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A brief history

A brief history (which concerns out topic only)


 Borda (1784) vs. Condorcet (1785) (still today)

 Thurston (1927) introduced pairwise comparison.

 Morgenstern and John von Neumann (1944) — utility theory.

 Savage (1954) reconstruction of attributes and objects
probabilities from preferences (axiomatic approach).

Background: probability.

Probability is the special case of value function with the axiom of
’independence’ (de Finetti).


 Supes, Tversky, Luce, Kranz, Roberts (1974), Foundations of
Measurement I–II (What is the measurement?)

What is time?

3 / 38



Contents General remarks Random choice Addendum References

A brief history

A brief history (which concerns out topic only)


 Borda (1784) vs. Condorcet (1785) (still today)

 Thurston (1927) introduced pairwise comparison.

 Morgenstern and John von Neumann (1944) — utility theory.

 Savage (1954) reconstruction of attributes and objects
probabilities from preferences (axiomatic approach).

Background: probability.
Probability is the special case of value function with the axiom of
’independence’ (de Finetti).


 Supes, Tversky, Luce, Kranz, Roberts (1974), Foundations of
Measurement I–II (What is the measurement?)

What is time?

4 / 38



Contents General remarks Random choice Addendum References

A brief history

A brief history (which concerns out topic only)


 Borda (1784) vs. Condorcet (1785) (still today)

 Thurston (1927) introduced pairwise comparison.

 Morgenstern and John von Neumann (1944) — utility theory.

 Savage (1954) reconstruction of attributes and objects
probabilities from preferences (axiomatic approach).

Background: probability.
Probability is the special case of value function with the axiom of
’independence’ (de Finetti).


 Supes, Tversky, Luce, Kranz, Roberts (1974), Foundations of
Measurement I–II (What is the measurement?)

What is time?

5 / 38



Contents General remarks Random choice Addendum References

A brief history

A brief history (which concerns out topic only)


 Borda (1784) vs. Condorcet (1785) (still today)

 Thurston (1927) introduced pairwise comparison.

 Morgenstern and John von Neumann (1944) — utility theory.

 Savage (1954) reconstruction of attributes and objects
probabilities from preferences (axiomatic approach).

Background: probability.
Probability is the special case of value function with the axiom of
’independence’ (de Finetti).


 Supes, Tversky, Luce, Kranz, Roberts (1974), Foundations of
Measurement I–II (What is the measurement?)

What is time?

6 / 38



Contents General remarks Random choice Addendum References

Human vs. exact sciences

Human vs. exact sciences (again and again)
Humanity (nature) Techniques (mind)
value difference measurement extensive measurement
preference intensity measurement unit
half, double archimedean axiom
consistency precision
concatenation algebra
structure equation
probability statistics
quality quantity
feedback max/min
behaviour convergence

Scientists in humanity are using (imitating) the methods from exact
sciences. They should develop their own mathematics.

A solution Ñ Potential Method .
7 / 38



Contents General remarks Random choice Addendum References

Stochastic preference

Stochastic preference

S — set of states (objects).
pab — propensity of choosing state a if the pair of states pa, bq is
offered (paa � 1

2 ,@a P S). We suppose that 0   pab   1 and

pab � pba � 1.

Let us define a relation on the set of states S

a ¥ b ðñ pab ¥
1
2
.

Q. Is it possible to represent the relation pS ,¥q by real function V
such that

a ¥ b ðñ V paq ¥ V pbq.

Existence Ñ
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Representation theorem

Theorem (Representation theorem for choice)

If pab � 0, @a, b satisfies the consistency condition

pab
pba

�
pca
pac

�
pcb
pbc

, for all a, b, c P S , (1)

then, ¥ is transitive and there exists a real function V such that

pbc �
V pbq

V pbq � V pcq
. (2)

Moreover,
a ¥ b ðñ V paq ¥ V pbq,

and function vpaq � lnpV paqq is measurable value function, i.e.

paÐ bq ¥e pc Ð dq ðñ vpaq � vpbq ¥ vpcq � vpdq, (3)

where paÐ bq ¥e pc Ð dq ðñ pab ¥ pcd .
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Visual representation of choice

Visual representation: ratio A : B : C � 4 : 3 : 1

Central point (star) is
the representation of
A : B : C � 4 : 3 : 1.
This is the consistent
case which is equivalent
to 3 pairwise ratios:
A : B � 4 : 3
A : C � 4 : 1
B : C � 3 : 1.

Ratio A : B : C : D
may be represented as
a point in tetrahedron.
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Flow representation of choice

Flow representation: ratio A : B : C � 4 : 3 : 1

Left side: multigraph with parallel edges which represent the ratio.
Right side: aggregated graph ready for analysis with Potential
Method.
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Axiom of choice. Luce

Axiom of choice
Axiom (Luce, 1959)

Suppose R is a subset of S ; then the choice probabilities for the
choice set R are assumed to be identical to the choice probabilities
for the choice set S conditional on R having been chosen, i.e., for
a P R

PRpaq � PSpa|Rq

Consequences (equivalence):
– pabpbcpca � pacpcbpba (product rule)
– pRpaq �

V paq°
xPR

V pxq
(logit, strict utility model)

– consistency

What happens if the axiom of choice is not satisfied and (or)
pab � 0 for some pair pa, bq? In that case data are not consistent,
we have now value function V , but we may calculate potential X .
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Ballots. Example

Ballot. Example.

11111

c

abdef

most preferred

1111

1111

c

adef

b

least preferred
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Generators of choice data

Generators of choice data

– In a survey:

paq Please choose one possibility from the given four: A,B,C ,D.
pbq How sure you are in yoou choice? (0–100)

– Promotion in marketing.
– Individual choice by triad interface.
– Recommendation (of a restaurant, option, . . . )
– Product development
– Public transport (organization)
. . .
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A puzzle

A puzzle
Question: A : B : C � 2 : 1 : 1 ` A : B : C � 1 : 1 : 2

Both multigraphs we shall aggregate by:
1. . . . taking log (like choice) and add parallel edges.
2. . . . adding parallel edges and summing after that.
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A puzzle

Puzzle - continued

Answer: A : B : C � 2 : 1 : 1 ` A : B : C � 1 : 1 : 2
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Measurable value function

Measurable value function

pS , ¥ q — weak preference, pSe , ¥ q weak preference on the set of
exchanges.

Definition (Measurable value function)

Function V : S Ñ R is measurable value function if:

a ¥ b ô V paq ¥ V pbq (4)
paÐ bq ¥e pc Ð dq ô V paq � V pbq ¥ V pcq � V pdq. (5)

(4) means that V is ordinal value function on S .
(5) means that V paq � V pbq is ordinal value function on Se .
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Measurable value function

Theorem (Necessary and sufficient condistions for MVF)

Axioms A1–A6 (bellow) are sufficient for existence of measurable
value function.
Moreover, A1–A4 and A6 are necessary for existence of measurable
value function.

A1. (Weak preference) ¥ is weak preference, and ¥e is weak
preference on the set of exchanges.

A2. (Compatibility ¥ and ¥e ) @a, b P S

a ¥ b ô paÐ bq ¥e pc Ð cq, @c P S .

A3. (Inversion) @a, b, c , d P S

paÐ bq ¥e pc Ð dq ô pd Ð cq ¥e pb Ð aq.

A4. (Concatenation) @a, b, c , d , e, f

paÐ bq ¥e pd Ð eq
pb Ð cq ¥e pe Ð f q

+
ùñ paÐ cq ¥e pd Ð f q.
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Measurable value function

A5. (Solvability) p@b, c, d P Sq pDx P Sq tako da je

px Ð bq �e pc Ð dq. (a)

(@b, c P Sq pDx P Sq such that

pb Ð xq �e px Ð cq. (b)

A6. (archimedean) Each strictly bounded standard sequence is
finite.
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Qualitative probability

de Finetti. Qualitative probability.
S — the set and pPpSq, ¥ q the relation on the set of subsets. We
are looking for representation P : A ÞÑ PpAq P R such that

A ¥ B ðñ PpAq ¥ PpBq. (6)

Axioms for qualitative probability:

Z1 (Completeness) ¥ is weak preference1. Let use denote
ani-symmetric and symmetric part by ¡ & �.

Z2 (Independence2 from common part) For subsets A,B,C such
that AX C � B X C � H

A ¥ B ðñ AY C ¥ B Y C .

Z3 (Nontriviality) S ¡H (strong preference) and A ¥H,@A � S .

1Complete and and transitive.
2

Known in the literature as the Axiom of independent alternative.
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Qualitative probability

Theorem (de Finetti3)

Let us suppose Z1-Z6, then there exist P such that (6).
Z4 (Referent test) Decision maker is capable to identify the event

on the probability wheel (PW).
Z5 (Continuity) @A � S decision maker is capable to identify

sector Ã on the PW such that A � Ã.
Let us denote by αpAq the central angle of Ã.

Z6 (Sure thing principle) αpSq � 360o.

3In fact he almost had a theorem.
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Potential Method

Potential Method4

Fα = 1

A

B

C

D

Preference flow F

Fα � Fβ � Fγ � 0
Fε � Fδ � Fβ � 7

F cycle DBCD is not consistent!

Incidence matrix A P Rm�n

nodesn flow
arcsm A B C D F
α �1 1 0 0 1

β 0 �1 1 0 3
γ �1 0 1 0 4
δ 0 1 0 �1 2
ε 0 0 �1 1 2

NpAτ q ` RpAq � Rm

c ` Fo � F
F is consistent iff F P RpAq

F je consistent iff AX � F
F je consistent iff c K F ,@c

c P NpAτ q cycle

4Čaklović (2012); Čaklović and Kurdija (2017)
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Potential Method4
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Potential Method

Potential of preference graph
A — incidence matrix, n � #Vertices, m � #Arcs.
F — preference flow.

Ranking of the vertices is given by potential X :

AτAX � AτF .

AτF — flow gain in vertices
L � AτA — Laplace matrix of the graph.

For connected graph, the matrix A has range n � 1, the kernel is
generated by the vector of ones 1 � r1, 1, . . . , 1sτ . For uniqueness
of X we put the condition

ņ

i�1
xi � 0.
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ņ

i�1
xi � 0.

36 / 38



Contents General remarks Random choice Addendum References

Potential Method

Konsistency (bis)
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Potential Method
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