral hyperbola through A,, B,, and C, with the centre at the
first isogonic point I, of ABC and the Neuberg cubic of ABC.

Proof. The point I, is (Un+V)/(X n+Y), where 5 denotes —% + @ (the cube root of
unity), the letter U is an abbreviation for 1, (o pp + 2 (e — Coa) P — 2 42 P + f1a Ca, the letter
V for Ve PP — 5ap2 + (:ua - gQa)p — Ha (:ua - CQa)]j + W g + 53(17 and the letters X and Y
for 21, pp — Cap — 2 10 Ca P+ 4 1o — Goo a0 1 PP — (00 +0) P — o (0 + v) P+ 0* + 2w b,
The other two second isogonic points I3 and I, are relatives of I,,. It follows that the
triangles ABC' and I,,1,s1,, are homologous if and only if H, NPd,/(u* (Xn+Y)) =0,
where H, = 0 is the equation (in p) of the hyperbola from the statement of the theorem. In
order to see that X n+Y = 0 only when p = m, where m is the affix of A,, it suffices to
note that the value of X n+Y at m +n is equal (1 +2n)nnvw. O

Remark 5. Of course, there is a dual result to the above theorem with first isogonic points
of BCP, CAP, and ABP. The hyperbola of the locus has its centre at the second isogonic
point of ABC.

7. HOMOLOGY OF TRIANGLES — REFLECTIONS

In this section we use homology with triangles whose vertices are reflections in appropriate
lines. Let Wy be the complement in the plane of the vertices A, B, and C' of the triangle
ABC.

Theorem 7.1. The locus of all points P in Wy such that ABC' is homologous to the triangle
on reflections in sidelines of ABC' of inversions of A, B, and C with respect to the circles
k(B, C, P), k(C, A, P), and k(A, B, P) is the intersection with Wy of the union of the
sidelines, the circumcircle, and the Neuberg cubic of ABC.

Proof. The inversion of A with respect to the circle k(B, C, P)is (1, M —un,)/(u M —n,)
and its reflection 7, in BC' is (u M — 1,n4)/(tta M — un,). The other two reflections T}
and T, are relatives of T,. The triangles ABC and T,T,T,. are homologous if and only if
MNP n,/(u? (uM —ng)(pta M — un,)) = 0. From this our theorem follows immediately
provided one observes that up to a constant p, M — un, is a complex conjugate of u M — n,
and both are zero only at the affixes of B and C. O
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Theorem 7.2. The locus of all points P in Wy such that ABC' is homologous to the triangle
on reflections in sidelines of the extriangle A.B.C. of inversions of A, B, and C with respect
to the circles k(B, C, P), k(C, A, P), and k(A, B, P) is the intersection with Wy of the
union of the circumcircle and the Neuberg cubic of ABC.

Proof. In this proof, in order to avoid the appearance of square roots, we shall assume
that the vertices A, B, and C have affixes u?, v?, and w? for some unimodular numbers
u, v, and w. The reflection T, in B.C, of the inversion of A with respect to the circle
k(B, C, P) is (UM — u* ca(ng))/calpia M —uny,), where U = pg (u* + (pta — Coa) u? + pog)
and ¢y performs the substitution u — u?, v — v?, w — w?. The other two reflections T
and T, are relatives of T,. The triangles ABC and T,T,T. are homologous if and only if
M* co(N)Pey(64)2 ) (u? co(u M — ng) ca(pa M —uny,)) = 0. O

Theorem 7.3. If ABC' has no right angle, then the locus of all points P in Wy such that
the tangential triangle A;ByCy is homologous to the triangle on reflections in BC, C'A, and
AB of the second intersections of lines AP, BP, and C'P with the circumcircle of ABC' is
the intersection with Wy of the union of the sidelines and the Neuberg cubic of ABC.

Proof. Since the affix of A; is 2 u,/C,, the affix of the second intersection S, of AP with
the circumcircle of ABC'is (u — p)/(up — 1), and the affix of the reflection 7, of S, in BC
is (Cap+pp—7)/(p—u), the triangles A;B,C; and T,T,T,. are homologous if and only if
2NPng/(ul(p—u)(up—1)) =0. O

Theorem 7.4. The locus of all points P in Wy such that the pedal triangle P,PsP, of P
with respect to ABC' is

homologous to the triangle on reflections in PgP,, P,P,, and P,Ps of P is the intersection
with Wy of the union of the sidelines, the circumcircle, and the Neuberg cubic of ABC.

Proof. Since the affix of P, is (p — pe P+ (.)/2 and the affix of the reflection T, of P in
PsP,is (p* —ulupp+ Cap— pup* +u(T+ pa) p — G C) /(2 (p — u)), the triangles P, P3P,
and T,T,T, are homologous if and only if % M2NPGo,n./(u?(p—u)(up—1))=0. O

Remark 6. Since the triangle R,RgR., on reflections of a point P in sides of ABC' is homo-
thetic to the pedal triangle P, PP, from P, the above theorem holds also for R,RgR, in
place of P, P3P, .

Theorem 7.5. The locus of all points P in Wy such that the antipedal triangle P*PPP? of
P with respect to ABC' is

homologous to the triangle on reflections in PPPY, PYP%, and P*P? of P is the intersection
with Wy of the union of the circumcircle and the Neuberg cubic of ABC.

Proof. The affix of P*is (g pp — p* + (up — 2 fta) /1 and the affix of the reflection T, of P
in PPP7 is 2u — p, so that the triangles P*P? P and T,T,T. are homologous if and only if
16 M NP6,/(un,) = 0. O

8. HOMOLOGY OF TRIANGLES — ISOGONAL CONJUGACY

Here we encounter the Neuberg cubic in homologies with triangles whose vertices are isogonal
conjugates of various points with respect to appropriate variable triangles.
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Theorem 8.1. The union of the circumcircle and the Neuberg cubic of the triangle ABC' is
the locus of all points P such that the pedal triangle P,PgP, of the point P with respect to
ABC' is homologous to the triangle on isogonal conjugates of P, Pg, and P, with respect to
triangles PPsP,, PP, P,, and PP,Pj.

Proof. The vertex P, has affix (p — pap + (,)/2 while the isogonal conjugate T, of P, with
respect to the triangle PPzP, has affix (2p —uM)/2. Hence, the triangles P, P3P, and
T, T,T. are homologous if and only if & M2 NP4, /u? = 0. a0

Remark 7. The above theorem holds also for the triangle on reflections of a point P in sides
of ABC instead of the pedal triangle P, P3P, .

Theorem 8.2. The locus of all points P in Wy such that the triangle OO0, on the
circumcentres of triangles BCP, CAP, and ABP is homologous to the triangle on the
isogonal conjugates of Oy, Og, and O~ with respect to triangles POgO.,, PO,O,, and PO,Og
is the intersection with Wy of the union of the circumcircle and the Neuberg cubic of ABC'.

Proof. The vertex O, has affix u, M/n, while the isogonal conjugate T, of O, with respect
to the triangle POgO., has affix u M /(up — 1). It follows that the triangles 0,030, and
T,T,T. are homologous if and only if M* NPd,/(n, (p —u)(up—1)) =0, O

Theorem 8.3. The locus of all points P in Wy such that the triangle SoSpS- on the second
intersections of lines AP, BP, and CP with the circumcircle of ABC' is homologous to the
triangle on the isogonal conjugates of S., Sg, and S, with respect to triangles PSgS,, PS,Sa,
and PS,Sp is the intersection with Wy of the union of the sidelines, the circumcircle, and
the Neuberg cubic of ABC'.

Proof. The complex number (u —p)/(up — 1) is the affix of the vertex S,. On the other
hand, (Cop? P+ ppp® —p* — (7 + pta) PP +up + pta) /((w — p)(vp — 1)(wp — 1)) is the affix
of the isogonal conjugate T, of S, with respect to the triangle PS3S,. Hence, the triangles
5,555, and T,T,T. are homologous if and only if M® NP, n,/((p —u)® (up — 1)) =0. O

Theorem 8.4. The locus of all points P in Wy such that the triangle H,HgH. on the
orthocentres of triangles BCP, CAP, and ABP is homologous to the triangle on isogonal
conjugates of A, B, and C with respect to those triangles is the intersection with Wy of the
union of the sidelines and the Neuberg cubic of ABC.

Proof. Since ig(A, BCP) is (p* +uCupp—0p— pup+ ita)/(uM) and the vertex H, has
the affix (p* — pa PP + fta Ca D — C2a)/na it is easy to check that the triangles H,HzH., and
ig(A, BCP)ig(B, CAP)ig(C, ABP) are homologous iff M3 NPd, n,u 3 = 0. d

9. CONCURRENT PARALLELS

Results in this section use the condition that three lines are concurrent. However, these lines
are not lines joining corresponding vertices of two triangles as in previous sections but are
parallels to lines.

Theorem 9.1. The Neuberg cubic of the triangle ABC' is the locus of all points P such that
the parallels through A, B, and C' to the Euler lines of triangles PPsP,, PP, P,, and PP, Pg
formed by P and the vertices of its pedal triangle are concurrent.
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Proof. The parallel pa(A, G,0,) with the Euler line G,0, of PP3P, through the vertex A
is the line [(u(,p—p—04)/2, (Lop—7p+ (o (u? — 11a))/(2)]. The other two parallels
pa(B, GyOy) and pa(C, G.O,) are relatives of pa(A, G,O,). The condition for these lines to
concur is § NP, u™? = 0. O

Remark 8. The above theorem is true also when parallels to the Euler lines of PP3P,,
PP,P,, and PP, Ps are drawn through vertices of either the pedal triangle of P with respect
to ABC' or the triangle on reflections of P in sidelines of ABC.

Theorem 9.2. The locus of all points P in Wy such that the parallels through the vertices
P, PP and P of its antipedal triangle to the Euler lines of triangles PPPPY, PPYP®, and
PP®P? are concurrent is the intersection with Wy of the union of

the circumcircle and the Neuberg cubic of ABC.

Proof. As in the proof of the previous theorem, we first find the parallel pa(P*, G,O,) with
the Euler line G,0, of PP?P? through the vertex P®. This line has a rather complicated
polynomial of order five in p and p as the second term. Of course, the other two parallels
pa(B, GyOy) and pa(C, G.0,) are relatives of pa(A, G,0,). These lines concur if and only
if A8 M?> NP6, (p—u)(up—1)/n, =0. O

Remark 9. The above theorem remains true when parallels to the Euler lines of PP?P7,
PPYP® and PP®P? are drawn through vertices of the triangle on the second intersections
of lines AP, BP, and C'P with the circumcircle of ABC.

10. CHARACTERISATIONS WITH POWER

Neuberg [18] noticed the following theorem which requires the notion of the power of a point
with respect to a circle that we recall now.

Let P be a point and k be a circle in the plane with the centre S and the radius r. Then
the power w(P, k) of the point P with respect to the circle k is the number |PS|? — r?. For
points X and Y in the plane, let k£(X, Y') denote the circle with the centre at X which passes
through Y.

Theorem 10.1. The Neuberg cubic of ABC' is the locus of all points P in the plane such
that the product of powers of the point P with respect to the circles k(A, B), k(B, C), and
k(C, A) is equal to the product of powers of the point P with respect to the circles k(A, C),
k(B, A), and k(C, B).

Proof. Let W =pp—u~'p—up. Since W + u; (Coe — pe) and W+ ;1 (Cop — o) are the
powers w(P, k(A, B)) and w(P, k(A, C)), the difference Pw(P, k(A, B)) — Pw(P, k(A, C))
is equal to p; ! NP d,. O

The above result uses circles determined by two points (the centre and a point on it). Much
more interesting is to consider powers with respect to circles which are given by three points.
For a point P and triangles UVW and XY Z, let Pw(U, k(P, Z, X)) —Pw(U, k(P, X,Y))
be v(P, UVW, XY Z).

Theorem 10.2. The locus of all points P in Wy such that v(P, ABC, 0O,030,) =0 is the
intersection with Wy of the union of the circumcircle and the Neuberg cubic of ABC, where
Oa, Og, and O., are circumcentres of triangles BCP, CAP, and ABP.
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Proof. Since the quotient ((7 — up) pP — ftaCeP — Cep + o + 03 (p — w)(up — 1)/ (ungy n.) is
the power w(A, k(P, O,, O,)) and the power w(A, k(P, O, Op)) is the analogous quotient
(T =) pp— pa D — G+ e + w?)(p — u)(up — 1)/(ung ny) and all the remaining four
powers which appear in v(P, ABC, 0,030,) are their relatives, v(P, ABC, 0,030,) =0
is true if and only if M NP4, (p — u)(up — 1)/(un?) = 0. O

Remark 10. The above theorem remains true when v(P, ABC, 0,030.,) = 0 is replaced by
the equation v(O, ABC, 0,030,) = 0, where O is the circumcentre of ABC.

Theorem 10.3. The Neuberg cubic of ABC' is the locus of all points P in the plane such
that v(P, ABC, R,RgR.,) =0, where R,, Rg, and R, are reflections of P in the sidelines
BC, CA, and AB, respectively.

Proof. Since (up + v 1 p — prepp + pte — Gac)/ e and (up + w py p — o pP + iy — Ca)/ iy are
powers w(A, k(P, Ry, R,)) and w(A, k(P, R,, Rs)) and the other four powers which appear

in v(P, ABC, R,RgR,) are their relatives, v(P, ABC, R,R3R,) =0 is true if and only if
NP6, u2%=0. U

Let Wg be the complement of the union of the circumcircles of triangles BCO, CAO, and
ABO in the plane. If P is a point different from the circumcentre O of ABC, let R denote
the inversion of P with respect to the circumcircle of ABC.

Theorem 10.4. The intersection of the Neuberg cubic of ABC with Wy is the locus of all
points P in Wg such that v(R, ABC, R,RgR,) = 0.

Proof. Since (up+v e p— pp — v*)(p —w)(up — 1) /(ue (G M — np)) is w(A, k(R, Ry, Ra))
and w(A, k(R, Ra, Rg))is (up+ w pta p — pte — w?)(p — w)(up — 1)/ (up ({c M — n.)) and all
the other four powers which appear in v(R, ABC, R,RzR,) are their relatives, it follows that
v(R, ABC, R,RsR,) = 0 is true if and only if NP6, (p —u)(up —1)/(u* ((a M —n,)) = 0.
From this our theorem follows immediately if we observe that (, M — n, = 0 is the equation
of the circle k(B, C, O) (or the sideline BC' when the angle A is right). O

When the angle A is right, let k, denote the sideline BC' of ABC. Otherwise, we use k,
for a circle which passes through the points B and C' and which has the lines joining these
points with the circumcentre of ABC' as tangents. The (lines) circles k, and k. are defined
analogously. Let W, be the complement in W, of the union of k,, k;, and k.. For a point P
outside the circumcircle of ABC let () denote its isogonal conjugate with respect to ABC'.

Theorem 10.5. The intersection of the union of the sidelines and the Neuberg cubic of
ABC with Wy is the locus of all points P in Wy such that v(Q, ABC, R,RsR,) = 0.

Proof. Since ((T — pie) PP — CaP — o Ca P+ e +w?)(p — w)(up — 1) ng/(u M (G M — 214))

is the power w(A, k(R, R,, R,)) and the power w(A, k(R, R,, Rg)) is also the quotient
(T =) PP — Cap— e Ca P+ o +02)(p—u)(up — 1) ng/(u M ((. M — 2n.)) and the other
powers which appear in v(Q, ABC, R,R3R,) are their relatives, v(Q, ABC, R,R3R,) =0
if and only if M2 NP, n, (p—u)(up—1)/(u®({, M —2n,)) = 0. From this our theorem
follows provided one observes that (, M — 2n, = 0 is the equation of the circle (line) k,. O

Remark 11. Let vo(P, UVW, XY Z) =Pw(P, k(V, W, Y)) = Pw(P, k(V, W, Z)) for a point
P and triangles UVW and XY Z. It is interesting that in all results in this section replacing
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the function v with the above function 1y the Neuberg cubic of ABC' will again appear.
However, the exception sets are more complicated and the locus might include curves of
higher order.

OO R =

S W~
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