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Introduction

Frames were introduced in 1952 by R.J. Duffin and A.C. Schaeffer in [6]. However, frames
appeared implicitly in the literature even before. As an example here we mention only a
paper by B. De Sz.Nagy from 1947; please see equation (5) on p 976 in [98]. It is generally

acknowledged that frames became popular only 50 years after the work of Duffin and Schaeffer
due mostly to the work of I. Daubechies, A. Grossmann, and I. Meyer ([59]). Today frames are
unavoidable both in mathematics and engineering. The applications can be found in numerous
areas such as operator theory, sampling theory, coding, signal reconstruction, denoising, robust
transmission etc.

For an introduction to frame theory we refer the reader to [90] and [19]. For general theory
of frames and, in particular, of finite frames we refer the reader to [51], resp [15]. Also the lists
of references in [51] and [15] provide an excellent overview of relevant literature. A wealth of
information can be found on the website http://www.framerc.org

This manuscript grew out of a set of notes prepared in 2016 for a one-semester graduate
course on frames at the University of Zagreb.

In the first Chapter we present a review of basic background material concerning con-
vergence of series, fundamental properties of bases in Banach spaces and Bessel sequences in
Hilbert spaces. Chapter 2 is devoted to general theory of frames in abstract Hilbert spaces.
Various aspects of frame theory are discussed; each particular subject in a separate section. In
Chapter 3 we give a brief overview of finite frames. Only a few subjects (such as, for example,
full spark frames) are discussed in some detail.

The last two chapters are devoted to special systems in L?(R), resp. L2 (RN ). In Chapter
4 we present some topics in wavelet theory. In particular, we describe translation invariant
spaces with emphasis on the role played by frames. There is also an Appendix to Chapter 4
containing some technical results on integration and infinite sums. Finally, in Chapter 5 the
fundamentals of Gabor systems are presented.

Each section ends with a set of exercises. Some of them are in fact (parts of) the results
from the literature that are not included in the text, while the others serve as illustrations
of the presented results. There is also a long list of references; however, it is by no means
complete. Some historical remarks are given, but certainly a major revision and completion is
needed in order to give proper credits to many authors which contributed to the theory with
important results.

We should also mention that some of the important subjects from general theory of frames,
such as the Feichtinger conjecture and the Paulsen problem are missing. These and some
other topics will be discussed at seminar talks which are planned as a supplement of the
course. Finally, it should be pointed out that some of the important chapters of frame theory,
such as fusion frames and frames for Hilbert C*-modules are not included. Hopefully, these
chapters will find their place in some future expanded version of these notes.

We end this introduction with our notations and some notational conventions.

By B(X,Y) we denote the Banach space of all bounded operators of Banach spaces X and
Y. For X =Y we write B(X). The range and the null-space of an operator A will be denoted
by R(A) and N(A), respectively.
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Throughout these notes we work with real (R) and complex (C) spaces; we will denote the
underlying field by F whenever our considerations apply to both real and complex case. The

Lebesgue measure of a set S will be denoted by |S|. By writing S; ° So we mean that the sets
S1 and Sy differ by a set of measure 0.

The central object of our considerations are sequences of vectors in Hilbert spaces. We will
write typically (z,), to denote a sequence of vectors (or scalars) assuming that the index set
is the set N of all natural numbers or any of its subsets. So, writing (z,), we tacitly allow the
possibility (depending on the context) that the sequence under consideration is finite. However,
when summing up such sequences we will write >~ ; @, keeping in mind that the sum runs
effectively over the index set under consideration.

Whenever the situation requires, we will use more precise notation, writing, for example,

(zn)D1, (#0)52,,, etc. and, correspondingly, Zivzl Ty Y ey Tny €tC.

Whenever the sequence under consideration is indexed by some set other than N or any of
its subsets, we will use an appropriate precise notation such as, for example, (1} );rez (which
is the case that typically occurs in wavelet theory).

The same convention applies to the standard Hilbert space of square sumable sequences
(2. As a rule, £ denotes the space of sequences of scalars {(xp)n 1 Y oy [|2n]|? < 00}, where
the index set is N or some of its subsets. In particular, if the context allows, our sequences
may be finite i.e. indexed, say, by n € {1,2,...,N}, N € N, and then we understand that
¢? = FN equipped with the standard (Euclidean) inner product. In all other situations, when
indexation is specific, naturally dictated by the context, we shall write ¢?(Z), (*(Z x 7Z), etc.

Throughout the text we will systematically use the abbreviation ONB for an orthonormal
basis of a Hilbert space.

The rest of our notations is standard or will be explained at appropriate places in the text.
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1 Unconditional convergence, Riesz bases, and Bessel sequences

1.1 Unconditional convergence of series in Banach spaces

Definition 1.1.1. Let (z,,), be a sequence in a normed space X. We say that the series
Y ono | Ty converges

(a) absolutely, if the series > oo 1 ||xn|| converges in R,
b) unconditionally, if the series > oo Ty converges in X for every permutation o of N.
n=1Yo(n)

We do not require that > >, Tq(n) mMust converge to the same value for every permutation
o; however, we will show that this is indeed the case.
We start with a well known result concerning absolutely convergent series in Banach spaces.

Proposition 1.1.2. ([10], Theorem 1.2.10.) Let (xy,), be a sequence in a Banach space such
that the series Y -, x converges absolutely. Then the series > > | xn converges in X and

00 00
> wn| =D llanll
n=1 n=1

If X is a normed space in which every absolutely convergent series converges, then X is com-
plete, i.e. X is a Banach space.

Theorem 1.1.3. Let (), be a sequence in a Banach space X. If Y >° | x, converges abso-
lutely, then it converges unconditionally.

Proof. Suppose that the series > > | x,, converges absolutely and choose any permutation o
of N. Let € > 0. Since (Zﬁ;l Han>N is a Cauchy sequence, there exists Ny such that

N N M
N>M>No= Y |l =Dzl =Y llznll <e (1)
n=M+1 n=1 n=1

Let N; = max {0~ (1),071(2),...,075(No)}. That means that the set {1,2,..., N1} contains
all n with the property 1 < o(n) < Nj.

Let us now take N > M > N; and consider any index n such that M +1 < n < N. For
such n we have n > Nj, so by the preceding observation we have o(n) > Ny. Hence, if we put
K =min{o(M+1),0(M+2),...,0(N)}and L = max{oc(M +1),0(M+2),...,0(N)}, then
L > K > Ny. From this we conclude

N M N
D Tam) = D Tow)|| = || Do ol
n=1 n=1 n=M+1
N
< Z ”xa(n) ”
n=M+1
<

L (1)
D ]l < e
n=K



This shows that the sequence of partial sums <Zfl\f:1 acg(n))N is a Cauchy sequence. 0

It is known that in finite-dimensional spaces unconditional convergence is equivalent to
absolute convergence. This can be seen directly (see [10], Theorem 3.2.2), but we shall obtain
this result as an easy consequence of a general theorem on unconditional convergence (see
Theorem 1.1.12 and Corollary 1.1.15 below).

In general, the converse of the preceding theorem fails. We will show that absolute conver-
gence is stronger than unconditional convergence in infinite-dimensional Hilbert spaces.

Lemma 1.1.4. Let (ey,),, be an orthonormal (ON) sequence in a Hilbert space H, let (¢y)n be a
sequence of scalars. Then the series Y o2 | cpen converges if and only if (cp)n € 02. Moreover,
the series Y o2 | cpeyn converges if and only if it converges unconditionally.

Proof. Denote by fy = Zﬁle cnen and sy = Zflvzl lcn|?, N € N, the relevant partial sums.
Then we have for N > M

N 2 N
Iin = fulP = D cnen| = D lenl® =I5y —sul.
n=M+1 n=M-+1

This proves the first equivalence. Note that we do not need the completeness assumption in
one direction.

Suppose now that the series > 7 | cpe;, converges in H. Then by the first part we have
(cn)n € €% Hence S22 |cn|?> < co. By Theorem 1.1.3 this series converges unconditionally;
thus, Y 0% |cs(m)|? < oo for each permutation ¢. This means that (c,(,))n € €*. Clearly,
the sequence (ea(n))n is ON. Hence, again by the first assertion of the lemma, the series

> 1 Co(n)Co(n) CONVErges. O

Remark 1.1.5. We can now conclude that, in general, unconditional convergence does not
imply absolute convergence (that is, the converse of Theorem 1.1.3 fails). To see this, let us
take any sequence (c), € £2\ ¢! - for example, ¢, = %, n € N. By the preceding lemma, the
series > 7 | cpe;, converges unconditionally but, clearly, it does not converge absolutely.

We now recall the most fundamental facts concerning orthonormal bases (ONB) for inner
product spaces.

Definition 1.1.6. An orthonormal sequence (ey), is an ONB for an inner product space X
if for each x € X there exists a sequence of scalars (cy)n such that

oo
xr = Z Cnen- (2)
n=1

Remark 1.1.7. (a) If a sequence (ey,), is an ONB for an inner product space X, then X is
separable. (Clear.)



(b) If a sequence (e,), is an ONB for an inner product space X, then the series in (2)
converges unconditionally (see Remark 1.1.5).

(¢) The coefficients ¢, in (2) are of the form ¢, = (z,e,) for each n, and hence are uniquely
determined by z (this follows from the continuity of inner product in each argument).

(d) If (en)n is an ON sequence in an inner product space X (not necessarily a basis), then
every z in X satisfies the Bessel inequality: > oo [(z,e,)]? < |z

(e) In each separable inner product space X there exists an ON sequence (ey,), with the
property span {e, : n € N} = X (we say that a sequence with this property is fundamen-
tal in X). In a separable inner product space each ON set is finite or countable ([10],
Proposition 2.1.3).

Theorem 1.1.8. ([10], Theorem 2.1.7 and Theorem 2.1.153.) Let (ey), be an ON sequence in
an inner product space X. Consider the following conditions:

(a) (en)n is an ONB for X.
(b) (en)n is fundamental in X.
(c) ||z]|* = >20° (@, en)|? for every x in X.

(d) (x,y) => 72 (z,en)(en,y) for allz and y in X.

(e) (en)n is mazimal in X, i.e. if v € X is perpendicular to all e, then x = 0.

Then we have (a) < (b) & (¢) & (d) = (e). If X is a Hilbert space, then condition (e) is
equivalent to (a) - (d). In particular, each separable inner product space possesses an ONB.

Example 1.1.9. It is known that the system {en = e2mint . ¢ Z} makes up an ONB for the

Hilbert space L? ([—%, %)) (since it is an ON fundamental system). Hence each function f from
11

L? ([-3,3)) admits an expansion into its Fourier series as in (2). It is now important that the

series (2) converges unconditionally. This enables us to organize the system {ezmnt in € Z}
into a sequence by choosing any bijection ¢ : N — Z. In this way we get

[e'] N
[= Z<f7 60’(n)>eo(n) - ]\}E)noo <f7 ea(n)>eo(n)'
n=1 n=1
One usually uses enumeration ey, e_1,e1,e_9, €2, ... and the corresponding sequence of par-

tial sums. Since convergence is in this situation ensured, we are allowed to use any convenient
subsequence of the sequence of partial sums. In particular, we can work with the subsequence
of partial sums indexed by odd indices which gives us

N

J = lim <fa en>€n'
N—o0
n=—N
A similar maneuver is used whenever we work with an ONB indexed by some product set, e.g.

7 x 7 as it is the case with wavelets or Gabor systems.



We now need to recall the concept of sumability in normed spaces.

Let (z;)s be a family of vectors in a normed space X. Consider the set F that consists of all
finite subsets F' of J directed by the relation F} < Fy < F} C F5 and the net (ZjeF Zj)FeF-
We say that the family (z;); is sumable if this net converges in X and when this is the case,
if we denote the limit by x, we write ZjeJ Tj=x.

In Banach spaces we have the following useful characterization of sumable families:

Proposition 1.1.10. (//0], Proposition 3.1.7.) Let X be a Banach space. A family (x;)je.r
in X is sumable if and only if the following Cauchy condition is satisfied:

Ve > 03G(c) € F such that F € F, F CJ\ G(e) = | > ;| <e. (3)
jeF

In fact, it is easily seen that sumability implies (1.1.10) in all normed (not necessarily
complete) spaces Given a sequence (x,), in X we want to compare its sumability in the above
sense with (various modes of) convergence of the corresponding series. First we need a lemma
which provides us with an equivalent form of the Cauchy condition (3) in the case J = N.

Lemma 1.1.11. Let (x,), be a sequence in a normed space X. Then the Cauchy condition
(3) is equivalent to

Ve >0 3N(e) €N such that F € F, minF > N(e) = | > x| <e. (4)

JEF
Proof. Assume (3) with J = N. Choose any € > 0. Let N(¢) = max G(¢). Consider now any
F € F with the property min F' > N(€). Then we also have min F' > max G(€) which implies

FNG(e) = 0. Applying (3), we conclude that HZjEF
The converse is proved similarly. O

J}JH < €.

Given a sequence (), in a normed space X, it is relatively easy to see that its sumability
implies that the corresponding series is convergent. This means that sumability is a stronger
condition than convergence of the corresponding series. A natural question then is: what about
unconditional convergence? The theorem that follows provides us with several conditions that
are equivalent to sumability.

Theorem 1.1.12. Let (zy,), be a sequence in a Banach space X. The following conditions
are all equivalent:

(a) {xy :n € N} is sumable.
(b) > 07, xp converges unconditionally.
(¢) Y oniy Tp(n) converges for every subsequence (Tp(p))n Of (Tn)n-

(d) >°0° | enxy converges for every choice of signs e, = £1.



(e) > 00 A& converges for every bounded sequence of scalars (An)n.

(f) o021 |f(zn)| converges uniformly with respect to the closed unit ball in the dual space
X', dee. Umn_yoo sup {d ooy | f(zn)| s fe X', |If] <1} =0.

Proof. (a) = (b). Suppose that {z, : n € N} issumable; let x = >, 2 = imper Dy cp k-
Consider any permutation o of the set N and fix € > 0. By the assumption we can find F' € F
with the property
F e F, FogF:>HI—Zka<€. (5)
keF
Let us now find ng such that Fy C {o(1),0(2),...0(no)}. Clearly, for each n > ny and the set
F={0(1),0(2),...0(ng)...0(n)} we have Fy C F' and therefore (5) implies

n
|z — ZazkH <e e |z-— Z»’%(k)” <e.
k=1

keF

(b) = (a). Let = denotes the sum in the identical permutation: z = Y >° , x,. We claim
that © = ) %n, that is, © = limper ), cp¥n. Suppose the opposite. Then there exists
€ > 0 such that

VFy € FAF € F, Fy C F such that ||z — > x| > €. (6)
ner
On the other hand, we know that for the same €
N
€
IM; € N such that N > My = |[z — Y <3 (7)
n=1

Using (6) and (7) we shall construct a permutation o of N for which the series Y7 | 4 ()
diverges. Put F; ={1,2,...,M;}. By (6) there exists G; € F such that

Fi C Gy and ||z — Z Tnl|l > €.
Let My = maxG; and Fy» = {1,2,...,My,...,Ms}. Again by (6) there exists Gy € F such
that

Fy, C Gy and ||z — Z:}:n > e

We proceed by induction. In this way we obtain a sequence of sets in F
FLCGiCFh oGy C...
for which we have

T — an > e and w—Z:cn <§, VN € N (8)

neGyn nekln



(the second inequality follows from (7) since each of the sets Fly is of the form F,, = {1,2..., My}
and MN Z MN_1 Z Z Ml)
From inequalities (8) we conclude

S o = [ s Y

neGnN\Fn neGN neFyN

v
8
|
N
s
|
N
S5
.

neGn neFn
> € €
€E—==-.
- 2 2

In particular, this shows that Fiy # Gy, that is card Fiy < card G .

Consider now the permutation ¢ of N defined by enumerating in turn the elements of the
sets F1,G1 \ F1, F> \ G1,G2 \ Fa,. .. (and keeping the natural order in each of these sets). We
now have for each N € N

card Gy

2{: Lom)| = j{: Tn|| 2 g‘

n=card F)y+1 nGGN\FN

Since card Fiy,cardGy — oo as N — oo, this shows that the sequence of partial sums
(Zi‘f:l To(ny)M is not a Cauchy sequence. Hence Y% | 2, (,) diverges - a contradiction,

(a) = (f). Assume (a). By Proposition 1.1.10, we have (3). Then, for any ¢ > 0, by
applying Lemma 1.1.11, we can find a set N(¢) from condition (4).
For L > K > N(e) and any f € X', ||f|| <1, define

Fr={neN:K<n<L,Ref(z,) >0},
F-={neN:K<n<L,Ref(z,) <0}.
Note that min F'* > K > N(e). Therefore

S [Ref(za)l = 3 Ref(an)

nel+ neF+t

= Ref an

neF+

< |f j{: Tn

neF+

()
< A DS @l < Iflle<e

neF+

By a similar computation we obtain analogous inequality for the set F'~, so we get

L
> IRe f(an)| < 26
n=K

6



Working similarly with imaginary parts we obtain

L

> 1f(wn)] < 4e.

n=K

By letting L — oo we conclude that

K > N(e) = sup { S 1)l s fe X, f] < 1} < 4e.
n=K

(f) = (e). Assume (f) and take any sequence of scalars (\,), such that |A,| < 1 for all n.
For a given € > 0 there exists, by our hypothesis (f), an index Ny with the property

N>No:>sup{2\f(:vn)lzf€X’, \fHSl}SE- (9)

n=N

Let us now take any N, M such that Ny < M < N. By the Hahn-Banach theorem ([10],
Corollary 4.2.1), there exists f € X', ||f]| = 1, such that

f( 3 An%>: >

n=M+1 n=M+1
This gives us
N N

N

< S0 Pl f (@)l
n=M+1
N

)

< Y @) <e
n=M+1

This shows that (ZnN:1 /\nxn)N is a Cauchy sequence, so Y 7| A\p&, converges.
(e) = (d). Each sequence of signs is bounded.
(d) = (c). Choose any subsequence (7,))n of (z5)n. Define two sequences of signs:

en=1, neN,

B 1, if n=p(j) for some j
=Y -1, ifn # p(j) for all j

7



By our hypothesis (d), both >">° , e,a, and >~ 7 | npay, converge, whence

00 1 0o 0o
pr(j) = 5 (Z €EnTp + Z 77n£n>
j=1 n=1 n=1

converges as well.

(¢) = (a). Assume (c). To prove (a), it suffices, by Proposition 1.1.10 and Lemma 1.1.11,
to obtain condition (4). We prove by contradiction. Suppose that (4) does not hold. Then
there exists € > 0 with the property

VN € N 3Fy € F such that min Fy > N and Z Tl > e

neFn

Put G; = F; and N; = max(G;. Let us now take Fl, from the above condition and put
Gy = Fn,, N2 = maxGsy. Let G3 = Fl,. Continuing in this way, we obtain a sequence of
finite sets G i such that for each K,

max G < min Ggy1 and Z Tnll > €. (10)
neGy

Consider UgGg. Let
p(1),p(2),...,p(card G1), p(card G1 + 1), ..., p(card G1 + card Gs), . ..

be the complete enumeration of Ux G (with the elements of each G listed in their natural
order and followed by the elements of Gx1). We now claim that y >, Tp(n) cannot converge
which contradicts our hypothesis (¢). Indeed, we see from (10) that the corresponding sequence

of partial sums (ZnN:1 a:p(n))N is not a Cauchy sequence. 0

Remark 1.1.13. We note that in the proof the equivalence (a) < (b) from the preceding
theorem we did not use completeness. So, this equivalence holds in general normed spaces.

Another consequence of the the equivalence (a) < (b) and the proof of the implication
(a) = (b) is the following important corollary.

Corollary 1.1.14. Let (xy), be a sequence in a normed space X. If the series y oo xp
converges unconditionally, then > 2 To(n) = Y onl  Tp, for each permutation o of N.

Corollary 1.1.15. Let (x,), be a sequence in a finite-dimensional normed space X. Then the
series Yy 2 | &y, converges unconditionally if and only if it converges absolutely.

Proof. Having in mind Theorem 1.1.3, we only need to show that unconditional convergence
implies absolute convergence. We first prove this implication for sequences of scalars.

Consider first a sequence (zy), of real numbers such that the series > 7 |z, converges
unconditionally. Consider the sequence of signs (&), defined by

I 1 ifx,>0
"1 -1 ifz,<0



By Theorem 1.1.12 (a) = (d), we conclude that the series

) )
> entn = _leal
n=1 n=1

converges.
Let us now take a sequence of complex numbers (), such that the series Y - | @, con-
verges unconditionally. Write x, = yn + 120, Yn, 2n € R, n € N.
Choose any permutation o. Let Y > | Ty(n) = T =y +iz. Then we have

N N N
D S (x—zx(,(m) clo= S a|. N e
n=1 n=1 n=1

This shows us that Y 7 | 9(,) = y. Since o was arbitrary, we conclude that the series > 0 | yn,
converges unconditionally. By the first part of the proof, it converges absolutely as well. In
the same way we conclude that ) 7 | z, also converges absolutely. Finally, we see from

o0 oo oo o0
STl =3 e +izal <3 Jyal + D l2al
n=1 n=1 n=1 n=1

that the series > 7, |z, | converges.

The desired conclusion in an arbitrary finite-dimensional space (it is enough to consider
R™ and C", n € N) now follows by component-wise reasoning using the preceding part of the
proof. O

Remark 1.1.16. Let (z,), be a sequence in a Banach space X. The preceding results show
that

oo oo oo
Z Ty converges absolutely — Z Zy converges unconditionally — Z T, converges.

n=1 n=1 n=1

In general, the implications in the opposite direction are not true. We know from Corollary
1.1.15 that unconditional convergence is equivalent to absolute convergence if X is finite-
dimensional, but this is no longer true for infinite-dimensional spaces (as demonstrated in
Remark 1.1.5). In fact, the Dvoretzky-Rogers theorem asserts that one can find in each
infinite-dimensional Banach space an unconditionally convergent series that does not converge
absolutely.

On the other hand, the second implication cannot be reversed even for sequences of scalars.
Example: z,, = #, n € N.

Motivated by conditions (b), (d), and (e) from Theorem 1.1.12 we now introduce some
quantities that can be attached to any sequence in a Banach space.



Definition 1.1.17. Let (xy,), be a sequence in a normed space X. Denote by F the set of all
finite subsets of N. Define the numbers R, Rg, R € [0,400] by

R = sup{ an :Fef},
neF

Re = sup{ anazn :Fef,an:il,Vn},
nekF

Ry = sup{ > Anan|| : F € F M\ €F, |)\n§1,Vn}.
neF

Notice that we always have 0 < R < Re < Rp < +o00.
To proceed, we need the following classical result.

Theorem 1.1.18. (Caratheodory) Let A1, A2, ..., AN be real numbers such that |A\,| < 1, for
alln=1,2,...,N. Then there exist real numbers ci,ca,...,cN,cny1 > 0 and signs € = +1,
n=12,....,.N,k=1,2,...,N,N + 1, such that

N+1 N+1
ch =1 and M\, = Z€Z0k, Yn=1,2,...,N.
k=1 k=1
Proposition 1.1.19. Let (xy,), be a sequence in a normed space X. Then
(a) R < Rg <2R;
(b) Re = Ry, if X is real;
(c) Re < Ry <2Rg, if X is complex.
In particular, any one of R, Re, Ry is finite if and only if the other two are.
Proof. (a) For F' € F and any sequence of signs €, = +1 define

Ft={neF:eg,=1} and F- ={n€F:g,=—1}.

neF+ nekF— neF+ neF—

E Enln

neF

Taking supremum on the left hand side, we obtain Rg < 2R. The first inequality, namely
R < Rg, is evident.

(b) Choose any F' € F and any finite sequence A = (A, )nep of real scalars such that |A,| < 1
for every nin F'. Let card F' = N. By Caratheodory’s theorem there exist ¢1, ca,...,cn, el >
0 and signs e = +1,n=1,2,...,N, k=1,2,...,N,N + 1, such that

N+1 N+1
chzl and )\n22520k, Vn=12,...,N.
k=1 k=1
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Then

N+1

Z Z ERCLTn

neF k=1

N+1

Z Cr Z Epn

k=1 nekF

N+1

< E:(%RgZZRg.
k=1

Z ALn

neF

IN

Taking supremum on the left hand side, we obtain Ry < Re¢. The opposite inequality is obvious
(and already noted in Definition 1.1.17).

(c) Choose any F' € F and any finite sequence A = (A, )ner of complex numbers such that
[An] < 1 for every nin F. Let A\, = oy + i8n, an, Bn € R, |ag|,|6n] < 1, n € F. Then, as in
the proof of (b), we obtain

Z anTy || < RE and Z ann < RE
ner ner
whence
> Anwn|| < 2Re
nekr
from which it follows that Ry < 2Rg. O

Theorem 1.1.20. Let (z,), be a sequence in a normed space X. If > .07, x, converges
unconditionally, then R, Ry, and 2Rg are all finite.

Proof. By Proposition 1.1.19, it suffices to prove that R < oco. If > > x, converges
unconditionally, we can find, using the implication (b) = (a) from Theorem 1.1.12 and Remark
1.1.13 and then Proposition 1.1.10 and Lemma 1.1.11, an N = N(1) such that

>,

neG

VG € F, minG > N — < 1.

Let Fp ={1,2,...,N} and M = maxpcp, HZneF an; observe that M < oo.
Now choose any F' € F. Notice that we can write F' = (F'N Fp) U (F'\ Fp). Then

an < Z Tnll + Z Tl < M + 1.

neF neFNF neF\Fy

Taking supremum over all F' € F, we obtain R < M + 1, as desired. O

The converse of Theorem 1.1.20 is false in general; that is, finiteness of R, R, and R¢ need
not imply that the series under consideration converges, let alone converges unconditionally.
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Example 1.1.21. Consider X = ¢* and e, = (0,x)x, » € N. For every F' € F we have
Hzne o enHoo = 1 which obviously implies R = 1. (One also easily concludes that Ry = Re =
1.) However, the same argument shows that ) 7, e, cannot converge in ¢ simply because
its sequence of partial sums is not a Cauchy sequence.

We end this section with Orlicz’s theorem which provides a necessary condition for uncon-
ditional convergence of a series in a Hilbert space. Firts we need a lemma.

Lemma 1.1.22. Let H be a Hilbert space and x1,x2,...,xxy € H, N € N. Then there exist
scalars A1, A2, ..., AN such that |\,| <1, for alln=1,2,...,N, and

N N
Z||=THH2 < Z)‘nxn
n=1 n=1

Proof. This is obvious for N = 1. For N = 2 take A\; =1 and \y = ctare((z1,22))  Then

2

[Mzn 4+ Aeza|? = [a1]® + 2Re Ao (w1, 22) + [|22?
= Joal® + 2 (21, 22)| + [lz2))? > [loa ]| + [l

A general inductive step is established in the same way. O

Proposition 1.1.23. If (x,), is a sequence in a Hilbert space, then Y oo ||, |* < RX.

Proof. Fix N € N. Then by the preceding lemma we can find scalars Aj, Ag,..., Ay such
that |A,| <1, for all n=1,2,..., N and

N N
ZHxn‘P < Z)‘nxn
n=1 n=1

Letting N — oo, we obtain the desired conclusion. O

2
< R3.

Theorem 1.1.24. (Orlicz) If (zy)n is a sequence in a Hilbert space such that the series
>0 | @y, converges unconditionally, then Y00 ||a,||? < oo.

Proof. Immediate from Theorem 1.1.20 and the preceding proposition. 0

Concluding remarks. (a) Orlicz’s theorem is not true in general Banach spaces.
(b) In the second part of the section we have followed (in principle) Section II 2 from [31].

Exercise 1.1.25. Let (e,), be an ONB for a Hilbert space H, let eg = >.°° , te,. Consider

n=1n
X = span{ep, €2, €3, ...} and observe that X is not complete. Show that the sequence (e, )n>2
is maximal in X, but is not an ONB for X. (Compare with Theorem 1.1.8.)

Exercise 1.1.26. Prove Caratheodory’s theorem.

12



Exercise 1.1.27. Let H be a Hilbert space. Fix any € H such that ||z| = 1. If (¢,), is a
sequence of scalars, show that

oo oo
g cpx converges in H <— g cn, converges in ¥
n=1 n=1

and

o [e.9]
Z cnz converges unconditionally <= Z cn, converges unconditionally.

n=1 n=1

Show by taking an appropriate sequence (¢;), that the converse of Orlicz’s theorem fails.
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1.2 Topological and Riesz bases

Definition 1.2.1. A sequence (), is a topological basis (or simply a basis) for a normed
space X if for every x in X there exists a unique sequence of scalars (ay(x)), such that

xr = Zan(az)xn. (11)

n=1
Remark 1.2.2. (a) A normed space that possesses a basis is necessarily separable. (Clear.)

(b) An ONB for a unitary space H is a basis for H in the sense of the above definition. (See
Remark 1.1.7 (c).)

(¢) Let (zp)n be a basis for a normed space X. For each n € N consider a map a,, : X — F
defined by = +— a,(x), where a,(z) is the nth coefficient in expansion (11). It is easy to
see that a,, are linear functions of = (this follows from the uniqueness of the coefficients
n (11)). We say that a, are coefficient functionals associated with the basis (z, ).

We say that a basis (z,),, is a Schauder basis if each coefficient functional a,, is continuous.
Sometimes we write ((xy,)n, (an)n) to denote a basis together with the associated sequence

of coeflicient functionals.

(d) If (x), is a basis for a normed space X, it follows immediately from the uniqueness of
expansion (11) that x,, # 0 for every n.

(e) Suppose that ((zn)n,(an)n) is a basis for a Banach space X. For each m we have

T = Yoo G (T) Ty and Ty, = > 0 | Opuny. From this we conclude that apn () = dmn

for all n and m. In this sense we say that the sequences (x,,), and (a, ), are biorthogonal.
In general, a sequence (vy,), in X can possess more biorthogonal sequences of functionals
(fn)n. However, if (z,), is a basis we shall show that there is only one sequence of
functionals biorthogonal with (z,,), and, moreover, that these functionals are continuous.

Definition 1.2.3. Let (x,), be a basis for a normed space X. We say that (x,)n s
(a) an unconditional basis if the series (11) converges unconditionally for every x in X,
(b) a bounded basis if 0 < inf,, ||z,| < sup,, ||zn] < 0.

Definition 1.2.4. Let ((xy)n, (an)n) be a basis for a Banach space X. The associated partial
sum operators are the mappings Sy : X — X defined by Sy(z) = Zgzl an(z)xn, N € N.

Clearly, the partial sum operators are linear. It turns out that all Sy are bounded, in fact,
uniformly bounded. The key technical result is the following proposition.

Proposition 1.2.5. Let (), be a sequence in a Banach space X such that z,, # 0 for each
n. Consider the vector space of sequences of scalars defined by

oo
Y = {(cn)n : Z CnTp CONVETges in X} .

n=1
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For (¢p)n define

N
g CnTn

n=1

l(en)ally = sup
N

Then (Y, - |ly) is a Banach space. Further, if (zy,)n is a basis for X then

o

S:Y =X, S((cn)n) = chxn

n=1
defines a bounded linear bijection whose inverse S~ : X — Y is bounded as well.

Proof. Obviously, Y contains all finite sequences, so Y # (). It is also clear that Y is a vector
space. If (cp)n € Y then there exists Y -7, cpzy, = limy_oo Zﬁ;l CnTy. Since convergent
sequences are bounded, ||(¢p)n|ly is well-defined. Clearly, || - ||y is a semi-norm. Suppose that
|(¢n)n]ly = 0. This implies S0 ¢z, = 0 for all N. Taking N = 1 (recall that z,, # 0 for
each n), we get ¢; = 0. Now taking N = 2, we conclude that co = 0. Proceed by induction.
This proves that (Y,| - ||y) is a normed space.

Let (CN)x be a Cauchy sequence in (Y, ]| - ||y). Write CN = (¢V),, N € N. Then for n
fixed we find for all natural numbers M and N

len’ = |- llzall = [l = ed)al]
n n—1
= D = eDwe = (@ — )
k=1 k=1
n n—1
< D@ = ea| + D@ =)
k=1 k=1

< 2fct -ct,.

Since (CN)y is a Cauchy sequence and z,, # 0, this shows that (c))y is a Cauchy sequence

of scalars; thus, there exists
N

n

cp = lim c n € N.

N—oo

Choose any € > 0. First, we can find Ny € N such that

L

S — e

n=1

No<M,N = HCM—CNHY:sup <e. (12)
L

Let us now fix N > Ny and L > 1, and put yay = Sob (M — ¢N)a,, M € N. Then, by

(12), |lyarl| < € for each M > Ny. Observe that yy — y = S~

S _(en —cN)a, as M — oo, In
particular, we have [|y|| < e. So we have shown that

L

Z(Cn - Cg)xn

n=1

Ny < N = sup <e (13)

L
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Further, since O™ = (c)©),, belongs to Y, > °°
My € N with the property

el cNog,, converges. Hence, there exists an

N
My<M<N=| Y eu,|<e (14)
n=M-+1
Thus, if N > M > Mgy, Ng we have
N N M N
Z CnTn = Z(cn — Ny, — Z(C” — Nz, + Z oz,
n=M+1 n=1 n=1 n=M+1
N M
< Z(Cn_c N, || + Z(c — N Z Nog,
n=1 n=1 n=M+1

(13),(14)
< e+e+e=3e

This shows that Y °° | ¢z, converges in X, i.e. (¢,)n, € Y. Now (13) shows that CV — (c)n,
as N — oo, so (Y,] - |ly) is complete.

To prove the second statement, suppose that (z,), is a basis for X. Clearly, the mapping
S is linear and, since (z,,), is a basis, bijective. Finally,

E CnTn E CnTn E CnZn

n=1
shows that S is bounded. The last assertion follows from the inverse mapping theorem. [

15 ((cn)n) < sup

= [Iten)nlly

= hm
N—o00

Corollary 1.2.6. Let ((zp)n, (an)n) be a basis for a Banach space X. Then:
(a) supy ||Sn(z)|| < oo for each x in X;
(b) C:=supy ||Sn] < oo;

(c) |||z]|| = supy ||Sn(2)|| is a norm on X satisfying ||z| < |||z||| < Cllz|| for all x in X;
thus, equivalent to the original norm || - || on X.

Proof. Let S be as in the preceding proposition. Take any x € X. Then we have x =
> L an(z)xy. Since the scalars an(z) in this decomposition are unique, we have S™lz =
(an(z))n. Hence

sup || S ()| = sup = [(an(@))nlly = IS 2lly < 871 - [l2]l.

Zan

The same computation shows that supy [|Sn|| < [[S7Y|, so we have (b) with C = ||S~}|.
It is evident that ||| - ||| is a semi-norm on X. The rest follows from

el = sup 1S (@) | < <supusNu) lall = Clla
N N
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and
lzfl = Jim 1Sy (z)]| < sup [|Sn (@)l = [[l2[l]-
—00 N

O

Definition 1.2.7. The constant C' from Corollary 1.2.6 is called the basis constant. The
inequality ||x|| < C||z|| for all x in X shows that C > 1. If the basis constant C' is equal to 1,
the basis is said to be monotone.

Theorem 1.2.8. Every basis ((zn)n, (an)n) for a Banach space X is a Schauder basis for X,
i.e. the coefficient functionals an, n € N, are continuous. In fact, the coefficient functionals
satisfy the inequalities

1< flan| - [lzn]l < 2C, ¥n €N,

where C' is the basis constant for ((zn)n, (an)n)-

Proof. Fix xz € X and n € N. Then

|an(@)| - [[zall = llan(z)za]l

n—1
Z ak(x)zy — Z ax(x)zk
- k=1

k=1 =
n—1

Zak(x)xkz Zak(ff)l‘k

k=1 k=1

= 9@ + S0 ()] < 2C|2].

IN

_.I_

Since z,, # 0, it follows that |a,(z)| < %Hx” and hence, by taking supremum over the unit

ball in X, ||a,| < % On the other hand, 1 = an(zy) = |an(xn)| < |lan| - ||zn]l- O

Lemma 1.2.9. Let A € B(X,Y) be a bijection of Banach spaces X andY . If (z,,)y is a basis
for X, then (Azy,)y is a basis for'Y.

Proof. If y is any element of Y then A~'y € X, so there exist unique scalars c, such
that A=y = >°°° ¢ z,. Since A is bounded, this gives us y = >.°° | ¢, Az,. The same

n=1
computation shows that this is the only decomposition of y in the form y = > >, b, Az,. O

Definition 1.2.10. Let X and Y be Banach spaces. We say that a basis (x,), for X is

equivalent to a basis (yn)n for Y and write (xy)n ~ (Yn)n if there exists a bijective operator
A € B(X,Y) such that y, = Axy, for all n in N.

Theorem 1.2.11. Let (), and (yn)n be bases for Banach spaces X and Y , respectively. The
following statements are equivalent:

(a) (@n)n ~ (Yn)n;

(b) > 0% cnxy converges in X if and only if > o2 | cpyn converges in'Y .
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Proof. (a) = (b). Let A € B(X,Y) be a bijective operator such that y,, = Az, for all n in
N. Now (b) follows from the continuity of A and A~

(b) = (a). Denote by (a,)n, and (by,)y the corresponding sequences of coefficient functionals.
Take any € X. We know that z = Y~ , an(x)z,. Since, by (b), > .07 | an(x)y, converges
in Y, we can define Az by Az = > > | an(z)y,. Since each z has a unique expansion of the
form @ = Y07 | ¢pxp, this gives us a well-defined mapping A : X — Y. Clearly, A is linear
and satisfies Az, = y, for every n. Suppose that Az = 0, that is Y -, an(x)y, = 0. Since
0 =73.",0-y, is the unique expansion of 0 with the respect to (y,)n, we conclude that
an(x) = 0 for each n and therefore z = 0.

Consider now arbitrary y € Y, y = > 7 | bn(y)yn. By our assumption (b), we now have a
well-defined element = > | by(y)z, in X. Since (), is a basis, this forces by (y) = an(z)
for all n. Hence Ax = y.

It remains only to show that A is bounded. For each NV € N define Ay : X — Y by
An(z) = ny:l an(2)yn. Since all a, are continuous, we conclude that Ay is continuous. In
fact,

N N N
AN @) =Y an@)ya| <Y lan@)] - lyall < 21D lanll - llyall, Vo€ X.
n=1 n=1 n=1

Since Ay (x) — Az as N — oo, the sequence (An(x))n is bounded and

[Az|| < sup [[An(z)]| < oo, V€ X.
N
By the uniform boundedness principle, it follows that supy ||An|| < oo. But then

[Az] < sup [|[Ayz| < (Sup IIANH> [E4P
N N

so A is bounded. O

Remark 1.2.12. All ONB in a Hilbert space are equivalent. Indeed, if (e,), and (f,), are
ONB for a Hilbert space H then U : e, — f,,, n € N, extends to a unitary operator U € B(H).
Alternatively, the conclusion follows from Lemma 1.1.4 and Theorem 1.2.11.

In infinite-dimensional spaces there are several types of linear independence of sequences.
Definition 1.2.13. A sequence (), in a Banach space is
(a) finitely independent, if 27]:7:1 cntny =0, N €N, impliesci =co=...=cy =0;
(b) w-independent, if > o | cpy, = 0 implies ¢, = 0 for every n;
(c) minimal, if x,, & Span{x, : n # m} for every m.

Obviously, if (zn)y is a basis then (z,), is w-independent (because the null-vector has a
unique decomposition of the form 0 = »">° | ¢,2,,). In fact, much more is true.
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Proposition 1.2.14. Let (xy,), be a sequence in a Banach space X. Then:
(a) if (xn)n is a basis then (xy,), is minimal and fundamental;
(b) if (xn)n is minimal then (xy,), is w-independent;
(c) if (xn)n is w-independent then (x,)y is finitely independent.
)

Proof. (a) Let ((xn)n, (an)n) be a basis for X. It is evident that (z,,), is fundamental. Fix
m € N and define F = span{z,, : n # m}. Since (x,), and (a,), are biorthogonal, we have
am(zy) = 0 for each n # m. Using linearity and continuity of a,,, we conclude that a,,(x) =0
for every x in E. Since a,,(x,,) = 1, it follows that z,, ¢ E.

(b) Suppose that (z;), is minimal and that > >°, ¢,z, converges and » ¢z, = 0.

Now assume that there exists m such that ¢, # 0. Then x,, = —é netm Cnn; thus,
Ty € Span{z, : n # m} - a contradiction.
(¢) Obvious. O

Remark 1.2.15. The implications in Proposition 1.2.14 are not reversible (see Exercises
1.2.31, 1.2.32, 1.2.33 ). In particular, if a sequence (x,), in a Banach space is minimal and
fundamental it needs not be a basis even though (as we shall see in the following proposition)
such a sequence possesses a unique biorthogonal sequence (ay), in X'.

Proposition 1.2.16. Let (x,), be a sequence in a Banach space X .
(a) (y)n is minimal if and only if there exists a sequence (an)n in X' biorthogonal to (xy)n.

(b) (xn)n is minimal and fundamental if and only if there exists a unique sequence (an)n in
X' biorthogonal to (zy)n-

Proof. (a) Suppose that there exists a sequence (ay)y, in X’ biorthogonal to (z,),. Fix any
m and choose x & span{x, : n # m}; let x = Zjvzl Cn;Tn;, Tn; 7 Ty for all j =1,2,... N.
Clearly, a,,(z) = 0. Since a,, is continuous, this implies a,,(z) = 0 for all z in Span {z, : n #
m}. Since an, () = 1 this shows that x, & span{z, : n # m}. (Notice that this is the same
argument as in the proof of Proposition 1.2.14 (a).)

Conversely, suppose that (x,), is minimal. Again, fix m and put E = span {x,, : n # m}.
By the Hahn-Banach theorem ([10], Theorem 4.2.3), there exists a,, € X' such that a,,(z) =0
for every z in E and ap,(zy,) = 1.

(b) Suppose first that there is a unique sequence (a,), in X’ biorthogonal to (x,),. We
already know from (a) that (), is minimal. Assume now that there is f € X’ such that
f(z,) = 0 for all n. Then, obviously, (a, + f)n is a sequence in X’ biorthogonal to (z,),. By
our uniqueness hypothesis, we conclude that f = 0. Again the Hahn-Banach theorem implies
that (zy,), is a fundamental sequence.

Conversely, suppose that (z,), is minimal and fundamental. We already know by (a) that
there exists a sequence (ay,), in X’ biorthogonal to (xy,),. Suppose that (b,), is another such
sequence. This implies (@, — by)(x,) = 0 for all n and m. Since (z), is fundamental, this
gives us a,, — b, = 0 for each m. O
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Theorem 1.2.17. Let (z,), be a sequence in a Banach space X. The following statements
are all equivalent:

(a) (zn)n is a basis for X;

(b) there exists a sequence (ay), in X' biorthogonal to (z,)n such that x =Y " an(z)z,
for every x in X;

(c) (zn)n 18 fundamental and there exists a sequence (ay)y in X' biorthogonal to (xy,), such
that supy ||Sy(z)|| < 0o for every x in X, where Sy (x) = SN ap(x)z,, N € N;

n=1

(d) (xp)n is fundamental and there exists a sequence (ay)n in X' biorthogonal to X such that
supy ||Sn]| < oo.

Proof. (a)=- (b). This follows from Remark 1.2.2 (e) and Theorem 1.2.8.

(b) = (c¢). If we assume (b) then (x,), is necessarily fundamental and, for every x in X,
we have supy ||Sn(z)| < oo because each convergent sequence is bounded.

(¢) = (d). This follows from the uniform boundedness principle.

(d) = (b). Choose any = in span {z, : n € N}; let z = 3™ ¢z, Since Sy is linear and

(zn)n and (ay), are biorthogonal, we have for each N > M that

M M M N M
Sn(x) = Sv(O_ejay) = eiSnlag) = ¢ (Z an(ﬂﬂj)ﬂﬂn) = crj =
7=1 7=1 j=1 n=1 j=1

This implies z = limy o0 Sn () = > pey an(z)zy for all z in span {z,, : n € N}. Let us now
take any x in X. Given € > 0, we can find an element y € span{x, : n € N} such that
|z =yl < 15z where C =supy [|Sn|. Put y = Z;‘il cjz;. Then we have for each N > M

[z =Sy (@)l < llz =yl +[ly = Sn )l + 158 () = Sn (@) <[l =yl + 0+ [[Sn[ - [z =yl <e

(b) = (a). Assume (b). To prove (a), we only have to show, for each = in X that x =
Yooy an(x)zy, is the only decomposition of 2 with respect to (xy,),. Choose any x and suppose

that we also have z = Y 7 cpapn. Since (an), is biorthogonal to (zy), and each a,, is

continuous, we conclude that a,,(z) = ¢, for all m. O
Next we prove a useful property of unconditional bases.

Proposition 1.2.18. Let (xy,), be a sequence in a Banach space X. The following statements
are equivalent:

(a) (zn)n is an unconditional basis for X ;
(b) (Zo(n))n is a basis for every permutation o of N.

Proof. (a) = (b). Assume (a) and choose any permutation o and z € X. Then, since
the series x = > 7, a,(z)z, converges unconditionally, we have by Corollary 1.1.14 that
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T =300 G(n)(T) T (). We must show that this is the unique representation of z in terms of
Ty (n)- Suppose that we also have z = Yoy CnTq(n) for some scalars c,. Then

Ao (m) (:U) = Qg (m) (Z CnxU(n)) = Z Cnaa(m)(xa(n)) =Cm
n=1 n=1

since (z,)n and (ay), are biorthogonal.

(b) = (a). Now we assume that (2, (,))n is a basis for X for every permutation o. Let
(an)n be the sequence of coefficient functionals associated with the basis (xy),. We must
show that for each x € X the representation z = > >° | an(x)x, converges unconditionally.
Fix any permutation o. Since (xg(n))n is a basis, there exist unique scalars ¢, such that
T = Y 7 Cnlg(n)- By applying a,(,) to this equality, we get ay(m)(z) = cm. Therefore
T =00 Cpltn = )07 Gp(n) ()T o(n) converges for every permutation o, sox = | an(2)zy
converges unconditionally. O

Let X be a Banach space. Recall that, for each x in X, we have & € X” that is defined by
#(f) = f(z), f € X' and satisfies ||| = ||z]|.

Theorem 1.2.19. Let ((zpn)n, (an)n) be a basis for a Banach space X. Then ((an)n, (n)n) is
a basis for span{a, : n € N} < X', If (x)n is an unconditional basis for X, then (ay), is an
unconditional basis for span{a, : n € N}. If (xy,)y is a bounded basis for X, then (ap)n is a
bounded basis for span{a, : n € N}.

Proof. By definition, (ay), is fundamental in Span {a,, : n € N}. Further, ((ap)n, (n)n) is
a biorthogonal system since @, (am) = am(zn) = dpm. By Proposition 1.2.17 (here we use the
implication (d) = (a)) we only need to show that supy || Tv| < co where T (f) = SN #,(f),
f € span{ay, : n € N}. As before, we denote by Sy the partial sum operators associated with
the basis ((zn)n, (an)n); Sn(x) = Zﬁle an(x)x,. We know that Sy are bounded and that
supy |[|[Sn|| =: C < oco. We claim that S} = Ty for each N which obviously gives us the

desired conclusion. Indeed, we have for all f € X/ and z € X
Sv(Nx) = f(Sn(x))

N
= f (Z an(x)mn)

n=1

The second statement follows from the first one combined with Proposition 1.2.18.
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To prove the last statement, suppose that we have 0 < inf,, ||z,| < sup,, [|zn| < co. Recall
that 1 < ||a,|| - [|[zn] < 2C where C' is the basis constant for ((zy)n, (an)n). This is enough to
conclude that 0 < inf,, ||a,|| < sup,, ||an| < oc. O

Corollary 1.2.20. If ((zn)n, (an)n) is a basis, unconditional basis, or bounded basis for a
reflexive Banach space X then ((an)n, (Tn)n) is a basis, unconditional basis, or bounded basis

for X'.

Proof. = We only need to show that (ay), is fundamental in X', since we already know
that (a,), is a basis for span{a, : n € N}. Suppose that ¢ € X" satisfies ¢(a,) = 0 for
all n. Since X is reflexive, ¢ is of the form ¢ = % for some = in X. But then we have
0 = ¢(an) = Z(an) = ap(x) for all n. This implies z = > 2 | ap(x)z, = 0, i.e. ¢ = 0. By the
Hahn-Banach theorem, (ay), is fundamental in X’. O

Suppose that H is a Hilbert space with the inner product (-,-). and that (z,), is a basis
for H. If a, are associated coefficient functionals, then by the Riesz representation theorem
we can understand a,’s as vectors from H. Then the expansion of any x € H with respect to
the basis (), can be written in the form x =3 7 | (z, ap)xy.

Corollary 1.2.21. Let H be a Hilbert space. Then ((zn)n,(Yn)n) is a basis, unconditional
basis or bounded basis for H if and only if the same is true for ((Yn)n, (Tn)n)-

Remark 1.2.22. Every ONB for a Hilbert space H is unconditional and bounded. This
follows from Remark 1.1.5 and the definition of an unconditional basis (boundedness is here
trivial).

Corollary 1.2.23. Let (xy,)n and (yn) be bases for Banach spaces X and'Y , respectively, such
that (zp)n ~ (Yn)n- Then (xy), is unconditional if and only if (Yn)n is unconditional and
(Tn)n is bounded if and only if (yn)n is bounded.

Proof. The first part follows from Proposition 1.2.18. The second part is trivial (notice that
a bijective bounded operator of Banach spaces is necessarily bounded from below). ([l

Definition 1.2.24. A sequence (xy,)y in a Hilbert space H is a Riesz basis for H if there exist
an ONB (ep)n for H and a bijection T € B(H) such that x,, = Te,, for every n.

Remark 1.2.25. Each Riesz basis is a basis. This follows from Lemma 1.2.9.
Proposition 1.2.26. Let H be a Hilbert space.

(a) Each Riesz basis for H is an unconditional bounded basis.

(b) All Riesz bases for H are equivalent.

(¢) If (xn)n is a Riesz basis for H and if S € B(H, K) is a bijection, then (Szy)n is a Riesz
basis for K.
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Proof. (a) This follows from the definition of a Riesz basis, Remark 1.2.22, and Corollary
1.2.23.

(b) Let (x5)n and (yn)n be Riesz bases for H. Find ONB’s (e,), and (f,), such that
(n)n ~ (en)n and (yn)n ~ (fn)n; denote by T and S the corresponding bounded invertible
operators on H. In addition, let U € B(H) be the unitary operator defined by Ue,, = f,, n € N.
Then SUT~! is an invertible bounded operator on H for which we have y, = SUT 1z, for
all n.

(c) By assumption, H is separable. Since there exists a bijective bounded linear operator
S : H — K, K is separable as well and dim H = dim K. In particular, there exists a
unitary operator U € B(H, K). Let (e,)n, be an ONB for H such that there exists a bijection
T € B(H) for which we have z,, = Te,, for all n. Observe that (Uey),, is an ONB for K and
that Sz, = (STU*)(Ue,,) for every n. O

Lemma 1.2.27. Let ((zn)n, (an)n)n and ((Yn)n, (bn)n)n be bases for a Hilbert space H. If

Proof. By Corollary 1.2.21 both ((an)n, (Zn)n)n and ((bn)n, (Yn)n)n are bases for H. Suppose
that there is a bijection S € B(H) such that Sz, = y, for all n. The adjoint operator S* is
also a bijection and we have for all m and n

<l‘mys*bn> = <S$m7bn> = <ym)bn> = Omn = <xm’an>-

Since (zy,), is fundamental, it follows that S*b,, = a, for every n; thus, (by)n ~ (an)n- O

Corollary 1.2.28. Let ((xn)n, (Yn)n)n be a basis for a Hilbert space H. Then the following
statements are equivalent:

(a) (xn)n is a Riesz basis;
(b) (yn)n is a Riesz basis;
(¢) (@n)n ~ (Yn)n-

Proof. Observe that each ONB is biorthogonal to itself. Suppose that (x,), is a Riesz
basis; thus, (z)n ~ (en), for some ONB (ey), for H. Then the preceding lemma gives us
(Yn)n ~ (€n)n. This proves (a) = (b) and (a) = (c¢).

Assume now (b). By Corollary 1.2.21 ((n)n, (Yn)n)n is a basis for H. Hence, arguing as
above, we conclude that (b) = (a) and (b) = (¢).

To end the proof, assume (c). Let S € B(H) be a bijection for which we have Sz,, =y, for
every n. Since ((xp)n, (Yn)n)n is a basis, it follows that for each x in H we have

Z T, Yn)Tn Z x, Stp)x
n=1 n=1
This implies
Sz = Z(x,an)Swn and (Sz,z) Z\ (z,Sz,)|> > 0.
n=1
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Then (see Exercise 1.2.35) S is a positive operator. Hence S~! is a positive operator as well.
Moreover, we have S —3 = (S %)_1 > 0. Further, since S 3 s self-adjoint, we have for all m and
n

1 1
<S§$m’55$n> = <$ma S$n> = (xmayn> = Omn.
This shows that (S %xn)n is an ON sequence. In addition, since S 2is a bijection and since
(xn)n is fundamental in H, it follows from Theorem 1.1.8 that (S %xn)n is an ONB for H.
Hence (zp)n = (S’_%(S%xn))n is a Riesz basis. By symmetry (or by applying (a) = (b)), we
conclude that (y, )y is a Riesz basis as well. O

Theorem 1.2.29. Let (xy,), be a sequence in a Hilbert space H. The following statements are
all equivalent:

(a) (xn)n is a Riesz basis for H.

(b) (xn)n is a basis for H and, if (c,)n is a sequence of scalars,

[o¢]
chxn converges <:>(cn)€€2.

n=1

(¢) (xn)n is fundamental in H and there exist constants A and B such that

N 2 N
chxn < BZ]cn\Q.
n=1 n=1

N
YN €N, Vei,ca,...,en €F, A enf* <

n=1

(d) There exists an equivalent inner product (-|-) on H such that (xy)n is an ONB for

(H, ()

Proof. (a) = (b). Suppose (a) and find an ONB (e,,), and an invertible operator 7' € B(H)
such that Te,, = z,, for all n. Let (¢, ), be a sequence of scalars. By Theorem 1.2.11,

oo o
E CnXp CONVErges et E Cp€n CONnverges.
n=1 n=1

On the other hand, we know from Lemma 1.1.4 that

[o.¢]
Z Cnen converges <= (cp)n € 02

n=1

(b) = (a). Suppose (b) and take any ONB (e,),, for H. Then again by Lemma 1.1.4 and
Theorem 1.2.11 we conclude that (zy,), ~ (en)n. So, by definition, (x,), is a Riesz basis.

(a) = (d). Suppose (a) and find an ONB (e, ),, and an invertible operator 7' € B(H) such
that Te, = x,, for all n. Define a new inner product on H by

(z|y) = (T_lx,T_1x>, r,y€e H
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(it is easy to verify that this is indeed an inner product; we omit the details). Note that the

resulting norm is given by
=[]l = 1T~ 2, =€ H.

Since T is bounded and bounded from below, |||-||| is obviously equivalent to the original norm
| - || on H. Clearly, this implies that (z), is also fundamental with respect to this new norm
and

Tplzm) = (T 2n, T 20) = (en, em) = Smn.

(
By Theorem 1.2.11, (x,,), is an ONB for (H, (-|-)).
(d) = (c¢). Assume (d). Let A and B be the constants for which we have

Alllzl* < lll* < Blll=|lf*, Yz € H. (15)
(where ||| - ||| denotes the norm arising from the new inner product (-|-) from our hypothesis
(d)). Since (zy), is an ONB with respect to (+|-), the second inequality in (15) shows that
() is fundamental also with respect to the original norm || - ||. Choose N € N and arbitrary
scalars c¢1,cs,...,cy. Then
N N N N
IDSLSHTEEY DIR) S I Sty
n=1 n=1 n=1 n=1

This together with (15) gives us the desired conclusion.
(¢) = (a). Assume (c) and take any ONB (e,),, for H. Choose any = € H. Then

r=Y (wenen and [P =3 |z en)
n=1

n=1

Let M > N. Define ¢c; =co =...=cy =0and ¢, = (x,e,) forn =M+ 1, M +2,...,N.
Then by hypothesis (c),

N N N N
Z (T, en)zn| = chm‘n <B Z lca|* = B Z [z, en) .
n=M+1 n=1 n=1 n=M+1

From this we conclude that the series > >, (z, e,)xy is convergent, so we can define Sz =
Yon{(z, en)xy, for every © € H. Clearly, S is a linear map. We claim that S is bounded and
bijective.

By applying our hypothesis (c) and letting N — co we obtain

Allz)? = A [, en))* < 192> < B [z, en)|” = Blz|*.
n=1 n=1

This tells us that S is bounded and bounded from below. In particular, the range of S, R(S5),
is closed. On the other hand, we have Se,, = x,, for every m; hence, R(S) is dense in H.
Therefore, S is a bijection. By definition, (zy,), = (Sen), is a Riesz basis for H. O
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Corollary 1.2.30. If (z,,)y is a Riesz basis for a Hilbert space H, there exist constants A and
B such that

oo
Allz|]? < Z z,z0)? < Bllz|?, Vae H. (16)

Proof. Find an ONB (e,), and an invertible bounded operator T" such that x,, = T'e,, for all
n. Then we have

> @)l = Zl (@, Ten)|? Z\ ‘2, en)|” = [Tz, (17)

n=1

Since T is also an invertible operator, it is bounded and bounded from below. This together
with (17) implies (16) with B = ||T||> and A = ﬁ To verify this last assertion observe
that

lzll = 1) T || < (T 7H - 1Tl = 1T - 1T ).

O

Concluding remarks. (a) The question of whether every separable Banach space possesses a
basis was a longstanding problem. It was shown by Enflo in 1973 that the answer is negative.

(b) A classical reference for the material covered in this section (and incomparably more)
is [107].

(c) The material in this section is organized by following (partly) Chapters III and IV from

[51].

Exercise 1.2.31. (A minimal and fundamental system that is not a basis.) Consider the
Banach space X = C(T) ={f € C(R) : f(t) = f(t+ 1)} of all continuous 1-periodic complex
functions with the supremum norm || - [|oo. For n € Z let e,(t) = >, Observe that e,

1 A
belong to X, but also define elements ¢, of the dual space X’ by o, (f) = [2, f(t)e ?™"dt.

2
Conclude that (¢p), is a system biorthogonal to (ey),, so that, by Proposition 1.2.16 (a),
(en)n is minimal. Use the Stone-Weierstrass theorem to conclude that (ey,), is fundamental in
X. Show that (e, ), is not a basis for X.

Exercise 1.2.32. (An w-independent and fundamental system that is not minimal.) Let (ey,),
be an ONB for a Hilbert space H. Define fi = e; and f,, = ey + <= for n > 2. Show that (f,)n
is an w-independent and fundamental system in H that is not minimal.

Exercise 1.2.33. (A finitely independent fundamental system that is not w-independent.)
Let ((n)n, (an)n) be a basis for a Banach space H. Show that there exists o € X such that
an(x) # 0 for all n and consider a new sequence (z,)5°,. Show that (x,)s2 is fundamental
and finitely independent, but not w-independent.

Exercise 1.2.34. A basis ((z,)n, (an)n) for a Banach space X is said to be absolutely con-
vergent if the series > ° | an(x)xy is absolutely convergent for each = in X. Show that the
canonical basis in ¢! is absolutely convergent. Prove that each Banach space that possesses an
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absolutely convergent basis is topologically isomorphic to ¢! (i.e. that there exists a bounded
bijective linear operator 7' : X — ¢!1.) Using this, show that a separable Hilbert space does not
possess any absolutely convergent basis. (Hint: topologically isomorphic spaces have topolog-
ically isomorphic duals.)

Exercise 1.2.35. Let S be a bounded operator on a Hilbert space H such that (Sz,z) > 0 for
all z in H. Show that S is a positive operator. (Hint. We need to show that S is self-adjoint.
Consider a sesquilinear functional (z,y) — (Sz,y) and use polarization.)

Further, if S is a positive invertible bounded operator on H, show that S~! is also positive

and that (S~1)z = (§2)~1

Exercise 1.2.36. Are there bases for separable Hilbert spaces that are not Riesz bases?
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1.3 Bessel sequences

Definition 1.3.1. A sequence (zy,), in a Hilbert space H is said to be a Bessel sequence if

Z [(x, 2,)|* < 00, Vo € H. (18)

n=1

Lemma 1.3.2. If (x,), is a Bessel sequence in a Hilbert space H, the mapping U : H — (2
defined by Uz = ((x,xn))n is a bounded linear operator. In particular, there exists a constant
B > 0 such that

S I, 2a) P < Bllall?, Vo € H, (19)
n=1

Proof. It is clear from (18) that U is well-defined. Obviously, U is linear. We will show that
the graph of U is closed to prove that U is bounded.
Suppose that yy — y € H and Uyy — (c,)n € £2. Then for each fixed m we have

l(¢n)n — Uyn||? = 0 as N — oo.

o)
‘Cm - <yN7$m>|2 < Z |Cn - <yN7xn>|2 =
n=1

Therefore ¢, = Umy o0 (YN, Tm) = (Y, Tm) for every m. Hence (¢p,)n = ((y, Zn))n, so U has a
closed graph. O

Definition 1.3.3. The operator U from Lemma 1.3.2 is called the analysis operator associated
with (zn)n. Its adjoint U* € B(¢?, H) is called the synthesis operator.
The constant B from (19) is called a Bessel bound of the sequence ().

Note that a Bessel bound is not unique and that the optimal (i.e. minimal) Bessel bound
is equal to ||U]|2.

Proposition 1.3.4. Let (z,,), be a Bessel sequence in a Hilbert space H with the analysis
operator U. Then for each sequence (c,)n in €% the series Yoo | eny converges unconditionally
and the synthesis operator U* is given by U*(cp)n = D poy Cn@n. In particular, if (en)n is the
canonical basis for /2, we have U*e, = x,, and, consequently, ||x,|| < ||U| for each n.

Proof. Let B be a Bessel bound for (x,),. Choose any (c;), in 2. Since by Theorem 1.1.12
unconditional convergence of the series > ° | ¢ @y, is equivalent to sumability of the family
{enxy : n € N}, it suffices to show that the net (ZneF cnmn)Fef converges. We shall show
that (ZneF Cnxn)FE]: is in fact a Cauchy net.

In the computation that follows we will use a well-known trick based on the Riesz repre-
sentation theorem for bounded functionals on a Hilbert space: the norm of a vector is equal
to the norm of the induced bounded functional.
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Let F be an arbitrary finite subset of N. Let card F' = N. Then

2

E CnZn

neF

IN

<

2
Hlyll =1

sup <Z Cnin, y>

nekF

2
|yl =13 (by the Cauchy-Schwarz inequality in F™)

sup Z Cn<33na y>

neF

sup {(%\W) (;Hxn,w?) Hlyll = 1}

sup {BHyH2 > leal llyll = 1} =B el

nekF neFr

Since the series > >, |ca|? converges absolutely and unconditionally, it follows by Theorem
1.1.12 that (ZneF ’C"‘Z)Fef is a Cauchy net. This, together with the above computation,

shows us that the net (ZneF cnal:n)Fejr is Cauchy as well.
We are now in position to obtain a formula for the action of U*: for all z € H and (¢,),

in ¢2 we have

(@, U (cn)n) = (U, (cn)n) = Y _ (@, 2n)Cn = <:c > cnxn> :
n=1 n=1

O

A result related to the preceding proposition provides a sufficient condition for the Bessel
property of a sequence.

Proposition 1.3.5. Let (z,)n be a sequence in a Hilbert space H such that the series 27010:1 CnTn
converges for each (cy)n in £?. Then (), is a Bessel sequence.

Proof.  Define the mapping T : > — H by T(cy)n = > o0

e CnTpn. Clearly, T is linear.

Consider also, for each N, the operator Ty € B(¢2, H) defined by Tn(cp)n = ZN CnTn.

n=1

Then, obviously, T is the strong limit of the sequence (T)y. By the uniform boundedness
principle ([10], Proposition 5.4.10), it follows that 7' is a bounded operator. Let |T| = v/B.

Consider T* and observe that ||7*|| = v/B. We also have (we denote again the canonical
basis for £2 by (en)n)

(T*x,en) = (x,Tey) = (x,zy), Yx € H, ¥n € N.

This tells us that 7%z = ((x,z,))n for every z € H. Hence, for each x in H we conclude:
({z,2n))n, being a sequence that belongs to ¢2, satisfies > oo | [(z, 2,)[* < oco. O

Remark 1.3.6. The preceding results show us: a sequence (), in a Hilbert space H is
Bessel if and only if there exists a bounded operator T' € B(¢2, H) such that Te,, = z,, for all
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n € N, where (e,), is the canonical ONB for 2. Whenever this is the case, T coincides with
the synthesis operator U* of (xy,).

Moreover, since all ONB’s for separable Hilbert spaces are equivalent (via unitary opera-
tors), we conclude: a sequence (z,,), in a Hilbert space H is Bessel if and only if there exist
a Hilbert space K, an ONB (f,), for K, and a bounded operator 7' € B(K, H) such that
Tf, =z, for each n in N.

Another useful tool for studying Bessel sequences is the Gram matrix.
Suppose that (x,), is a Bessel sequence in a Hilbert space H. Consider the operator
UU* € B(£?). Let (en)n be the canonical basis for £2. Observe that for every k in N we have

o0

UU%, = Uxy, = Z<l‘k7$n>€n-

n=1

This shows us that, if we denote by [UU*] the (infinite) matrix of UU* with respect to (ep)n,
we have [UU|(n k) = (Tk, Tn). Thus, [UU*] is the Gram matrix of the sequence ().

In general, we can consider the Gram matrix G(z, ), of any sequence (z,)n, but this matrix
need not to represent a bounded operator on 2.

Theorem 1.3.7. Let (x,), be a sequence in a Hilbert space H. The following statements are
equivalent:

(a) (xy)n is a Bessel sequence with a Bessel bound B;
(b) the Gram matriz G(x,), defines a bounded operator G on ¢? such that |G| < B.

Proof. (a) = (b). We have already noted that, if B is a Bessel bound of a Bessel sequence
(2n)n, then the corresponding analysis operator U satisfies ||U|| < +/B. This implies that
IUU*|| < B. On the other hand, the preceding discussion shows that the matrix representation
of UU* with respect to the canonical basis (e )y is precisely G(zy)n-

(b) = (a). Assume (b) and choose any sequence (cy)y from £2. Then we have

[o¢] o0 2 o0
G (cr)rl> =D 1D (s an)er| < B> el (20)
=1 | k=1 k=1

Let us now take arbitrary N and M such that N > M. Then we have

N M 4 N N
E CpTE — E CrpTy = E CrpTk, E CnTp
k=1 k=1

k=M+1 n=M+1

2

2

N
= Cn Z Ck<l‘k,£l)n>

(by the Cauchy-Schwarz inequality)

n=M+1 k=M+1
N N N 2
- (Z P X | X o)
n=M-+1 n=M+1 k=M+1
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Let us now apply (20) to the sequence (0,...,0,¢crr41,Cr42,---,¢N,0,...). This gives us

N N 2 w | N 2 N
SN arlmrmn)| <D | D arlmmza)| <B* D> el
n=M+1 |k=M+1 n=1 |k=M+1 k=M+1

This, together with the result of the preceding computation, shows us that

N M N 4 N 2
E CrTl — E CrTl E CrTl S 32 E ‘Ck‘z .
k=1 k=1

This implies that the series > ;2 | cxx) converges. By repeating the argument, we conclude

4

N

o0 o0
ZCkfﬂk <VB <Z|Ck|2>
k=1 k=1

This proves that T": (cg)r = Y pey CkTk is a well-defined bounded linear operator from ¢2 into
H such that ||T|| < v/B. Since

(T x,e,) = (x,Tey) = (x, ), Yn €N,

it follows that T* coincides with the analysis operator of the sequence (x,,). Since ||T*| < v/B,
it follows that (z,,), is a Bessel sequence with a Bessel bound B. 0

Lemma 1.3.8. (Schur) Let (oj) be an infinite matriz. Suppose that there exist a sequence
(pi)i of positive numbers and constants r,s > 0 such that

e}

o0
Z laijlpy < rpi, Vi, and Z laij|pi < spj, Vj. (21)
j=1 i=1

Let (ey)n be an orthonormal basis for a Hilbert space H. Then there exists a bounded operator
A on H such that (Aej, e;) = ayj for all i and j and || A|? < rs.

Proof. For z =377 cje; = (c1,ca,c3,...) put

Az = (s ai;ici | e;. (22)
2| 2 aiici

i=1 \j=1
Observe that, in particular, we have
(o]
Ae, = g Qin€;, Vn.
i=1

We must show that (22) gives us a well-defined operator A. More precisely, we must show
that Az € (2 and ||Az||?> < rs||z||? for every z. It suffices to obtain these conclusions for all
x € span{e, : n € N}.
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Choose any z € span{e, :n € N}, z = 25\7:1
on z. Now we have
2 2

cje;j, where N is a natural number depending

oo | N oo | N

oty
Z ajci| = Z Z (, /aij\/]Tj) ( UA j) (by the Cauchy-Schwarz inequality in FN)
i1 |j=1 i=1 |j=1 VPi

IN IN
e 1D
2
I =
M= s
£ s
s}
]
&
5]

i=1 =1 Pj
N |C ’2 oo
= S gl
j=1 L
N 2
s
< v 9 < el
j=1
This shows us that the sequence (Z;VZI aijCj)i belongs to ¢2. Hence, if z = Z;VZI cje;, Az
is well-defined by (22). In the same time we have obtained the desired estimate for the norm
of A. O

Corollary 1.3.9. Let (o) be a symmetric infinite matriz. Suppose that there exists a constant
B such that

D el < B, Vi (23)
j=1

Let (en)n be an orthonormal basis for a Hilbert space H. Then there exists a bounded operator
A on H such that (Aej, e;) = ayj; for alli and j and |A|| < B.

Proof. We only need to observe that the matrix (c;;) satisfies the conditions of the preceding
lemma with r = s = B and p; = 1 for all i. O

Corollary 1.3.10. Let (x,)n be a sequence in a Hilbert space H such that there ezists a
constant B with the property

o0
j=1
Then () is a Bessel sequence with a Bessel bound B.

Proof. Immediate from Theorem 1.3.7 and Corollary 1.3.9. U

We end the section with another result that characterizes Riesz bases. Observe that, by
Corollary 1.2.30, each Riesz basis for a Hilbert space H is a Bessel sequence. The converse is
not true. Example: choose any ONB (ey), for H and put x,, = %en, n € N. Notice that a
Bessel sequence even need not be fundamental in H.
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Theorem 1.3.11. Let (xy,), be a sequence in a Hilbert space H. The following statements are
equivalent:

(a) (xn)n is a Riesz basis for H.
(b) (zn)n is an unconditional bounded basis for H.

(¢c) (xn)n is a fundamental Bessel sequence and possesses a biorthogonal system (yn)n that
s also a fundamental Bessel sequence.

Proof. (a)=- (b). This is Proposition 1.2.26 (a).

(b) = (c). Assume (b). Denote the associated biorthogonal sequence by (yn)n. Then,
by Corollary 1.2.21, ((yn)n, (Tn)n) is also an unconditional bounded basis for H. Therefore,
if x € H, then x = Y 7, (x,z,)yn and this series converges unconditionally. By Orlicz’s
theorem, we now have Y oo | [(x,2,)?||yn||* < co. Further, since (y,), is a bounded basis,
there exist constants C1,C2 > 0 such that 0 < C < ||y,|| < Cy < oo for all n. Thus,

o0 o0
>l za)POF < D Ha ) Pllyn® < 00
n=1 n=1

whence

9]
Sl )l < oo, Vi€ H,
n=1

which means that (z,) is Bessel. Clearly, since it is a basis, it must be fundamental. The
same conclusions for (y,), follow by symmetry.

(¢) = (a). We shall prove that (c) implies (b) from Theorem 1.2.29 (and then apply the
implication (b) = (a) from Theorem 1.2.29).

Suppose (c). Since (z,,)n, and (yn), are both Bessel sequences, Lema 1.3.2 tells us that
there exist constants C' and D such that

> ) < Cllz)* and Y [(x,ya)* < D, Vo e H.
n=1

n=1

Since by assumption (zy,), is fundamental and (y,), is biorthogonal to (x;),, to show that
((zn)n, (Yn)n) is a basis for H, it suffices by Theorem 1.2.17 (d), to show that supy ||Sn|| < oo
where Sy (x) = Zflv:l(x,ynﬁnn, NeN zeH.

ISn(@)]* = Sup, |(Sn (), )|
y =
N 2
= HslHlp Z(x, Yn)n,y)|  (by the Cauchy-Schwarz inequality in FV)
yliI=1 =1
N N
< sup <Z !<x,yn>!2> <Z <xn,y>l2>
lyll=1 n=1 n=1
< sup D|z|*Cllyll* = CD|lz|*.
y =
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This proves that ((zn)n, (Yn)n) is a basis for H. To finish the proof, it remains to show: if
(cn)n is a sequence of scalars, then Y >° | ¢,x, converges if and only if (c;,), belongs to ¢2.
Suppose first that > > | ¢ x, converges to z. Then we must have ¢, = (z,y,), Vn € N, since
((n)ns (Yn)n) is a basis for H. This implies

e’} [e's)
D leal? =D [, yn)? < Dl
n=1 n=1

hence, (c,), € £2. Conversely, if (c,), € ¢? then Y mey Cny converges by Proposition 1.3.4. O

Concluding remarks. (a) This section contains the standard facts concerning (infinite) Bessel
sequences. (Observe that each finite sequence is obviously Bessel.)

(b) Both the results and the proofs are combinations of those from [51] and [21] (with the
exception of Lemma 1.3.8 which is borrowed from [70]).

Exercise 1.3.12. Suppose that (zy,), is a sequence in a Hilbert space H for which there exists

a constant B such that -

> @, z)|* < Bll|?
n=1

for all « from a dense subset S of H. Show that (x,), is a Bessel sequence with a Bessel bound
B.

1
i+l
i,j > 0. Show that this matrix defines a bounded operator A on ¢2 such that ||A| < 7 Hint:

apply Lemma 1.3.8 with p; = \/17, 1=0,1,2,...,and r = s = 7.

Exercise 1.3.13. Consider the infinite matrix (O‘ij)z‘o,g‘:o where o;; = for all integers

i1
i+3

Exercise 1.3.14. Show that the sequence of monomials (z")9°, is Bessel in the Hilbert space
L*([0,1]).
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2 General theory of frames

2.1 Fundamental properties of frames

Bases, in particular Riesz and orthonormal bases, exist in all separable Hilbert spaces. However,
the conditions for being a basis are so strong that it is often impossible to construct a basis
with special (prediscribed) properties. Also, even a slight modification of a basis might destroy
the basis property.

On the other hand, there are reproducing systems for Hilbert spaces, more general than
bases, which show much more flexibility. In fact, such systems exist in abundance and appear
quite naturally. To demonstrate an easy example, consider an ONB (e,,),, for a Hilbert space
H. Then we have z = Y 7 (z,ep)e, for all z from H. Let us now take a closed subspace M
of H and the orthogonal projection P to M. Then we have Px = x for each x in M, so the
preceding equality, when applied to elements from M becomes

e.9] oo
x=Px= Z(P:}:, en)Pep, = Z(w,P6n>P6n, Vo € M.
n=1 n=1

This shows us that the sequence (Pe,, ), serves as a reconstructing system for the Hilbert space
M ; moreover, the above formula is completely analogous to the Fourier expansion in an ONB,
although Pe,,’s need not be independent in any sense.

We shall see soon that the sequence (Pey,), is in fact a typical example of a (Parseval)
frame.

Definition 2.1.1. A sequence (x,)n in a Hilbert space H is a frame for H if there exist positive
constants A and B, that are called frame bounds, such that

Allz|> < Y (@, za)? < Blla|®, Ve € H. (1)

n=1

A frame is said to be tight if A= B. In particular, if A= B =1 so that

> [a, @) = |f?, VxeH, (2)

n=1

we say that (xy,), is a Parseval frame.
The frame is exact if it ceases to be a frame whenever any single element is deleted from
the sequence.

Remark 2.1.2. (a) The frame bounds are not unique. The maximal A and the minimal B
are called the optimal frame bounds and will be denoted by Agpt and Bopg.

(b) If (x,)n is a frame then the series Y oo [(z,7,)|? is an absolutely convergent series of
non-negative real numbers. It therefore converges unconditionally. As a consequence,
every rearrangement of a frame is also a frame, and therefore we can use any countable
set to index a frame. In these general considerations we will always use the set of natural
numbers as the index set.
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Example 2.1.3. Let (e,), be an ONB for a Hilbert space H. Then the sequence
(a) e1,eq,es,... s a Parseval exact frame for H;

e1,0,e9,0, e3,... 1a a Parseval non-exact frame for H;

)
c) e1,e1,€9,€9,...1s a tight (with A = B = 2) non-exact frame for H;
) 2e1,€e9,€e3,€4,...1s an exact frame (A =1, B = 2) for H;

)

Ao 1on 1, 1., 1 ] _ .
€1, 7562 562, /563: 563 568 IS A Parseval non-exact frame for H;

(f) e, %62, %63, ... is orthogonal and fundamental, but not a frame for H.

Remark 2.1.4. (a) Each frame (z,), for a Hilbert space H is fundamental in H. To see
this, it suffices to show that (x,), is maximal, and this is immediate from the first
inequality in (1).

The converse is not true as it is demonstrated by the last sequence in the preceding
example.

(b) For this reason here and in the sequel we restrict ourselves to separable Hilbert spaces.

(c) We also conclude from (a) that there are no finite frames for infinite-dimensional Hilbert
spaces. Finite frames do exist (see the following remark) when dim H < co.

Remark 2.1.5. A finite sequence ()}, is a frame for a finite-dimensional Hilbert space H
if and only if {z,, : 1 <n < M} is a spanning set for H.
In one direction this is proved precisely as in the preceding remark: it is evident that each
frame for H is a maximal system in H.
To prove the converse, suppose that a finite sequence (a;n)ﬁ/lzl generates H and define the
operator
U:H—-FY Uz = ((z,21), (x,22),...,(x, x)).

Obviously, U is linear and injective. Therefore, the operator Uy : H — R(U) defined by
Upx = Ux is invertible and its inverse V : R(U) — H is bounded. Choose a constant C' > 0
such that

|V (Ux)|]? < C|Uz|? Va € H.

If we put A = & this can be rewritten (notice also that VUz = z) as

M
Alle|? < 3 [, 2, Va € H.

n=1

On the other hand, we have for all x in H

M M
Z (2, zn)|* < Z |z[|*[|zn? < Bl=|?
n=1 n=1

where B = "M ||a,|12.
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It is clear from the definition of a frame that each frame is a Bessel sequence. Thus, if
(2n)n is a frame for H, its analysis operator U : H — (? is well defined and bounded. Here we
make the following convention: by writing (x,), we admit the possibility that (x,), is a finite
sequence (consisting of, say, M elements) and when this is the case, we understand that the
analysis operator U takes values in FM.

In particular, we know from Proposition 1.3.4, that the synthesis operator U* is given by
U*(en)n = Y pey Cnty, where this series converges unconditionally for each (¢,), € 2.

In addition to these properties, it is clear from Definition 2.1.1 that the analysis operator
U of each frame is also bounded from below. To proceed, we need a general result on bounded
Hilbert space operators. First we prove the following lemma.

Lemma 2.1.6. Let H and K be Hilbert spaces. If T € B(H, K) is a surjection, T* is bounded
from below.

Proof. Suppose that T is a surjection and consider the set S = {y € K : |T*y| = 1}. Notice
that S is weakly bounded. Indeed, for any z in K we first find = in H such that Tz = z and
then we have, for every y in 5,

[y, 2} = Ky, T)| = [(T"y, z)| < Tyl - [|=]] = [l]].

By the uniform boundedness principle we conclude that S is bounded. Thus, there exists a
constant C' > 0 such that ||y|| < C for all y from S.

Now observe that the equality K = R(T") @ N(T™) and surjectivity of 7" imply that T is
an injection. Hence T v # 0 for all v # 0. Therefore, if v # 0 then is a well defined

v
7]l
vector in S. By the conclusion of the first part of the proof, this implies HMH < (), ie.
IT*0]| > vl O

Proposition 2.1.7. Let H and K be Hilbert spaces and T € B(H, K).
(a) R(T) is closed if and only if R(T*) is closed.
(b) T is a surjection if and only if T* is bounded from below.
(c) If R(T) is closed, TT* is invertible on R(T).

Proof. Suppose that R(T) is closed. If, additionally, T" is a surjection, then by the preceding
lemma T is bounded from below and this immediately implies that R(7™) is closed. If T is
not a surjection denote R(T") by Ky and consider Ty : H — Ky, Tox = Tx. By the preceding
conclusion we now know that the operator (Tp)* has the closed range. It only remains to
observe that R((7p)*) = R(T™). Indeed: the equality Tk, = (Tp)* gives us R((Tp)*) C R(T™),
while the reverse inclusion follows from R(7*) C (N(T))* = (N(Tp))* = R((Tp)*).

Thus, we have proved: R(T™) is closed whenever R(T') is closed. The converse follows by
applying this conclusion to the operator T*. This finishes the proof of (a).

Let us prove (b). In one direction, this is the statement of the preceding lemma. To prove
the converse, suppose that 7% is bounded from below. Then N(7T*) = {0} and R(7™) is a
closed subspace. By the first part of the lemma, we know that R(T") closed is well. Hence
R(T) = N(T*)*+ = K; i.e. T is a surjection.
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Finally, to prove (c), suppose that R(T") is a closed subspace of K. Let TT*y = 0 for
some y € R(T). Observe that N(TT*) = N(T™) (this is true for all operators). So, we have
y € N(T*) N R(T') and this obviously implies y = 0. Thus, TT* is injective on R(T"). On the
other hand, by (a), the range of T is also closed; hence, H = N(T') @ R(7™). This implies
that each = in H has the form x = y + T™v for some y € N(T') and v € K. By applying 7" we
obtain Tz = TT*v which shows that R(T") C R(TT*). Since the opposite inclusion is obvious,
we conclude that R(T') = R(T'T*). Finally, we then have

R(T) = R(TT*) = TT*(K) = TT*(N(T*) & R(T)) = TT*(R(T)),

which shows us that 77 is a surjection on R(T). O

Theorem 2.1.8. Let (xy,), be a frame for a Hilbert space H. Then its analysis operator U is
bounded and bounded from below and the synthesis operator U* is a surjection. Conversely, if
T € B(¢% H) is a surjection, then the sequence (Tp)n, Tn = Ten, n € N, where (en)n is the
canonical basis for €2, is a frame for H whose analysis operator coincides with T*.

Proof. Suppose that (z,), is a frame. We already know that U is bounded and bounded
from below. The preceding proposition implies that U* is surjective.

Suppose now we have a surjection T € B(¢2 H). From the preceding proposition we
conclude that T™ is bounded from below. Thus, there are constants A, B > 0 such that

Allz|* < | T7z)|* < Bl|z||?, Yz € H.

On the other hand, we have for each z in H

o oo o0
Tz = Z(T*x, en)en = Z(x, Ten)e, = Z(w, Tn)en.
n=1 n=1 n=1

whence

Tz = (&, 2n))n and ||| =) (2, z,) .
n=1

O

Corollary 2.1.9. A sequence (xy,)y in a Hilbert space H is a frame for H if and only if there
exist a separable Hilbert space L, a surjective operator T' € B(L, H) and an ONB (fy)yn for L
such that x,, =T f, for all n in N.

Proof. In one direction this is the first statement of Theorem 2.1.8 (and Proposition 1.3.4).

The converse follows from the second statement of Theorem 2.1.8 and the following well
known fact: if (f,), is an ONB for a separable Hilbert space L, then there exists a unitary
operator V : /2 — L such that Ve, = f, for all n in N, where (e,), is the canonical basis for
2 O
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Remark 2.1.10. The analysis operator of a Parseval frame is an isometry. Consequently, the
corresponding synthesis operator is a co-isometry (a surjective partial isometry). It is easy to
conclude from the preceding results and their proofs that Parseval frames are those sequences
that are co-isometrical images of orthonormal bases.

Suppose now we have a frame (z,,), for a Hilbert space H with the analysis operator U. By
Proposition 2.1.7 applied to U*, the composition U*U (that is often called the frame operator)
is an invertible operator on R(U*) = H. Using Proposition 1.3.4 we obtain

o0

U'Ux = Z(w,xn)a}n, Vo € H. (3)
n=1
Taking the inner product by x we get
(e.)
(U'Ux,x) = Z!xmn )%, Vo € H. (4)
n=1
From this we conclude that
Aoptl < UU < Bopel (5)

which immediately implies

Bopt = |U*U| = |[U].
On the other hand, we have

Aol SUU = (U*U)' < I. (6)
opt
We now claim that 1
= |[(U*U)7Y.
A = lwo)

Indeed, (6) shows us that |[(U*U)~
(U*U)Y = C < ﬁ This implies (U*U)~' < C - I and hence I < U*U. But this
contradicts to the fact that Agp¢ is the maximal lower frame bound since % > Aopt-

In this way we have proved

< Aipt' To prove the opposite inequality, suppose that

Proposition 2.1.11. Let (z,), be a frame for a Hilbert space H with the analysis operator
U. Then the frame operator U*U is invertible and the optimal frame bounds are given by

1

Aopt = e
YT

=min{A: A€ a(U"VU)}, Bopt = |UU|| =max{A: A€ a(U*U)}. (7)

As a direct consequence of the preceding results we also get the following useful fact.

Corollary 2.1.12. Let H and K be Hilbert spaces. Suppose that (x,,)y is a frame for H and
that T € B(H, K) is a surjection. Let y, = Txyp, n € N. Then (yn)n is a frame for K. If A
and B are frame bounds for (xy,), then the frame bounds for (y,)n are W and B||T|?.
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Proof. The first statement is immediate from Corollary 2.1.9.

To prove the other one, denote by U the analysis operator of (x,),. Then it is easy to see
that the analysis operator V' of (yn)n is given by V = UT*. Since A < Ay and Bopy < B, we
conclude from (5) that

AI <U*U < BI. (8)

Since T is surjective, TT™ is invertible by the third statement of Proposition 2.1.7. Hence,
(TT*) " < (7T - 1

which we rewrite as 1
Tr* > ————1. (9)
[(TT*)~|

We now have

(®)
V*V = (TUS(UT*) = T(U*U)T* < B-TT* < B||TT*||I = B||T|*I

and
VAV = (TUNUT = T )T 2 A1 S A
- —N@T
Thus, we have obtained
A
— [ <V*V < B|T|*I
1(TT*)~1
which is precisely what we needed to prove. O

Consider again an arbitrary frame (x, ), for H with the analysis operator U. Let us turn
back to equation (3) that describes the action of the frame operator U*U:

U'Ux = Z(w,xn)a}n, Vo € H.
n=1
After applying (U*U)~! this gives us
x = Z(w,azn)(U*U)_lacn, Vo € H.
n=1

Put y, = (U*U) "', for all n € N. Then the preceding equality reads

o0

xr = Z(x,xn)yn, Vo € H. (10)

n=1

Moreover, Corollary 2.1.12 tells us that (y,), is also a frame for H. If we denote its analysis
operator by V', (10) can be rewritten in the form

ViU = 1. (11)

40



By taking adjoints, we get

UV =1 (12)

which is the same as -
r= Z(x,yn>xn, Vr e H. (13)

n=1

In fact, it is evident that (10) and (13) are equivalent.

Definition 2.1.13. Let (z,,)y be a frame with the analysis operator U. The frame (yp)n defined
by yn = (U*U) Lap,, n €N, is called the canonical dual of (xy)n.

Observe that the analysis operator of the canonical dual is U(U*U)~!.

Notice also that a Parseval frame coincides with its canonical dual; moreover, only Parseval
frames have this property. This is simply because an operator U is an isometry if and only if
UurU =1.

In the following theorem we summarize the preceding conclusions:

Theorem 2.1.14. Let (), be a frame for a Hilbert space H with the analysis operator U.
Then U*U is an invertible operator on H and the sequence (yn)n defined by y, = (U*U) 1a,,
n € N, is also a frame for H which satisfies

xr = Z(w,xn)yn = Z(x,yn>wn, Vo e H. (14)
n=1 n=1

In particular, if (x,,)yn is a Parseval frame, equalities (14) reduce to

o0

x = Z(x,xn>xn, Ve e H. (15)

n=1

One often refers to equalities (14) resp. (15) as to the reconstruction property of frames.

Since, in general, frames are linearly dependent systems, it is intuitively clear that the
canonical dual of a given frame is not the only sequence which can be used in analyzing or
synthesizing vectors (signals) in order to obtain equalities analogous to (14). We postpone a
general discussion on dual frame sequences to the following section.

We end this section with a couple of observations concerning Parseval frames.

Proposition 2.1.15. Let (x,), be a frame for H with the analysis operator U. Put u, =
(U*U)_%l'n, n € N. Then (un)n s a Parseval frame for H.

Proof. Since (U*U )_% is an invertible operator (in particular, a surjection), Corollary 2.1.12

(see also the proof) tells us that (uy ), is a frame whose analysis operator is equal to U(U*U) ™ 2.
Since (U(U*U)fé)*U(U*U)fé = I, this frame is Parseval. O
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Proposition 2.1.16. Let (x,), be a sequence in a Hilbert space H. Then (xy,)y is a Parseval
frame for H if and only if

o

x = Z(m,xn>xn, Ve € H. (16)
n=1
In particular, if (fn)n is an ONB for a Hilbert space H and if M is a closed subspace of H, then

the sequence (P fy,)n is a Parseval frame for M, where P denotes the orthogonal projection to
M.

Proof. In one direction this is already observed in Theorem 2.1.14.

Conversely, assume (16). Taking the inner product on both sides by , we obtain ||z||? =
> [, @) 2.

To prove the second statement observe that the equality x = >
ten for x € M in the form

o0

me1(x, fn) fn can be rewrit-

o0 o0

v =Pr=> (Pz,fu)Pfn=> (2,Pfn)Pfn.

n=1 n=1

O

The preceding proposition shows that a sequence constructed in the example from the
beginning of this section is a Parseval frame. In fact, each Parseval frame arises in that way.

Proposition 2.1.17. Let (zy,), be a Parseval frame for a Hilbert space H. Then there exist
a Hilbert space Hy which contains H as a closed subspace and an ONB (fn)n for Hy such that
xp = Pfy for all n, where P € B(Hy) is the orthogonal projection to H.

Proof. Denote by U the analysis operator of (zy,),. We know that U is an isometry and that
M = R(U) is a closed subspace of £2. Let Q € B(¢?) be the orthogonal projection to M. Let
Hy = H @ M+. Obviously, we can identify H with H @ {0} < Hy. Denote by P € B(Hy) the
orthogonal projection to H & {0}.

Consider the sequence (f,)n in Hy defined by f, = (zn, (I — Q)en), n € N, where (en)n
is the canonical basis for £2. Obviously, we have Pf, = (x,,0) for all n. We now claim that
(fn)n is an ONB for Hy. To prove our claim we will construct a unitary operator W : £2 — Hy
such that We,, = f, for all n.

To do that, first observe that U*|y; : M — H is a unitary operator. Also, since (2> =
M @& N(U*), we have z,, = U*e,, = U*Qey, = (U*|ar)Qey, for all n.

Let W = U*|p @11 : £2 — Hy, where I, is the identity operator on M~. Then, clearly,
W is a unitary operator and

Wen = (U'[m © Iy) (Qen + (I = Q)en) = (20, (I = Q)en) = fn, Yn €N.
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Example 2.1.18. Take any b > 0 and consider the sequence (e>™™), <z where each of the
functions e2™®" is regarded as a function defined on the interval [0,1) and then extended 1-
peridically to R. In this way we assume that our system (e27"), .7 belongs to L?(T) (where
T denotes the torus) which we identify with L*([0,1]).

If b =1 we already know that (e?7"!), .7 is an ONB for L?(]0, 1]).

If b > 1, our functions e?™®"*  considered on all of R, are %—periodic. Observe that the
interval [0, 1) is strictly contained in [0, 1). For those ¢ such that ¢ and ¢+ ¢ belong to [0,1) we
have f(t) = f(t+ %) for all functions f from span {ezmb”t :n € Z}. It is now easy to conclude
that span {e%ibnt in € Z} is a proper subspace of L?([0,1]). This means that the sequence
(e2mibnty 7 is not fundamental in L2([0, 1]) and therefore cannot be a frame for L2([0, 1]).

Finally, consider the case b < 1. For example, if b = % we see that

(eQWint%)nez _ (eQNint)neZ U (627ri(n-i—%)t)nEZ

— (€2mnt)neZ U (emte%rmt)nez

which is the union of two ONB’s and hence a tight frame with the frame bound equal to 2.

Similarly, for b = ﬁ, M € N, it turns out that (e?™"), 7 is the union of M ONB’s; thus
a tight frame fith the frame bound M.

In general, we can argue in the following way. Again, our functions e , considered on
all of R, are 3-periodic, but now we have [0,1) C [0, §). Since the operator D : L?([0,1]) —
L2([0, £]) defined by Df(t) = Vbf(bt) is unitary, the sequence (vVbe* "), c7 is an ONB for
L2(o. 1))

We can understand L%([0,1]) as a closed subspace of L?([0,1]) by extending each func-
tion f € L?([0,1]) by zero on (1,¢]. Clearly, the operator P defined on L*([0, 3]) by Pf =
fXo,1) is the orthogonal projection to L?([0,1]). Thus, by Proposition 2.1.16, the sequence
(PVbe?mmt), 7 is a Parseval frame for L2([0,1]). In other words, (e2™®™), .7 is a tight frame
for L*([0,1]) with the frame bound 3.

2mwibnt

Concluding remarks. Frames first appeared in the literature in 1952 in a paper of R. J. Duffin
and A. C. Schaeffer ([64]). In 1980’s frames begun to play an important role in Gabor analysis
and wavelet theory (see [59]). Since then the theory has grown rapidly. The standard references
include [51], [82], [90]. The material in this section is well known. Some of the results appeared
already in the pioneering work [(4]. The concluding Example 2.1.18 is a combination of
Example 8.7 and Remark 8.8 from [31].

Exercise 2.1.19. Let H and K be Hilbert spaces. Suppose that for A € B(H, K) there exists
a constant m such that ||Az|| > m/||z| for all z in H. Show that each operator in the open ball
K(A,m) C B(H, K) is bounded from below.

Exercise 2.1.20. Let H and K be Hilbert spaces. Show that the set of all surjective operators
in B(H, K) is open (in the norm-topology).

Exercise 2.1.21. Let (e), be an ONB for a Hilbert space H. Consider the sequence (xy),
where x, = e, + ept1, n € N. Show that (x,), is minimal and fundamental and find its
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biorthogonal sequence (see Proposition 1.2.16). Further, show that (x,), is a Bessel sequence,
but not a frame.

Exercise 2.1.22. Let (e,), be an ONB for a Hilbert space H. Consider the sequence (zy,)n,
Zn = Ren, n € N, where R € B(H) is some non-surjective operator. Show that (a) (z,), is a
Bessel sequence, (b) (xy,), is fundamental if and only if S has a dense range, (c) (zn)n is not
a frame for H.

Exercise 2.1.23. Suppose that (x,), is a Bessel sequence that is a basis for a Hilbert space
H with a Bessel bound B. Let (yy), be the biorthogonal sequence. Show that

1 [e9)
EHxH2 < Z ’<$7yn>’27 Vr € H7
n=1

and
LN N 2
EZ\anS chyn , Vei,...,cp € F, VN € N,
n=1 n=1

(Observe that (yn)n need not be a frame since, unless (z,)y is a Schauder basis, (yy), is not
Bessel; see Theorem 1.3.11.)

Exercise 2.1.24. Let (x,,), be a frame with the canonical dual (y;),. Show that the canonical
dual of (yy), coincides with (z,)n.

Exercise 2.1.25. Let (z,,), be a Parseval frame for a Hilbert space H. Prove:
(a) ||zn|| <1 for all n.
(b) If |||l = 1 then x,, L x, for all n # m.
(¢) If |||l < 1 then (zy,)ntm is a frame for H whose optimal lower frame bound is 1— ||z, .

Exercise 2.1.26. Let (f,), be a sequence in a Hilbert space H with the property

o0

Fe =3 (fus fu) fnr VE EN.

n=1
Denote the sum Y oo, || fn||* by d (we allow the possibility d = co). Show that
d = dim(span{f, : n € N}).

Exercise 2.1.27. Let {ej,e2,...,ex}, k € N, be an ONB for a Hilbert space H. Let the
sequence (z,,)FT! be defined by

k k
1 1
—en—-Y e n=12. .k andap ==Y e
Tn €n L v €, N 5 4y ) and Te41 \/E v €;
Show that (z,,)*T} is a Parseval frame for H.

n=1
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Exercise 2.1.28. Let (e,), be an ONB for a Hilbert space H. Consider the subspaces
Hy =span{e;}, Hy =span{es,es}, Hs = span{ey, es, €6}, ...

Observe that we have for each £k € N

1
Hk = Span {en(k)+l, Cn(k)+2) - - - ,en(k)+k}, n(k) =1424+...+ (k? - 1) = §(k} - 1)k.

Let (a:;k))ﬁii be the Parseval frame for Hy, k € N, from Exercise 2.1.27. Conclude that
(zf)nid

k=1

is a Parseval frame for H.
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2.2 Dual frames

Consider an arbitrary frame (zy,), for a Hilbert space H with the analysis operator U. Recall
that the canonical dual (yy,), is the frame for H defined by y, = (U*U)'xz,, n € N, that, by
Theorem 2.1.14, satisfies

oo o0
x = Z(z,xn>yn = Z(x,yn>azn, Vo € H.
n=1 n=1

However, as we already suggested, since frames are (in general) linearly dependent systems,
the canonical dual is not the only sequence that can be used in combination with (x,), to
reconstruct every vector from H.

Definition 2.2.1. Let (xy,), be a frame for a Hilbert space H. Each sequence (zy)n in H with
the property

x = Z(w,zn>xn, Ve e H

n=1

is said to be a dual of (zp)n.

Example 2.2.2. Take any ONB (e, ), of a Hilbert space H and consider the tight frame
e1,€e1,€e2,€2,... for H. Here we have U*U = 21, so the canonical dual is the sequence
%el, %61, %62, %ez, .... On the other hand, if we denote by (v,), the sequence e1,0, ez,0, ..., it
is easy to verify that z = Y 2 (z,v,)zy, Vo € H; so the frame (vy), is a dual of (z,),. In
fact, here is easy to construct infinitely many dual frames.

The situation can be even more complicated: a sequence that is dual to a frame (z,,), need
not be a frame. To see this, consider the Parseval frame eq, %62, \%62, %63, %637 %63, .

(here again, (e,), is an ONB). One of its duals is the sequence e1, v/2e2, 0, v/3e3,0,0, ... which,
since it is unbounded, cannot be a frame.

In the light of the last example, the following proposition is useful. Basically, it tells us
that a sequence that is Bessel and dual to a frame is necessarily a frame itself. Even more is
true.

Proposition 2.2.3. Suppose that (v,), and (wy), are Bessel sequences in a Hilbert space H
such that

oo

xr = Z(az,vn)wn, Vo € H.

n=1
Then both (vy)n and (wy), are frames for H that are dual to each other. In particular, if a
Bessel sequence is a dual to some frame, then this sequence is necessarily a frame.

Proof. Denote the corresponding analysis operators by V and W, respectively. Then our
assumption can be written as W*V = I. This implies that W* is a surjection, so (wy), is a
frame by Corollary 2.1.9. Since W*V = I implies V*W = I, the same argument applies to
(n)n- O

The following proposition provides us with two specific properties of the canonical dual.
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Proposition 2.2.4. Let (x,), be a frame for a Hilbert space H with the analysis operator U
and let (yn)n be its canonical dual.

(a) If, for some x in H, a sequence of scalars (cn)n satisfies © = 07 | ¢py, then

n=1
Z:|cn|2 Z|xyn| +Z!xyn — .
n=1

(In other words, the sequence ((x,yn))n has the minimal £2-norm among all sequences
that synthesize x in terms of x,’s.)

(b) If (zn)n is a dual of (xy,)y, for which there exists an operator D € B(H) such that z, =
Dz, for every n, then D = (U*U)~! and 2z, = y, for all n. (The canonical dual is
the only dual of (xy), that arises as an image of (xy), under the action of a bounded
operator.)

Proof. (a) We know that ({z,y,)), € ¢?. Suppose that (c,), is also an ¢?-sequence (if not,
there is nothing to prove). Denote for simplicity (z,y,) by an, n € N. Then

(x,(U* <Zanacn, (U*u)~ > Zan (u*u)~ Yo, x Zan Yn, T {((an)n, (an)n)

and

(z, (U* <Z CnTn, (U*U)™ > ch (o)~ xna ch Yn, X ((cn)ns (@n)n)-
By comparing the final expressions we conclude that ((c;)n — (an)n) L (an)n. Hence

H(Cn)nH2 = |[(en — an)n + (an)n||2 = ||(en — an)n||2 + ||(an)n||2

(b) By assumption, we have x = > °° (x, Dxp)z, and z = > oo (z, (U*U) " tzy,)x, for
every z. If we take any x in H and apply the second equality to (U* U)D*:E, we get

(U U)D*z = > (U*U)D*z, (UU) 'an)zn = Y (2, Dap)rn, = .
n=1 n=1

This shows that (U*U)D* = I which implies D* = (U*U)~! and, by taking adjoints, D =
(Uv)-". 0

Consider now again an arbitrary frame (z,,), for a Hilbert space H and denote by U the
corresponding analysis operator. We now restrict our discussion to frames dual to (zy),. A
natural question arises: can we describe all frames that are dual to (z,),?

Suppose we have a frame (z,), for H which satisfies

o0

x = Z(m,zn>xn, Vo e H. (17)

n=1
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If we denote by V' the analysis operator of (2,)n, then, obviously, (17) can be rewritten as
Uv =1 (18)

Clearly, then there are two more equivalent equalities:

VU =1, (19)

and -
x = Z(a:,xn>zn, Vo € H. (20)

n=1

So, in this situation we can say (and we will) that (z,), and (z,), are dual to each other.

Since frames for H are in a bijective correspondence with their analysis/synthesis operators,
in order to obtain all frames (zy,), dual to (x,),, it suffices to describe all operators V €
B(H, (?) which satisfy (19). In other words, if U € B(H, ¢?) is the analysis operator of a frame
(Tn)n, we want to find all left inverses of U.

We start with a brief general discussion on left inverses of bounded operators.

Lemma 2.2.5. Let H and K be Hilbert spaces and T' € B(H, K). Suppose that there exists
S € B(K, H) such that ST = I. Then T is bounded from below and its range is closed.

Proof. The first statement is clear and the second statement is an immediate consequence
of the first one. O

Suppose that a Hilbert space (or, more generally, a normed space) is decomposed into a
direct sum of closed subspaces H = X 4+ Y. Then each h € H can be written in a unique
way in the form h =z +y, ¢ € X, y € Y, and the operator /' on H defined by Fh = z is
called the oblique projection onto X parallel to Y. Notice that F' is idempotent and bounded.
Conversely, each bounded idempotent on H is the oblique projection onto its range parallel to
its null-space (see Exercise 2.2.23).

Lemma 2.2.6. Let H and K be Hilbert spaces. Suppose that T € B(H,K) and S € B(K, H)
satisfy ST = 1. Then

(a) N(S) = (I =TS)(NT™)),
(b) K = R(T) + N(S),
(c) TS is the oblique projection onto R(T) parallel to N(S).

Proof. We first claim that
N(S)=R(I - TS). (21)
Indeed, from ST = I we get STS = S and S(I — TS) = 0. This immediately implies
R(I —TS) € N(5). Conversely, for each y € N(S) we have (I —T'S)y = y, which gives us
yeR(I-TS).
Next we claim

R(I - TS) = (I — TS)(N(T*)). (22)
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To see this, we first note that the assumed equality ST = I implies, by Lemma 2.2.5, that T
has closed range. Now take any (I —T'S)y € R(I — T'S). Since the range of T is closed, we
can write y in the form y = Tz + z for some Tx € R(T) and z € N(T™). Next we observe that

(I-TS)(Tx) =Tz —-T(ST)x =Tz —Tx = 0.
This implies that
I-TS)y=I-TS)(Tz+z2)=I—-TS)ze (I —-TS)(N(T™)).

Thus, R(I —T'S) C (I —TS)(N(T%)). Since the reverse inclusion is trivial, this completes the
proof of (22). At the same time, we have also proved (a), since (a) follows directly from (21)
and (22).

To prove (b), take any y € R(T) N N(S). This means that y = Tx for some x and Sy = 0.
Thus, 0 = STz = z, so y = Tx = 0. Next, take arbitrary y € K. As in the first part of the
proof we have y = Tz + z for some Tz € R(T) and z € N(T*), and

(I-TS)y=(I-T9)z. (23)

Put w = TSy € R(T) and v = (I —TS)z. Since v € (I —TS)(N(T¥)), (a) implies that
v € N(S). Therefore, we can rewrite (23) in the form

y=TSy+ (I —TS)z=u+veR(T)+ N(S),

which completes the proof of (b).
To prove (c), first observe that (T'S)? = T(ST)S = T'S which shows that T'S is an oblique
projection. Obviously, T'S acts as the identity on R(7T'), and trivially on N(.5). O

Proposition 2.2.7. Let H and K be Hilbert spaces and T € B(H,K). Then T possesses a
left inverse if and only if it is bounded from below.

Proof. In one direction, the statement is a part of the content of Lemma 2.2.5. To prove the
converse, suppose that 7" is bounded from below. By Proposition 2.1.7, T* is then a surjection.
Now Proposition 2.1.7 (c) applied to T* implies that T*T is invertible on R(T™*) = H. Thus,
S := (T*T)~'T* is a well defined bounded operator from K to H. Obviously, we now have
ST =1. O

Corollary 2.2.8. Let H and K be Hilbert spaces and let T € B(H, K) be bounded from below.
Then T(T*T)~'T* is the orthogonal projection to R(T).

Proof. We know from (the proof of) the preceding proposition that S = (T*T)~1T* is a left
inverse of 7. Then, by Lemma 2.2.6 (c), T'S = T(T*T)~'T* is the oblique projection to R(T)
parallel to N(S). But here, in this situation, since (I*T)~! is an invertible operator on H, we
have

N(S) = N((T*T)~'T*) = N(T*) = R(T)*.

From this we conclude: T(T*T)~'T* is the oblique projection to R(T') parallel to R(T)*; in
other words, T(T*T)~1T* is the orthogonal projection to R(T). O
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Corollary 2.2.9. Let H and K be Hilbert spaces and let T € B(H, K) be bounded from below.
Then every left inverse S € B(K,H) of T is of the form S = (T*T) " 'T*F, where F € B(K)
is the oblique projection to R(T) parallel to some closed direct complement of R(T) in K.

Proof. Clearly, if S = (T*T)"'T*F, where F € B(K) is the oblique projection to R(T)
parallel to some closed direct complement of R(T"), then ST = I.

Conversely, suppose we have S € B(K, H) such that ST = I. Then, by Lemma 2.2.6
(c), F = TS € B(K) is an oblique projection to R(T) for which we have (T*T)"'T*F =
(T*T)~1T*TS = S. O

Remark 2.2.10. Suppose that an operator T' € B(H, K) is bounded from below. Then the
preceding corollary tells us that all left inverses of T are in a bijective correspondence with all
bounded oblique projections to R(7") and, equivalently, with all closed direct complements of
R(T) in K. In this light, we may say that the canonical left inverse of T is the left inverse
that corresponds to the orthogonal complement of R(T") in K. Recall from Corollary 2.2.8
that the orthogonal projection to R(T) is given by P = T(T*T)~'T*. Substituting P for
F in our general formula for a left inverse S = (T*T)~'T*F from Corollary 2.2.9, we get
S = (T*T)~'T*T(T*T)~'T* = (T*T)~'T*. This shows that the left inverse of T constructed
in Proposition 2.2.7 is in fact the canonical left inverse of T

Corollary 2.2.11. Let H and K be Hilbert spaces and let T' € B(H, K) be bounded from below.
Then S € B(K, H) is a left inverse of T if and only if S is of the form S = (T*T)~'T* +
W (I —T(T*T)~'T*) for some W € B(K, H).

Proof. If S = (T*T)~'T* + W(I — T(T*T)~'T*), then, obviously, ST = I.
Conversely, if ST = I, we can take W = S. Then we obtain

(T*T) T + W —T(T*T) 1% = (T*T)~'T* + S(I — T(T*T)~'T*) = S.

g

Taking into account our discussion preceding Lemma 2.2.5 together with Corollary 2.2.9
and Corollary 2.2.11 we obtain the following conclusion:

Corollary 2.2.12. Let (x,)y be a frame for a Hilbert space H with the analysis operator U.
Suppose that (vy)n is a frame for H with the analysis operator V.. The following conditions
are equivalent:

(a) (vp)n is dual to (xy)n.
(b) V* is of the form V* = (U*U)"U*F, where F € B({?) is the oblique projection to R(U)

parallel to some closed direct complement of R(U) in (2.

(¢c) V* is of the form V* = (U*U)~tU* + W(I — U(U*U)~tU*), for some W € B(¢% H).
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Corollary 2.2.13. Let (z,,)n and (vy)n be frames for a Hilbert space H dual to each other
with the analysis operators U and V', respectively. Then

(a) 2 =R(U) + N(V*),
(b) UV* is the oblique projection to R(U) parallel to N(V*),
(¢) 2= R(V) + N(U*),
(d) VU* is the oblique projection to R(V') parallel to N(U*).

Proof. (a) and (b) are immediate from Lemma 2.2.6 with S = V* and T = U. Since
V*U = I is equivalent to U*V = I, (c) and (d) follow from (a) and (b) by symmetry. O

Corollary 2.2.14. Let (zy,), be a frame for a Hilbert space H. Then (), possesses a unique
dual frame if and only if (x,)n is a Riesz basis for H.

Proof. Denote by U the analysis operator of (z,),. Let (e,), be the canonical basis for ¢2.

If (xy,), is a Riesz basis, then, since all ONB’s in all separable Hilbert spaces are equivalent,
there is an invertible operator T' € B(¢2, H) such that Te, = z, for all n. In particular, T
coincides with the synthesis operator U*. Thus, U* is injective. This implies that ¢ =
N(U*)* = R(U), so by Corollary 2.2.12, the canonical dual is the unique frame dual to (2,),.

Conversely, if (x,), possesses a unique dual frame, then again by the preceding corollary
R(U) has a unique closed direct complement in #2 (which is necessarily the null-space); hence,
R(U) = ¢2. This tells us that U is a bijection; thus, U* is a bijection, and therefore (z,,), is a
Riesz basis. O

The preceding discussion on left inverses of operators bounded from below is in fact a
special case of a more general considerations concerned with operators with closed ranges and
their pseudo-inverses. Here we include basic facts about pseudo-inverses.

Definition 2.2.15. Let H and K be Hilbert spaces and let T € B(H, K) be an operator with
closed range. The pseudo-inverse of T is the operator TT € B(K, H) defined by TT|R(T) = Tal
and TT|R(T)¢ = 0, where Ty : N(T)* — R(T) is a restriction of T to N(T)* regarded as an
operator which takes values in R(T).

Notice that Tp is a bijection and, since by the assumption R(T) is closed in K, the inverse
mapping theorem ensures that T, ' is a bounded operator from R(T) to N(T)*. Hence, T is
well-defined and bounded.

Remark 2.2.16. If the range of T' € B(H, K) is closed, then, by Proposition 2.1.7, T* also
has closed range. It is now clear that the pseudo-inverse T satisfies

N(TT) = R(T)*, (24a)
R(TT) = N(T)* = R(T™), (24b)
TT 'z =z, Yo € R(T). (24c)
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It is easy to verify that T is the only operator in B(K, H) that satisfies equalities (24a),
(24b) and (24c).

It is also evident from the definition that 77T and TTT are the orthogonal projections to
R(T) and R(T™), respectively.

Proposition 2.2.17. Let H and K be Hilbert spaces and let T € B(H, K) be an operator with
closed range. Then:

(a) (Tt = (T1)".

(b) TT is given on R(T) by TT = T*(TT*)"'. In particular, if T is a surjection, TT =
T*(TT*)~'.

(c) T*T has closed range and (T*T)t = TT(T*)*.

Proof. (a) It suffices to show that the operator (T'1)* satisfies equalities (24a), (24b), (24c)
with respect to T™. First,

N((T1y*) = R 2 N(T) = (T

Secondly,
(24a)
R((Th)) = N(TT)* "=
Finally, we see from the last part of Remark 2.2.16 that T1T is a Hermitian operator. This
implies that T*(TT)* = (T1T)* = T'T. On the other hand, this operator is by the last part of
Remark 2.2.16 the orthogonal projection to R(7™) which is precisely the remaining property
(24c) of the pseudo-inverse (T*)f. Thus, (TT)* coincides with (7).

(b) First recall from Proposition 2.1.7 (c) that 7T is invertible on R(7'). It is evident that
the operator that acts as T*(TT*)~! on R(T) and trivially on R(T)" satisfies equalities (24a),
(24b), (24c) from the first part of Remark 2.2.16.

(c) We leave this part of the proof as an exercise. O

R(T).

Remark 2.2.18. Suppose that H and K are Hilbert spaces and that T' € B(H, K) is bounded
from below. By the discussion from the beginning of this section we know that 7' has a left
inverse. In particular, the canonical left inverse of T is given by (T*T)~1T*.

On the other hand, we know by Proposition 2.1.7 that T™ is a surjection. By Proposition
2.2.17 (b), the pseudo-inverse of T* is given by (T*)" = T(T*T)~!. Moreover, by the last part
of Remark 2.2.16, we know that T*(T*)! is the orthogonal projection to R(T*). Since T* is a
surjection, this gives us

T*T(T*T)"! =I.

By taking adjoints, we conclude
(T*T) 'T*T =1

which is the equality we already know from (the proof of) Proposition 2.2.7 (see also Corollary
2.2.8). In other words, the canonical left inverse of T is in fact the adjoint of the pseudo-inverse
of T™*.
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In the frame context operators with closed ranges and their pseudoinverses naturally arise
in connection with frame sequences. Roughly speaking a frame sequence in a Hilbert space H
is a frame for a closed subspace of H.

Definition 2.2.19. A sequence (xy,), in a Hilbert space H is said to be a frame sequence if it
is a frame for span{x, :n € N}.

Suppose that (z,,), is a frame sequence in H and denote Span {z,, : n € N} by M. If U €
B(M, ¢?) is the corresponding analysis operator, we naturally understand it as an operator on H
extending U trivially on M+. Then U is bounded below on M and the corresponding synthesis
operator U* is an operator with closed range: R(U*) = M. Conversely, if T' € B(¢2, H) is an
operator with closed range it is easy to see that (Te,), is a frame sequence. The following
proposition tells us that frame sequences arise in the same way from frames.

Proposition 2.2.20. Let (x,), be a frame for a Hilbert space H with frame bounds A and
B, and let T € B(H) be an operator with closed range. Then (T'xy)y is a frame sequence with
frame bounds HT% and B||T|?.

Proof. Clearly, (Tx,), is a Bessel sequence with B||T||?> as a Bessel (i.e. upper frame) bound.
Take any y € span {Tz, : n € N}. We first find = € span {z,, : n € N} such that y = Tx. By
Remark 2.2.16 TT" is the orthogonal projection to R(T") and therefore self-adjoint. Hence,

y=Tr=(TTHTx = (TT'Te = (T")*T"Tx.

From this we obtain

o0

TT*2
AH Z]TTxxn

TH? &
= RS ) 2

n=1

lyl? < T PIT T
)

IN

s

By Exercise 2.2.29 we now conclude that the lower frame condition is satisfied on span {7z, :
n € N}. O

Remark 2.2.21. (a) The conclusion of the preceding proposition might fail if 7' does not have
close range. As an example we may take an ONB (e,,), and the operator T'= S + I, where S
is the unilateral shift.

(b) Even if T has closed range it is not enough to take a frame sequence instead of a frame.
To see this, consider again an ONB (e,,),, for H and the operator T defined by Tegx 1 = %egk,
Teor = eop, for al k. It is now easy to conclude that 7' is bounded and has closed range and
that (egxt1)x is a frame sequence, but (egx11)x is not.

(c) Observe that the preceding proposition is in accordance with Corollary 2.1.12 when T is
a surjection. Namely, It T is a surjection then we know from Proposition 2.2.17 (b) that Tt =
T*(TT*)~'. But then we have |T1||2 = |(TT)*Tt|| = |(TT*)~'TT*(TT*)7|| = |(TT*)7.
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Concluding remarks. The material in this section is standard and well known. Proposition
2.2.4 appeared already in [64]. Corollary 2.2.9 and the corresponding equivalence (a) < (b)
in Corollary 2.2.12 are first observed in [13]. Proposition 2.2.20 and examples from Remark
2.2.20 are borrowed from [51].

Exercise 2.2.22. Let M be a closed subspace of a Banach space X, let IV be a subspace of
X such that X = M + N, and let F be the oblique projection to M along N. Prove that F'
is bounded if and only if IV is closed.

Exercise 2.2.23. Let X be a normed space and let F' € B(X) be an idempotent (F? = F).
Prove that R(F) is closed, X = R(F) 4+ N(F) and that F is the oblique projection to R(F)
along N(F).

Exercise 2.2.24. Let H be an infinite-dimensional separable Hilbert space. Prove that there
exists an unbounded linear idempotent on H with closed range (cf. [30]).

Exercise 2.2.25. Let M and L be closed subspaces of a Hilbert space H such that H = M +
L. Let F be the oblique projection to M along L. Prove that F™* is also an oblique projection
and find R(F™*) and N(F™).

Exercise 2.2.26. Let I’ be a bounded idempotent on a Hilbert space H. Prove that ||F|| =
11 = FI| (see [3]).

Exercise 2.2.27. Let M be a non-trivial closed subspace of a Hilbert space H. Prove that
M has infinitely many closed direct complements in H.

Exercise 2.2.28. Prove Proposition 2.2.17 (c¢): if H and K are Hilbert spaces and the range
of T € B(H, K) is closed, then T*T has also closed range and (T*T)" = TT(T*)T.

Exercise 2.2.29. Suppose that (), is a sequence in a Hilbert space H for which there exist
constants A, B > 0 such that

[e'S)
Al <> [y, za)* < Blly|)?
n=1

for all y from a dense set Y in H. Show that (z,,), is a frame for H. Remark. Observe that the
proof that the lower frame condition extends from Y to H uses the fact that that the upper
frame condition is satisfied on H.
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2.3 Characterizations of frames

By Corollary 2.1.9, a sequence of elements in a Hilbert space H is a frame if and only if it is
the image of an orthonormal basis under the action of a bounded surjective operator. On the
other hand, a sequence in H is a Riesz basis for H if, by definition, it is the image of an ONB
under an invertible bounded operator. Thus, each Riesz basis is a frame. In this light it would
be useful to find another descriptions of those frames that are in fact Riesz bases. We start
with a natural question: if a Riesz basis is regarded as a frame, what is its canonical dual?

Proposition 2.3.1. Let ((zn)n, (Yn)n) be a Riesz basis for a Hilbert space H. Then the canon-
ical dual of the frame (xy)y coincides with (Yn)n-

Proof. Since we have, for all x € H, x = > >7 | (, yn)Zn, the sequence (yn)n is a dual of
(Zpn)n- Since (zy,)y is a Riesz basis, there exist an ONB (e, ), for H and an invertible operator
T € B(H) such that x,, = Tey, for all n. On the other hand, by Corollary 1.2.28, (y,), is also
a Riesz basis for H. Thus, there exists an invertible bounded operator S € B(H) with the
property Se, = yn, n € N. From this we conclude that y, = ST 'z, for all n. Proposition
2.2.4 (b) now implies that (yy), is the canonical dual of (z,,)p. O

Recall that a basis for a Hilbert space need not be a Riesz basis. However, if a basis is also
a frame, the Riesz property follows.

Proposition 2.3.2. If a frame (xy,), for a Hilbert space H is a basis for H, then it is a Riesz
basis.

Proof. Suppose that a frame (z,), is a basis. Denote by U its analysis operator. We know
that x, = U*e,, for all n, where (e,), is the canonical basis for ¢2. It suffices to show that U*
is a bijection. Take any (c,)n € N(U*). Then we have U*(¢p)n = > ooy Cntyn = 0. Since (zp)y,

is a basis, this implies ¢, = 0 for all n. Thus, N(U*) = {0}. O

Remark 2.3.3. It is interesting to note the following consequence. If (), is a frame for H
then either each x € H has a unique expansion of the form = = > > | ¢ 2y, (so that (z,,), is
a basis for H), or each x € H has infinitely many expansions = Y | d,x, with (dy), € 72
(where one can choose (d,), as any element of the linear manifold (z, (U*U) tx,) + N(U*)).
Corollary 2.3.4. If a Parseval frame for a Hilbert space H is a basis for H, then it is an
ONB for H.

Proof. Suppose that a Parseval frame (), is a basis for H. Then its analysis operator U
is an isometry and, as the preceding proof shows, a surjection. Thus, U is unitary. Since we
have x, = U*e,, n € N, where (e,), is the canonical basis for ¢2, it follows that (), is an
ONB for H. O

Recall that a frame (), is said to be exact if removal of any of its elements destroys the
frame property. We shall see that exact frames are precisely Riesz bases. Let us start with a
technical result concerning the inner products of elements of a frame with the corresponding
members of its canonical dual (yn)n, ¥n = (U*U) "z, n € N.
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Proposition 2.3.5. Let (zy,), be a frame for a Hilbert space H with the analysis operator U.
(a) For each m,

> e, (UU)Han)? =

n#m

(1~ V(. (U7 0) )P — [1 {0 T) ) P)

[\D\'—‘

(b) If there exists m such that (v, (U*U) " z,,) = 1, then (zm,, (U*U) 1x,) = 0 for all
n # m.

(c) If there exists m such that (xp,, (U*U) 'zy,) = 1, then the sequence (Ty)nzm is not
fundamental.

(d) For each m such that (xy,, (U*U)  zy,) # 1, the sequence (2 )nzm is a frame for H.

Proof. (a) Choose and fix any m and write a, = (z,,, (U*U) 'x,), n € N. Observe that we

have xy, =Y 07 | anZy and Ty, = Y "4 Omn@y. Now Proposition 2.2.4 (a) implies

[e.9] o0 o0
L= Z |5mn’2 = Z ’an|2 + Z |an — mn|? = lam|? + Z Janl? + lam — 1° + Z ‘anlz
n=1 n=1 n=1

whence
2 lanl* = 1= |am|* — |am — 1°.
n#m

This proves (a).

(b) is evident from (a).

(c) Suppose that (2., (U*U)"tz,,) = 1. Then, clearly, (U*U) 'z, # 0 and, by (b),

(U*U) 'z, L 2, for all n # m.

(d) Let (z,, (U*U) tay,) # 1. Write again a, = (2, (U*U) " tx,), n € N. From z,, =
> o2 | anay, we conclude that z, = ﬁ Zn?ém anTy. This, together with the Cauchy-Schwarz
inequality in ¢2, implies

[z, zm)|? = > nlw, wn) SCZ]a:xn :
m

where C' = m 3 |an|?. Therefore,

n#m

Z!ma}n x:zm]+2|x:1:n|2 1—|—CZ\mxn
n#m n#m
Finally, if A and B are frame bounds of the original frame (x,),, this gives us
2 )2
el < HCD ezl < Y N an) P < Blel.

n#m

Hence, (2 )nzm is a frame with frame bounds Hic and B. O
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Remark 2.3.6. Here we provide an alternative proof of (b), (¢), and (d) from the preceding
proposition.
Suppose first that (z,), is a Parseval frame. Take any m € N. Then we have

[eS)
|zml® = @ms @) P = leml* + D [(@m, zn)?
n=1

n#m

When ||z, || = 1 this implies ) |
proves (b) and (c).

To prove (d), suppose that ||z,,| # 1 which means that ||z,,|| < 1 since all elements of a
Parseval frame belong to the closed unit ball. Now we have, for each z in H,

2] = D 1w en) P = [z 2m) P + Y 1@, @n) |
n=1

n#m

ngm | (T 2,)|? = 0 and hence (z,,, x,) = 0 for all n # m. This

thus,

]2 = [(2, Zm)] Z [{(x, xn)|*. (25)

n#m
Let A’ =1 — |lz,]|? > 0. Since |[(z, zm)[* < ||2|?||2m]|?, we now have
Allz]* = 1~ lzm|*)l2l* < l2l® ~ [z, 2m)| 2 |(z, z0)[?, Va € H.
n#m

Therefore, (2, )ntm is a frame.
Take now arbitrary frame (x,), for H and denote its analysis operator by U. Recall from

Proposition 2.1.15 that ((U* U)_%l'n)n is a Parseval frame and observe that
(. (U*U) ) = (UV) 2, (UV) " 2) = |(U*V) 2]

It is now clear that the desired conclusions (that is, (b), (¢), and (d) from Proposition 2.3.5)
follow from the corresponding statements which we just have proved for Parseval frames.

Corollary 2.3.7. Let (z,)n be a frame for a Hilbert space H with the analysis operator U.
The following conditions are equivalent:

(a) (zn)n is exact;
(b) (zn)n and (U*U)1z,), are biorthogonal sequences;
(¢c) (zn,(U*U) tz,) =1, Vn € N.

Proof. If (z,), is exact, the last statement of the preceding proposition implies (¢). From
the second statement of the preceding proposition we see that (c) implies (b). Observe that
(b) obviously implies (c). Finally, if we have (c), the third statement from the preceding
proposition gives us (a). O
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Corollary 2.3.8. Let (xy,)n be a Parseval frame for a Hilbert space H. The following condi-
tions are equivalent:

(a) (zn)n is exact;
(b) (zn)n is an orthonormal sequence;

(¢) |zn]| =1, ¥n € N.

Each frame is a bounded sequence; if B is an upper bound of a frame (x,,),, we know that
|xn|] < VB for every n. However, norms of frame elements need not be bounded from below
" 1 1 1 1 1
by a positive constant. As an example we may take e, 562 562 363, 563 568 where
(en)n is an orthonormal basis. Notice that this frame is inexact.

Proposition 2.3.9. Let (xy,), be an exact frame for a Hilbert space H with a lower frame
bound A. Then ||z,| > VA for every n.

Proof. Suppose that (z,), is an exact frame and denote by U its analysis operator. Using
(b) from Corollary 2.3.7 we obtain for any m

AU U)  a* < Z} U ) Y, 20) | = (O T) s ) |* < |0 U)o || |-
Since (z,,) is exact, we have x,,, # 0 and, consequently, (U*U) ™!z, # 0 for every m. O

Proposition 2.3.10. A frame (xy,)y for a Hilbert space H is a basis for H if and only if (xy)n
s an exact frame.

Proof. Suppose that a frame (x,), is a basis. By Proposition 2.3.2 (), is then a Riesz
basis. By definition, there exist an ONB (ey), for H and an invertible operator T € B(H)
such that x, = Te, for all n. Since each ONB is an exact frame and invertible operators map
exact frames into exact frames (obvious), this implies that (z,), is exact.

Suppose now that (x,), is an exact frame for H. We must show that each x admits a unique
expansion of the form x = >~°° | A\, z,,. The reconstruction formula (recall that (U*U) ™ x,,),
is the canonical dual of (x,),) gives us z = > > (x, (U*U) 'z,)xz,. Suppose now that we
have a sequence of scalars (\,)y such that z = > >2 | A\, z,,. This implies, for each m,

(z, (U*U) 'z <Z)\nxn, (U*U)~ > Z)\ Ty (UU) M) = A,

n=1

where the last equality follows from Corollary 2.3.7 (b). O

Theorem 2.3.11. Let (x,), be a frame for a Hilbert space H with the analysis operator U.
The following conditions are equivalent:

(a) (zn)n is a Riesz basis;
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n 18 an exact frame;

)
Tpn)n and (U*U) " z,), are biorthogonal;
)n has a biorthogonal sequence;

)n is minimal;

(f) (zp)n is w-independent;

(9) If > 07 enn = 0 for some (cp)n € 02 then ¢, =0 for all n.

Proof. (a)= (b) is proved in Proposition 2.3.10.

(b) = (c) is proved in Corollary 2.3.7.

(¢) = (d) is obvious.

(d) = (e) is proved in Proposition 1.2.16 (a).

(e) = (f) is the statement of Proposition 1.2.14 (b).

(f) = (g) is obvious.

(9) = (a) Our assumption (g) implies that U* is injective. Thus, U* is in fact a bijection

which means, since U* maps the canonical basis of £2 to (), that (z,), is a Riesz basis. [J

We already know that frames for a Hilbert space H are in a bijective correspondence with
surjective bounded operators from ¢ to H. In the rest of this section we provide another
description of all frames on H. We will show that all frames on H can also be described in
terms of a given frame and a class of bounded operators on £2.

Suppose we are given a frame (z,), for a Hilbert space H with the analysis operator U.
Take any T € B(¢?) and denote by [T],), the (infinite) matrix of 7' with respect to the
canonical basis (ey), of £2:

(T)(en)n = (tij), tij = (Tej,ei), i,5 € N. (26)

Consider the composition TU € B(H, ¢?). If T is bounded from below on R(U), then TU is
bounded from below on H and hence (TU)* = U*T™* is a surjection. Hence, TU is the analysis
operator of a frame (f,,), for H that is given by

fao=U"T"¢e, =U" Z(T*en,ej>ej = Z(en,Tej>U*ej, n € N. (27)
j=1 j=1

Recalling that U*e; = x5, j € N, and using (26), we get

fn= Z%mj’ n € N. (28)
j=1

Conversely, if we define a sequence ( f,,),, using (28) with coefficients ¢;; arising from an operator
T € B(¢?) as in (26), then (27) shows that (f,,), is a Bessel sequence with the analysis operator
TU. If, moreover, (f,)y is a frame, TU is bounded from below and hence 7" must be bounded
from below on R(U).

In the sequel we shall write (f,)n = [T](e,), (Tn)n if (fn)n is a frame that is obtained from
a frame (z,,), and an operator T' by the procedure described above.
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Theorem 2.3.12. Let (), be a frame for a Hilbert space H with the analysis operator U.
For every frame (fn)n for H there exists an operator T € B(¢?) bounded from below on R(U)
such that (fn)n = [T](en), (Tn)n-

Proof. Take any frame (f,), for H. Denote by V its analysis operator and by D its upper
frame bound. Using the reconstruction formula with respect to (x,), and its canonical dual
we can write

o= A (U V) taj)aj, V€N, (29)
j=1
Put
tin = (UU) 2y, fn), j,m€N. (30)
We must show that the map T' defined by
Ten:thnej, neN, (31)
j=1

(end extended by linearity) is a bounded operator on £2, where (ey), is the canonical basis for
¢2. By our considerations preceding Theorem 2.3.12, this will then imply that T is bounded
from below on R(U). Let y = ZN cnen be any finite sequence in ¢2. Then, if denote by B’

n=1
an upper frame bound of ((U*U)'xy,),, we have

N N
||T‘y||2 = T (Z Cnen> Z cpTen,
n=1 n=1

2
2 00

) N
(2) Z Cp, Z tjnej
n=1 J

=

2

IA
%
(1=
)
3
=

2
< B'Dlly|*.

N
= B|v* (chen>

n=1

This shows that 7' is bounded on the subspace cgg of all finite sequences which is dense in
02, Therefore, it extends to a bounded operator on ¢2. O
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Concluding remarks. A major part of the material in this section (up to Theorem 2.3.11) first
appeared in [64]. In the exposition we have followed [31]. Theorem 2.3.12 is proved in [1].

Exercise 2.3.13. Let (x,), be a Riesz basis for a Hilbert space H. Show that the sequence
(fn)n defined by f,, = , + zp41, n € N is not a frame for H.
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2.4 Near-Riesz bases

Definition 2.4.1. A frame (z,,), for a Hilbert space H is said to be a near-Riesz basis for H
if there exists a finite set of indices S such that (xn)ngs s a Riesz basis for H.

We say that a frame (x,,)y, is Besselian if convergence of the series Y oo | cpy, where (¢p)n
is some sequence of scalars, implies that (c,), € £2.

Finally, a frame (), is said to be an unconditional frame if, whenever the series y - | cnp
converges for some sequence (cp)n of scalars, this convergence is unconditional.

If (zy)n is a Riesz basis for H we know from Theorem 1.2.29 that, if (¢, ), is a sequence of

scalars, then
o

chaﬁn converges <= (¢p)n € 2.
n=1
It is easy to conclude that the same holds for near-Riesz bases.
Furthermore, if (z,), is any frame (in fact, merely a Bessel sequence), then we know from
Proposition 1.3.4 that the series Y 7, ¢,z, converges unconditionally for all (?-sequences

(cn)n-

By combining these two observations we conclude:

Remark 2.4.2. Let (z,,), be a near-Riesz basis for a Hilbert space H. Then, if (c,), is a
sequence of scalars,

(o.0] o
Z Cny converges <= (cp)n € P’ = Z cpxy, converges unconditionally.

n=1 n=1

This gives us immediately the following conclusions::

(a) each near-Riesz basis is a Besselian frame,

(b) each Besselian frame is an unconditional frame.

However, a frame need not be unconditional. To see this, consider an ONB (e,),, for H
and a frame (e1,e1,e9,€e9,...). It is clear that the series

1 1 1 1
e1—€e]+—=ey— ——ez+ ——e3 — —=e3+...
R R R R

converges, but not unconditionally.

It turns out that the Besselian property of frames has deep implications to their analysis
operators. We first introduce the notion of similar frames.

Definition 2.4.3. Let (xy,)n and (yn)n be frames for Hilbert spaces H and K, respectively. We
say that (zy)n and (yn)n are similar frames if there exists an invertible operator T € B(H, K)
such that y, = Txy for all n.

Notice that each frame is similar to its canonical dual.

Clearly, a frame (y,), that is similar to a near-Riesz basis/Besselian frame/unconditional
frame is also a near-Riesz basis/Besselian frame/unconditional frame.

The following lemma should be compared to Proposition 2.1.17.
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Lemma 2.4.4. Fach frame is similar to the frame of the form (Pey)y for a closed subspace
M of 02, where (ey)y is the canonical basis for £ and P is the orthogonal projection to M.

Proof. Let (x,), be a frame for a Hilbert space H with the analysis operator U. Since
U is bounded from below, its range M = R(U) is a closed in ¢2. Denote by P € B(¢?) the
orthogonal projection to M. We know from Proposition 2.1.16 that (Pe,), is a Parseval frame
for M.

Note that M+ = N(U*). Hence, if (c,), is any sequence of scalars, we have

U ((en)n) = U*(P(cn)n + (I = P)(cn)n) = U (P(cn)n).

In particular, we have
zn, = U%ep, = U*Pe,, Vn € N.

It remains to observe that U* is an invertible operator when regarded as an operator from M
to H. N

We are now ready for the first key theorem of this section.

Theorem 2.4.5. Let (x,,)n, be a Besselian frame for a Hilbert space H with the analysis
operator U. Then dim N(U*) < oo.

Proof. Consider the closed subspace M = R(U) of £? and the orthogonal projection P to
M. We know from Lemma 2.4.4 that, if (e, ), denotes the canonical basis for £2, the sequence
(Pey)yn is a Parseval frame for M that is similar to (x,,),. Moreover, the analysis operator of
(Pey,)n is precisely the inclusion M < H. Notice that (Pe,), is also Besselian, being similar
to (zp)n.

We must show that dim M+ < co.

We prove by contradiction: suppose that dim M+ = co. We shall now construct a sequence
of scalars (c,), that is not in £2, but for which the series > o2, enPey, converges.

Let (¢,)n ba an ONB for M*. Since

(o) o0
Y1 = Z<§Olaen>en and 0= Py = Z<90176n>P6na
n=1 n=1
we have
N N
A}iinoo Z((pl, en)en|| =1 and A}gnoo Z(cpl, en)Pen|| = 0. (32)
n=1 n=1
Put Ny = 0 and choose any N; such that N; > Ny and
N1 1 N1 1
Z(gpl,en>en > ﬁ and Z(g@l,en>P6n < T (33)
n=1 n=1
Observe that we have for any m
0o 2 Ny 2~
©m — Z <‘Pm7 en>en = Z<80ma en>€n = Z ’<90m7 en>’2-
n=N;+1 n=1 n=1
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Since (¢m)m converges weakly to 0, we also have

Ny
. 2
W}gnooz [{m, en)|” = 0.

n=1

Put my = 1. It follows from (34) that there exists mgy > mq such that

M 3 0 .
(ZK@mpen)’z) = ||$Pm2 — Z (Pmgs en)en|| < 16
n=1 n=N1+1
Now we claim that
oo
> lomenen| > .
n=N1+1

To see this, suppose the opposite, i.e. HZ;’;’:NIH(@mQ, en>enH < % This implies

[e.e] (o)

(35 1 1
1= |lemsll < ||ems — Z (Pmss €nen| + Z (@mgs en)en| < 16 + ﬁ
n=N1+1 n=N1+1

which is a contradiction.
Thus, we have (36). From (36) we conclude that there exists N} > Ny such that

N

N > N} = Z (Omgs€n)enl| >
n=N1+1

Sl

Now 0= Pm, = D 0”1 (Pms, €n)Pey, implies

00 o) N1

Z (Pma»en)Pen|| = Z<80m2,€n>P€n - Z<<Pm27€n>P€n

n=N1+1 n=1 n=1
Ny

= Z<@m2a€n>Pen

n=1

Ny

Z<‘Pm2a en)en

n=1

Ny .
(35) 1
= (Semeatt)

Hence, there exists NJ > Nj such that

IN

SIS

N
1
N > Ny = Z (Pmgsn) Pen|| < g
n=N1+1
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From (37) and (38) we conclude that there exists Ny (in fact, each Ny > Nj, NJ will be good)

for which we have
No 1 Ny 1
Z (Pmgs€n)en|| > —= and Z (Pmgy, en)Penl| < =. (39)
- V2 - 8
n=N1+1 n=N1+1
So, by now we have mq = 1, m9, and also Ny = 0, N1, N2 such that
N 1 Ny 1
Z<‘Pm17en>en > 727 Z(‘Pmuenﬂjen < 17
n=1 n=1
No 1 No 1
Z <90m2,6n>6n > =, Z (<pm2,en>Pen <35
V2 8
n=N1+1 n=N1+1
Again, since (¢.,)m converges weakly to 0, we have
N2
: 2
Jim S {2 =0
n=1
Hence, there exists ms > mg such that
1
No 2 [e’e) 1
(Z |<‘Pm37€n>|2> = ||¥$ms — Z [{pms en) ] < 32 (40)
n=1 n=Na+1
Now we claim that
= 1
7 (s enden|| > —=. (41)
n=N2+1 \/§
To see this, suppose the opposite, i.e. HZZO:NZH(@mg, €n>enH < % This implies
[o.¢] o
(40) 1 1
L= [loms | < ||¢ms — Z (Pmsys €n)en]| + Z (Pmys en)en|| < 5"‘%
n=N2+1 n=N2+1
which is a contradiction. So, we do have (41). It follows from (41) that there exists N > No
such that
al 1
N> N, = Z (Omsg, en)en|| > —=. (42)
V2
n=Na+1
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Now 0= Py, = > o0 1 (Pmy, €n)Pey implies

00 [e's) N

Z <30m3a€n>Pen = Z<80m3a€n>Pen - Z<90m376n>P€n

n=Ns+1 n=1 n=1
Na

= Z<¢m3a€n>Pen

n=1
N2

Z<§0m37 en>en

n=1

N2
(40) 1
_ E 2

Hence, there exists N§ > Ny such that

IN

N
1
N> N} = g (Omsg, en) Pen|| < —. (43)
16
n=No+1

From (42) and (43) we conclude that there exists N3 (in fact, we can choose any N3 > N, NY')
for which we have

N3 N3

1 1
Z (Pms, €n)enl|| > ﬁ and Z (Oms, en) Pen|| < 6 (44)
n=N2+1 n=No+1

Continuing by induction, we obtain sequences (Ng)%_, and (mg)%_, for which we have,
for all K > 0,

Nk1 1
Z (gme+1,en>en > = (45)
n:NK+1 \/5
Ni i1 1
Z (Pmgesrsen)Penl|| < ST (46)
n=Ng+1
In addition, we also have
R R
Z (O en)Penl|| < Z (Cmgirrenlen|| <1, VR> Nig + 1. (47)
n=Ng+1 n=Ng+1

Consider now the sequence (cy,), where

1
c1,C2,...,cn, are defined as —=(pmy,€n), n=No+1=1,Ng+2=2,..., Ny,

V1

1
CNy+15CNy+2 - - -, CN, are defined as —(@my,en), n=N1+1, N1 +2,..., No,

V2
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1
CNg+15CNg+2 - -+ CNgy, are defined as  ———=(@my,,,€n), = Nxg+1, Nxk+2,..., Ng41.

VK +1
Then we have for every K

Ng 41 Ng 41

1 45)1 1
2 el = 3 g lemen el > g5
n=Ng+1 n=Ng+1

50, Y.0° | |en|? clearly diverges.

On the other hand, we claim that Y7 | ¢, Pe,, converges. We shall show that the associated
sequence of partial sums is a Cauchy sequence.

So, take any € > 0 and choose K such that \/ﬁ < e Let R> N > Ng,. We first find
K and L such that

Nk < N<Ngy1 and Ngip+1<R<Ngyipi1

Then we have

R
Z cnPey,

R N
E cnPey, — E cnPey,
n=1 n=1

n=N+1
Ni 41 Ni 42 Nkt R
E cpPen|l + E cnPen||+ ...+ E cnPey || + E cnPey||. (48)
n=N-+1 n=Ng1+1 n=Ngir_-1+1 n=Ng r+1

The first term in (48) is estimated in the following way:

Ng11 N1 N
Z cnPey, = Z cnPey, — Z cnPey,
n=N+1 n=Ng+1 n=Ng+1
Nk 11 1 N 1
= Y ———=(tmrien)Pen— Y ——=—=(Pmi; n)Pen
(46),(47) 1 1 1
= K+12K+2+ K+1 (49)
Similarly, considering the last term in (48), we have
R R
1 (47) 1
cpPey|| = _ ,en)Pe < 50
_Z nd €n _Z K+L+1<‘PmK+L+1 n)Pen| < KT Li1 ( )
n=Ngr+1 n=Ngr+1

Finally, all the terms in (48) between the first and the last one are estimated using (46). Taking
this into account together with (49) and (50), we now continue our computation from (48):

R N R
Z cnPey, — Z cnPey|l = Z cnPenll =
n=1 n=1 n=N-+1
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Ng i1 Nk 42 Nk4L R

D ePen|+| > caPen|+...+ Yo Pe[+|| D cnPe| <

n=N+1 n=Ngi+1+1 n=Ng4r-1+1 n=Ngir+1
1 1 1 1 1 1 1 1
K+12K+2+\/K—|—1+\/K+22K+3+'”+ K+L2K+L+1+m§
1 1 1 1 1 3 3
VK +1 * VK+L+1 * VK +1 <2K+2 e 2K+L+1> = VK +1 = VEy+1 =€

g

To proceed with our analysis of near-Riesz bases and Bessel frames we need a simple
auxiliary result on perturbations of ONB’s.

Lemma 2.4.6. Let (e,), be an ONB for a Hilbert space H. Suppose that a sequence (z,)n in
H is such that > °° | |len — zu||* < 1. Then (z,)n is a Riesz basis for H.

Proof. Put > >, |le, — 2,]|> = m?; by the assumption we have m < 1. We need to show
that the operator V on H defined by Ve, = z,, n € N, is a well defined bounded invertible
operator on H. To do that, it suffices to prove that I — V is bounded operator which satisfies
I —V] <m.

Now we have, for any finite sum y = ZN

n=1 Cn€n,

N
I =V)yl = Z cnlen — 2n)
n=1
N
< Z lcnl - llen — znl|
n=1
1 1
N 2 N 2
< (Ser) (3t
n=1 n=1
1
N 2
< m (Z \an) = mlly].
n=1
This is enough to conclude that I —V € B(¢?) and ||[I — V| <m < 1. O

We are now ready for the characterization of near-Riesz bases.

Theorem 2.4.7. Let (z,,), be a frame for a Hilbert space H with the analysis operator U.
Then the following conditions are equivalent:

(a) (xy)n is a near-Riesz basis;
(b) (xn)n is Besselian;

(c) dim N(U*) < oo.
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Proof. (a)= (b) is already observed in Remark 2.4.2 and (b) = (c¢) is Theorem 2.4.5. So, it
only remains to prove (¢) = (a).

Suppose that dimN(U*) < oo. Denote again by M the range R(U) of U. Note that
N(U*) = R(U)* = M*. Let P € B(£?) be the orthogonal projection to M. Let (e,), be the
canonical basis for 2. Recall that (Pey), is a frame for M and that the analysis operator
of (Pey)y is the inclusion M < 2. Since (Pe,,), is similar to (x,),, it suffices to show that
(Pey,)n is a near-Riesz basis for M.

By the assumption we have dim M=+ < oo so, the rank of I — P is finite; in particular, I — P
is a Hilbert-Schmidt operator. Thus,

D I = Penl* < oo.

n=1

From this we conclude that there exists N such that
oo

> len — Pen|* < 1.

n=N-+1

Define the sequence (2y), in £2 by

- en, n=12...,N
= Pen, n=N+1,N+2,...

Clearly, we now have

[o.¢]
> llen = zall* < 1. (51)
n=1

By Lemma 2.4.6, (2,)n is a Riesz basis for £2. Clearly, (zn)n>N+1 = (Pen)n>nN+1 is then a Riesz
basis for its closed linear span. Observe that, since (Pey,), is a frame for M, the co-dimension
of span{Pe,, : n > N + 1} in M is finite. It is now easy to conclude that there is a finite set
S contained in the set {1,2,... N} such that the sequence (Pey)nes U (Pep)n>n+1 is a Riesz
basis for M.

]

Remark 2.4.8. The difficult part of the proceeding proof - the implication (b) = (¢) - is in
fact the content of Theorem 2.4.5.

Here we note that the equivalence of (a) and (c) in Theorem 2.4.5 can be obtained much
easier if one avoids involving the Besselian property.

Indeed, (¢) = (a) is already demonstrated in the preceding proof. Let us prove directly
that (a) = (¢).

So, suppose that (x,), is a near-Riesz basis for H and denote again by U its analysis
operator. We may assume without loss of generality that (z,)n,>k4+1 is @ Riesz basis for H.
Denote by (ey), the canonical basis for 2. Denote by T € B(¢2, H) the invertible operator
which satisfies Te,, = x4, for all n. Let S € B(£2) be the unilateral shift. Since we have
U*e, = x, for every n, it follows that T = U*S*. Let M; = span{ei,es,...e;}. Clearly,
My, = N((S*)*) and R(S*) = M; .
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We now claim that M; N N(U*) = {0}. To see this, take any = € M- N N(U*). Since
R(S*) = M, there exists v such that 2 = S*v. But then we have 0 = U*x = U*S*v = Tv
which implies v = 0 by invertibility of T'.

Denote by Py the orthogonal projection to Mj. The preceding conclusion now implies that
P, : N(U*) — My, is an injection. Indeed, if Pyx = 0 for some xz € N(U*) then, clearly,
x € M;- N N(U*) = {0}; hence, = = 0.

Thus, N(U*) is embedded into M}, and hence it must be finite-dimensional.

The reason for choosing the extended version of Theorem 2.4.7 is the following theorem
which tells us that all properties of frames introduced in Definition 2.4.1 are in fact equivalent.

Theorem 2.4.9. Let (z,,), ba a frame for a Hilbert space H with the analysis operator U.
The following statements are all equivalent:

(a) (xn)n is a near-Riesz basis;
(b) (xn)n is Besselian;

(¢c) dim N(U*) < oo;

(d) (xn)n is unconditional.

Proof. We only need to prove that (d) is equivalent with any (and hence all) of the other
three properties. Recall that (b) = (d) is observed in Remark 2.4.2; so it suffices to prove
(d) = (b).

Here we provide the proof under the additional assumption that (z,), is bounded from
below. Choose m > 0 such that ||z,| > m for all n. Suppose we have a sequence of scalars
(¢n)n such that 7 | ¢z, converges. By the hypothesis, this series converges unconditionally.
By Orlicz’c theorem we now have Y oo, |lc,@n||? < oo. This implies that m? > 00, |e,|? <
S0 L lenPllznll? = 3002 llen@nl|? < oo; thus, (¢)y is an £2-sequence. O

Concluding remarks. Almost all results of this section are obtained in [87]. The only two
exemptions are Remark 2.4.8 for which we do not have a reference (but is certainly known to
the experts) and implication (d) = (b) from Theorem 2.4.9 which is in general case, without
assuming that the frame under consideration is bounded below, proved in [3(].

Exercise 2.4.10. Provide the details in the final argument of the proof of Theorem 2.4.7.
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2.5 Excesses of frames

The excess of a frame (z,), is defined as the greatest number (possibly co) of elements that
can be removed from (x,), yet leave the fundamental sequence in H.

Definition 2.5.1. Let (x,)y, be a frame for a Hilbert space H. The excess of (xy)n is defined
as

e((xn)n) = sup {card(S) : span{x, :n ¢ S} = H}.

If e((zn)n) = m € N, then it is evident from the definition that for any k, 1 < k < m, one
can find a set of indices T" with card(7’) = k such that span{z, : n € T} = H. Similarly, if
e((xn)n) = oo one can find such a set T" with card(T") = k for any k € N.

Theorem 2.5.5 below is the fundamental result on excesses of frames. We first need two
auxiliary results. The first one is a lemma which should be compared to Remark 2.4.8.

Lemma 2.5.2. Let (xy,), be a near-Riesz basis for a Hilbert space H with the analysis operator
U. Suppose that S is a finite set of indices for which (zn)nem\s s a Riesz basis for H. Then
card(S) = dim N(U*).

Proof. First, by Theorem 2.4.7 we know that dim N(U*) < oco. Denote again by M the
range of U and observe that N(U*) = M*. Let P € B(£?) be the orthogonal projection to
M and let (ey), denote the canonical basis for 2. Since by Lemma 2.4.4 the frame (Pey,),
for M is similar to (2,)n, it follows that (Pep)nen g is a Riesz basis for M. In particular,
Plspan {e,meN\s} : Span{e, :n € N\ S} — M is invertible (because each operator of Hilbert
spaces that maps an ONB to a Riesz basis must be invertible).

For each z € £ we have Pz € M, so there exists a unique y € span {e, : n € N\ S} such
that Py = Pz, that is x —y € N(P) = M. This shows that

(> =N(P) 4 span {e, : n € N\ S}.

(The sum is direct since Plspar {e,:nen\s} 18 an injection.) Finally, since dimensions of all direct
complements of a closed subspace are equal, we conclude that

dim(N(U*)) = dim(N(P)) = dim((5pan {e,, : n € N\S})*) = dim(span {e,, : n € S}) = card(S).
g

Lemma 2.5.3. Let (zy,), be a frame for a Hilbert space H. Suppose that S is a finite set of
indices such that span{z, :n € N\ S} = H. Then (y)nen\s is a frame for H.

Proof. We may assume without loss of generality that S = {1,2,...,k}, £ € N. Obviously,
(1) n>r is a Bessel sequence. Its analysis operator Uy is given by Uy = (S*)*U, where S € B(¢2)
is the unilateral shift, and U is the analysis operator of (x,),. Let V be the analysis operator
of any dual frame for (z,),. Then we have V*U = I. Put V; = (S*)*V. Denote by (e,)n
the canonical basis for 2 and by P, the orthogonal projection to span {e,es,...,er}. Then
ViU, = V*SF(S*)*U = V*(I — Py)U = I — V*PU; thus, I — V;*Uj is a compact operator. By
Problem 181 in [76], Uy has closed range. Hence, by Proposition 2.1.7, U; has closed range.
By assumption the range of Uy is dense in H, so U7 is a surjection. This implies that (z,)n>k
is a frame. O
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Remark 2.5.4. (a) Observe that Lemma 2.5.3 can alternatively be deduced from Proposition
2.3.5 (c),(d) (by applying these assertions finitely many times).

(b) Here we provide yet another proof of Lemma 2.5.3.

Suppose we have a frame (x,), for a Hilbert space H such that span{z, :n >k} = H.

Assume first that (z,,), is a Parseval frame. Suppose that (x,),~x is not a frame for H. We
now claim that the operator G € B(H) defined by Gz = Y77, .\ (x, z,)xy is not invertible.
To see this, denote by U; the analysis operator of the sequence (z,),~r and observe that
G = U{U;. Now, if G is invertible, then U; is a surjection and hence (z,)n>k is a frame for H
which is a contradiction.

Consider now the operator E defined by Fz = Zflﬂ(:v,xn)xn. Since (z)n is a Parseval
frame, we have x = > | (x, zp)xy for all z in H; hence, we have E + G = I. This shows us
that [ — E' is not invertible; thus, 1 € o(FE). Since E has finite rank, we conclude that 1 is an
eigenvalue of E. Therefore there exists g € H such that ||zg|| = 1 and Exg = 2o (and also
Gzo = 0).

Denote by P the orthogonal projection to span{zg}. Clearly, we have PGP = 0. On the
other hand, we have PGPz =, (x, Pz,)Px, for all 2 in H. Here we have an increasing
sequence of positive operators (the corresponding partial sums) that converges in the strong
operator topology. Since all partial sums are dominated by the strong limit (which is in this
situation the zero operator), we conclude that (x, Pz,)Px, = 0 for all z and all n > k. This
implies Px, = 0 for all n > k. Thus, xg L x, for all n > k which is a contradiction with our
assumption that span{x, :n >k} = H.

In the general case when our frame (z,), is not Parseval we can work with the associated
Parseval frame ((U*U )_%xn)n and apply the conclusion of the preceding discussion.

(c) However, the conclusion Lemma 2.5.3 is not correct if a "redundant set of indices” is
infinite. More precisely: if (z,)y is a frame for which there exists an infinite set S C N with
the property span {z,, : n € N\ S} = H, the the sequence (z,),en s need not be a frame.

As an example, consider an orthonormal basis (e,), in a Hilbert space H and the frame
e, %62, %ez, %63, %63, %63, .... It is evident that its subsequence (ﬁen)n is fundamental
in H, but not a frame for H.

Theorem 2.5.5. Let (z,,), be a frame for a Hilbert space H with the analysis operator U.
Then e((xy)n) = dim N(U*).

Proof. Suppose that {y1,%2,...,¥m} is linearly independent set in N(U*) < £2. If (en)n
denotes the canonical basis for 2, we may write

(o]
yi = (Yji)iz1 = Zyjiei, j=12...,m.
i=1

Note that the equality U*y; = 0 for j = 1,2,...,m, can be written as

o]
Zyj,;xi:O, j:1,2,...,m,
=1
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or, in terms of infinite matrices, as

yir Y2 ... z1 0
. . Tz | = | -
Yml Ym2 - -- 0
The m x oo matrix in the above equation has m linearly independent rows and hence has m
linearly independent columns (this is seen by the argument used for finite matrices). Let us
denote by ki,ka, ..., ks, the indices of m linearly independent columns. We claim that the
sequence (Tp)ntk;,.. k, is fundamental in span{z, : n € N} = H. Note that this will imply
e((zn)n) > m and hence e((xy),) > dim N(U™).
Suppose that h € span{z, : n € N} = H satisfies (h,z,) = 0 for all n # ki,...,kpn. We
want to conclude that h = 0. Observe that

=1 i=1

that is,
Yiky -+ Ylkm (Thy s h) 0
Ymky -+ Ymknm (Thy» 1) 0
However, the matrix of the system is invertible, so this implies (xg,,h) = ... = (xy,,,h) = 0.

This, together with the assumption on h gives us h = 0. So, we have proved that e((xy),) >
dim N(U™).

It is now clear that dim N(U*) = oo implies e((xy,),) = 0.

Suppose now that dim N(U*) = k € N. By Theorem 2.4.7, (x,,), is then a near-Riesz basis
for H. Suppose that S is a finite set of indices such that (z,),en g is a Riesz basis for H. Now
Lemma 2.5.2 gives us card(S) = dim N(U*) = k. We must show that e((x,),) = k and by the
first part of the proof it suffices to show that e((xy,),) < k.

To see this, suppose the opposite: e((x,),) > k. By the observation following Definition
2.5.1, then there exists a set of indices " C N such that card(T) = k + 1 such that the frame
members z,, n € T, can be removed from (z,), and yet leave the fundamental sequence.

We can assume without loss of generality that S = {1,2,...,k}. Since (zn)nens is a Riesz
basis for H, there exists an invertible operator W € B(H ) and an ONB (e,,),, for H such that
Wxpin = ey for every n € N. The image of our frame (x,), under the action of W is the
sequence (hy,ha, ..., hg,e1,ea,...), where hy, ..., hj are some elements of H. The assumption
on the set T' now implies that we can find k+ 1 elements of this sequence which can be removed
without destroying the spanning property. This is, obviously, impossible.

O

Remark 2.5.6. If (z,,), is only a Bessel sequence the excess e((zy)y) is defined as
e((xn)n) = sup{card(S) : span {z, : n € N\ S} =span{z, : n € N}}.

We note that the first part of the proof of the preceding theorem shows that we have e((zy,)n) >
dim N(U*), where U denotes the corresponding analysis operator. There are Bessel sequences
for which this inequality is strict (see Exercise 2.5.13).
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We proceed with some useful results on excesses of frames.

Proposition 2.5.7. Let (zy,), be a frame for a Hilbert space H with the analysis operator U.
Then e((zn)n) = Y opoy (1= (U*U) L2y, 20)).

Proof. Recall from Corollary 2.2.8 that U(U*U)~'U* is the orthogonal projection to R(U);
thus, I — U(U*U)~'U* is the orthogonal projection to N(U*). Denote again by (e,), the
canonical basis for £2. Using Theorem 2.5.5 we now have

e((zn)n) = dimN(U*)
= (I -UUU)'UY)

= YA~V V)0 )enen)

Il
e &

((eny en) — (U*U) " U*en, Uten, ))

3
Il
_

[
NE

(1= ((U*U) g, @) -

3
Il
—

O

Corollary 2.5.8. Let (z,,)n be a Parseval frame for a Hilbert space H. Then e((xy)n) =
> (1= llall?)-

Proposition 2.5.9. Let (xy,), and (vy,)y, be frames for a Hilbert space H that are dual to each
other. Then e((xn)n) = e((vn)n)-

Proof. Denote by U and V the corresponding analysis operators. We must prove that
dim N(U*) = dim N(V*). Since we have V*U = I, Lemma 2.2.6 (a) (with S =V* and T'=U)
gives us

N(WV*) = -UV*)(NU)).

From this we conclude
dimN(V*) =dim (I = UV*)(N(U™))) < dim N(U™).
The opposite inequality follows by symmetry since V*U = I is equivalent to U*V = I. O
There are many properties of frames depending on or described in terms of their excesses.

Here we include just one of such results, namely a characterization of frames that possess
Parseval duals.

Theorem 2.5.10. Let (), be a frame for a Hilbert space H with the optimal frame bounds
Aopt and B and the analysis operator U. Then (xy,), possesses a Parseval dual if and only if
the following two conditions are satisfied:
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(a) Aopt > 1,
(b) dim (R(UU — 1)) < e((zn)n)-

Proof. Suppose first that (vy,), is a Parseval dual for (z,) and denote its analysis operator
by V. By Corollary 2.2.12 (c), V is of the form V = U(U*U)~! + QW, where Q € B(¢?) is the
orthogonal projection to R(U)* and W € B(H, ¢?) is arbitrary.

Since (vy,)y, is a Parseval frame, we have V*V =1 i.e.,

(UrU)HU + WrQ)UUU) ™+ QW) = I.
Since QU = 0 and U*@Q = 0, this gives us
(U U) '+ W*QW = 1. (52)

In particular, this implies (U*U)~! < I and hence U*U > I. This proves Agps > 1.
Furthermore, by multiplying (52) from both sides by (U*U )% we obtain

U*U — I = (U*U) 2 (W*QW)(U*U)>.

Since (U*U )% is an invertible operator, from this we conclude

dim (R(U*U — 1)) = dim (R(U*U)2 (W*QW)(U*U)?))
= dim (R(W*QW))
< dim (R(Q))
= dim ((R(U)")
= e((zn)n).

To prove the converse, assume (a) and (b). We can write U*U = I & T according to the
decomposition H = N (U*U — I) @ R(U*U — I). Observe that here we have T' > 0 and, since
Aopt > 1, U(T) - [laBopt]-

Consider a continuous function g : [1,00) — [0, 1) defined by g(t) = /1 — 1. Put G = g(T).
We now use assumption (b) to find a partial isometry L € B(H,¢?) whose initial space is
R(U*U — I) with final space contained in N(U*) = R(U)*. Finally, denote by P € B(H) the
orthogonal projection onto R(U*U — I).

Let V =U(U*U)"' + L(0 ® G)P. Then

VYV = ((U0)"'U" + P02 G)L*) (UWUU) ™ + L0 & G)P)
=U V) "+ 06 =TT H+0a(I-T1) =1
Let us now put v, = V*e,, n € N, where (e,), is the canonical basis for 2. Since V*V = I,

the sequence (vy,), is a Parseval frame in H. Obviously, we also have V*U = I which means
that (vy,), is a dual of (zp)n. O

The above condition (a) is not crucial, since it can be ensured by rescaling the original
frame (although, the construction then yields only a tight dual frame with the frame bound
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different from 1). Condition (b) is essential; it tells us that the excess should be at least large
as d = dim (R (U*U — I)) = dim (N (U*U — I)*). Note that the number d can be interpreted
as a kind of a measure of deviation of the original frame from being Parseval. Namely, the
characterizing Parseval property U*U = I is trivially fulfilled on the subspace N (U*U — I).
So, any deviation from the Parseval property has its origin in the orthogonal complement
N(U*U — I)* = R(U*U - I).

In the following section we will discuss some properties of frames which are related to the
condition d < oo.

We end this section with a comment on frames with infinite excess. As observed in Remark
2.5.4 (c), if (xy)n is a frame for H for which there exists an infinite set S C N with the property
span {z, : n € N\ S} = H, then the sequence (r,)nen s need not be a frame. However, we
have the following result from [19] (see also Theorem 8.44 in [$1]) which we include without
proof.

Theorem 2.5.11. Let (v,)n be a Parseval frame for a Hilbert space H, and let (xy))n be a
subsequence of (xy,)n. Then the following conditions are equivalent:

(a) For each k € N the sequence (Tn)ntp(k) is fundamental (and hence a frame) and there
exists a constant C' that is a lower bound for each frame (Tn)ntp(k)-

(b) sup {[|zpm)l : m € N} < 1.

In case (a) and (b) hold, for each 0 < e < C there exists an infinite subsequence (T,(p(ny)) of
(Tp(ny) such that (Tn)pem\ {r(p(n)):meny} i a frame for H with frame bounds C — ¢ and 1.

Example 2.5.12. Recall from Example 2.1.18 that the sequence (v/be?™™), <7 is a Parseval
frame for L2([0,1]) for any 0 < b < 1. An application of the preceding theorem yields an
infinite set S C Z such that the sequence (\@e%inbt)nez\ s is a frame.

It is interesting to note in this context that the original sequence is finitely linearly inde-
pendent (see [$1], Example 8.7 and Exercise 8.42).

Concluding remarks. The notion of the excess of a frame was introduced in [19]. Theorem 2.5.5
and Proposition 2.5.7 are from the same paper. The proof from Remark 2.5.4 (b) is from [93].
Proposition 2.5.9 first appeared in [13]. The existence of Parseval duals was first discussed in
[77]. Tt is proved there that a frame (z,), for a Hilbert space H possesses a Parseval dual if
and only if (x,), can be obtained by applying an oblique projection to an ONB for a larger
Hilbert space K which contains H as a closed subspace. This property of frames is discussed
in [4]. So, Theorem 2.5.10 is obtained as a combination of the results from [77] and [{]. The
proof presented here is taken from [13].

Exercise 2.5.13. Let (e,), be an ONB for a Hilbert space H. Put f = >°°, Le,. Show that
(f,e1,ea,e3,...) is a Bessel sequence whose excess is equal to 1 and whose synthesis operator

is an injection (cf. Remark 2.5.6).
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Exercise 2.5.14. Let (x,), be a frame for a Hilbert space H and let T € B(H) be a surjection.
Show that the excess of the frame (T'z,,), is greater than or equal to the excess of (). In
particular, show that similar frames have the same excess.

Exercise 2.5.15. Let (z,), and (z,), be frames for a Hilbert space H with the analysis
operators U and V| respectively. We say that these two frames are pseudo-dual to each other
if the operator V*U is invertible.

a Tyn)n and (zp)n are pseudo-dual to each other show that “Zp)n 1s dual to
If d do-dual h other show that ((U*V)~! is dual

(zn)n-
(b) Show that pseudo-dual frames have the same excess.

Exercise 2.5.16. Let H and K be Hilbert spaces and U € B(H, K). Suppose that there exists
V € B(H, K) such that the operator I —V*U is compact. Prove that R(U) is a closed subspace
of K and dim (N(U)) < oo ([76], Problem 181). Observe that I — U*V is also compact, so the
same conclusions apply to V.

Exercise 2.5.17. Let (z,), and (v,), be frames for a Hilbert space H with the analysis
operators U and V respectively such that I — VU™ is a compact operator. Show that (zy),
and (vy,)n are then near-Riesz bases.

Note that if (zy,), is a near-Riesz basis and if (yy,), is its canonical dual (whose analysis
operator we denote by V), then I — VU* = [ — U(U*U)~'U* is a finite rank operator, and
hence compact. Thus, we have the following characterization of near-Riesz bases: a frame
(xn)n with the analysis operator U is a near-Riesz basis if and only if there exists a frame
(vp)n with the analysis operator V such that I — VU™ is a compact operator.

Exercise 2.5.18. Let (x,), be a frame for a Hilbert space H with the optimal upper frame
bound Byt Suppose that the series Y o0 | (Bopt — [|[2n]|?) converges. Prove that (z,)n is then
a near-Riesz basis. Show that the converse is not true; construct an example of a frame (z, )y,
with finite excess such that Yo" | (Bopt — ||@n[|?) diverges.

Exercise 2.5.19. Let (e,), be an ONB for a Hilbert space H. Show that the sequence
e1, €1, €2, €3, €4, ... is a frame for H that possesses a Parseval dual and use the proof of Theorem
2.5.10 to find such a dual frame.
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2.6 Finite extensions of Bessel sequences

In this section we discuss finite extensions of Bessel sequences to frames. Here we work ex-
clusively in infinite-dimensional spaces since the problem is trivial if the underlying space is
finite-dimensional. Observe that each finite sequence of vectors is obviously Bessel. In general,
when we work with finite sequences (consisting of, say, k elements) it is natural to assume that
the corresponding analysis operator takes values in F¥. However, since here the underlying
space is infinite-dimensional, it is convenient to adopt the following convention: if (xn)ﬁzl is a
finite sequence' in a Hilbert space H we will understand that its analysis operator takes values
in ¢2; in other words, we will tacitly assume that x1,xo, ...,z are followed by infinitely many

null-vectors.

Suppose we have a Bessel sequence (z), in a Hilbert space H. Consider the following
question: does there exist a sequence (f,)¥_; in H such that the extended sequence (f,)k_; U
(xn)52 is a frame for H?

If (z,,)n is a Bessel sequence in H one defines its deficit ([19]) as the least cardinal d such
that there exists a subset G of H of cardinality d so that span ((x,), UG) = H. If (z,), is
already fundamental in H (as it is the case when (), is a frame for H), we understand that
its deficit is equal to 0. If U denotes the analysis operator of (z,,),, one easily concludes that
the deficit of (x,,), is equal to dim(N(U)). This is simply because we have

dim (span {z,, : n € N}) = dim (R(U*) = dim H — dim (N(U)).

So, if we want to obtain a frame from a Bessel sequence by adding only finitely many
vectors, then necessarily its deficit should be finite. However, this is not enough.

Example 2.6.1. Consider the canonical orthonormal basis (e,,), for 2 and the sequence (),
defined by z1 = €1, Tn, = €p_1 + €n, n > 2. Clearly, (z,,)n is a Bessel sequence in £2 with the
analysis operator U = S + I, where S is the unilateral shift on ¢2. Since S has no eigenvalues,
we have dim (N(U)) = 0; hence, the deficit of this sequence is equal to 0.

However, one can not extend (), to a frame by adding finitely many vectors. This can
be seen directly (we omit the details), but also, since R (S + I) is not a closed subspace of £2,
by applying Proposition 2.6.2 below and Exercise 2.5.16.

In order to characterize all Bessel sequences which admit finite extensions to frames we
now provide another necessary condition.

Proposition 2.6.2. Let (x,), be a Bessel sequence in H for which there exists a finite sequence
(fn)E_y in H such that the extended sequence (fn)E_y U (2n)n is a frame for H. Then there
exists a Bessel sequence (vy), in H such that the operator I — V*U has finite rank, where U
and V' denote the analysis operators of (xy)n and (vy)n, respectively.

Proof. Denote by U; the analysis operator of the frame (fn)ﬁzl U(2p)n. Let us take any dual
frame of (f,)*_; U (z,), and denote it, for convenience, by (g,)*_; U (vs)n (in other words,

In general, when we work with an infinite sequence, we write, as before, (zn)n assuming tacitly that the
index set is N; if, on the other hand, a sequence under consideration consists of k£ vectors, k € N, we will write
(xn)*_ to avoid any possibility of confusion.
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the first k elements g1, ..., gy are followed by vy, v2,...). Let Vi be its analysis operator. We
now have for all x € H

k [es) k
= ViUx = Z(x,fn>gn + Z(x,xn Up Z Z, fn)gn + VUx;

n=1 n=1 n=1

thus
k
(I-V*U)z = (, fa)gn, Y& € H.
n=1

This shows that I — V*U is a finite rank operator. O

It turns out that the converse of the preceding proposition is also true. In fact, we will
prove the converse in a stronger form.

Theorem 2.6.3. Let (xy,), and (v,), be Bessel sequences in H with Bessel bounds B and
D and the analysis operators U and V, respectively. Suppose that I — V*U is a compact
operator. Then there exist finite sequences (fn)k_, and (hy)l_; such that (fn)k_, U (zn)n and
(hp)l 1 U (vn)n are frames for H with upper frame bounds B resp. D.

Proof. By Exercise 2.5.16 we have dim(N(U)) < oo, so one can find a finite frame (f,)k_; for
N(U) with upper frame bound B. Let us denote by F' the corresponding analysis operator. Take
any dual frame (g,)k_; for (f,)k_; with the analysis operator G. We assume that all f;’s and
g;j’s belong to N(U). We regard F' and G as operators from H to £? assuming that both F and
G act trivially on N(U)*. Then we have G*F = P, where P denotes the orthogonal projection
to N(U). Note also that both R(F') and R(G) are contained in My = span{e1, ..., e}, where
(€n)n denotes the canonical basis for £2.

Consider now the extended sequence fi,..., fx,Z1,x2,.... Observe that its analysis op-
erator U; is given by U = F 4 S*U, where S denotes the unilateral shift on ¢2. Let
W = G + S*(U")* (since R(U) is by Exercise 2.5.16 closed, U' does exist). Then, using
the equalities F*S* = G*S¥ = 0 and UTU = I — P, we obtain

W*U, = (G* + UN(S(F + S*U) = G*F+UU=P+(I-P)=1.

This implies that U; is bounded from below; thus, (f,)k_; U (:cn)n 1 is a frame.

For x € N(U) we have 0 = |[Uz||? = Y%, [{x,z,)|? and Zn L@, f)]? < Bljz||%. On the
other hand, if z € N(U)* then S°F_, [(x, fu)]? = 0.

Let us now take an arbitrary z € H and write = a + b with a € N(U) and b € N(U)*.
Then

k
Z a, x>+ ||U(a + b)|?

k )
Sl £+ 3 [ )2
n=1

n=1 n=1
< Blla|® + |Ub|?
< B(lal* +[Io]*)
= Bl«l*.
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The assertions concerning (vy,)52; follow by the same arguments using compactness of the
operator I — U*V. O

Remark 2.6.4. As the preceding proof shows, the extension of a Bessel sequence to a frame
is not unique, even if we insist (as we did) on the same upper frame (Bessel) bound. It is also
clear that the minimal number of elements that should be added to a given Bessel sequence
(Zn)n in order to obtain a frame is the deficit of (xy, )y, i.e. dim(N(U)). In that sense a minimal
choice is (v Bwy, ...,V Bwg), where (wy, ..., wg) is an ONB for N(U).

Proposition 2.6.2 and Theorem 2.6.3 motivate the following definition:

Definition 2.6.5. We say that Bessel sequences (xy)n and (v,), with the analysis operators
U and V are essentially dual to each other if I — V*U is a compact operator.

If I — V*U is compact then, obviously, I — U*V is compact as well; hence essential duality
of Bessel sequences is a symmetric relation.

Now we can summarize the statements of Proposition 2.6.2 and Theorem 2.6.3 in the
following simple way:

Theorem 2.6.6. A Bessel sequence (xy,)y, in a Hilbert space H has a finite extension to a
frame for H if and only if there exists a Bessel sequence essentially dual to (xy)p.

Next we discuss finite extensions of Bessel sequences to Parseval frames. Again, we will
first obtain necessary conditions.

Suppose we have a Bessel sequence (), in H for which there exists a finite sequence
(fn)k_, such that (f,)¥_, U (2,)n is a Parseval frame for H. Denote by By the optimal
Bessel bound of (x,,),. Since

00 k 0o
S laswa) < S s f) 2+ S [z = )%, Ve € H,
n=1 n=1 n=1

we conclude that Byt < 1.

Let U be the analysis operator of (z,),. Denote by F the analysis operator of (f,)5_;;
since this sequence is finite, F' is a finite rank operator. Now observe that the analysis operator
Uy of the sequence (f,)X_, U (), is given by U; = F + S*U, where, as before, S denotes the
unilateral shift on ¢2.

Since by our assumption (f,)¥_; U (z,,), is a Parseval frame for H, we have U;U; = I.
From this we obtain

I =(F+S*U)*(F 4 S*U) = F*F + F*S*U + U*(S*)*F + U*U.

Let K = F*F + F*SkU 4 U*(S*)*F. Then K is a finite rank operator and I — U*U = K. In
particular, the operator I — U*U is not invertible because it has finite-dimensional range. This
in turn implies that 1 belongs to the spectrum of U*U and this, together with our previous
conclusion Bgypy < 1, implies Bopy = 1.

The statement of the following theorem appears in a similar form in [96]. Although the
proof in [96] uses g-frames, the key argument is essentially the same as in our proof below.
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Theorem 2.6.7. Let (x,), be a Bessel sequence in a Hilbert space H with the optimal Bessel
bound B,y and the analysis operator U. The following conditions are equivalent:

(a) There exists a finite sequence (fn)k_y in H such that (f,)k_, U (zn)n s a Parseval frame
for H,

(b) Bopt =1 and dim(R(I —U*U)) < oo.

Proof. (a) = (b) is already proved in the preceding discussion. Let us prove (b) = (a).

Since Bopt = 1, the square root (I -U*U )% is a well defined positive operator. Observe that
N((I - U*U)%) = N(I — U*U). By taking orthogonal complements we get R((I — U*U)%) =
R(I — U*U) (since, by assumption, this subspace is finite-dimensional, the closure signs are
superfluous).

Let k = dim (R(I — U*U)) < oo and M}, = span {e1, ..., ex} < £?; here again (e,), denotes
the canonical basis for £2. Take any partial isometry F' € B(H,¢?) with the initial subspace
R(I — U*U) and the final subspace My. Notice that R(F) = M L R(S*U).

Let Uy = F(I — U*U)% + S*¥U. We claim that Uj is an isometry. Indeed, we have for any
zeHd

|Uhz|? = |F(I—UT)2z+ S*Uz|?
= |F(I - U U)za|? + || S*Uz|?
= (I - U*U)32|? + |Uz|?
(I-UU)x,z)+ (U Uz, )

= =l

Since U; is an isometry, (Ujen), is a Parseval frame for H. Observe that we have Uj =
(I— U*U)%F* +U*(5*)* which implies Ui egy; = U*e; = z;, Vj € N. Thus, our original Bessel
sequence (zp)n is extended to a Parseval frame by the elements f; = (I — U*U)%F*ej, Jj=
1,2,...,k. g

Remark 2.6.8. Suppose that [ > k = dim(R(I — U*U)) and take a partial isometry F’ with
the initial subspace R(I—U*U) and the final subspace contained in M; = span {ey, ..., e/} < 2.
Then the same argument as above applies if we replace Uy by U = F'(I — U*U)% + S'U. This
would result with an extension of the original Bessel sequence to a Parseval frame by adding !
elements.

The minimal number of elements that one must add to a given Bessel sequence in order to
obtain a Parseval frame is £ = dim (R(/ — U*U)). Such minimal extensions are described in
Corollary 2.6.10.

Remark 2.6.9. We also note that for the proof of (b) = (a) in the preceding theorem it
suffices to assume Bopy < 1 and dim(R(I — U*U)) < oo.
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Corollary 2.6.10. Let (z,,), be a Bessel sequence in a Hilbert space H with a Bessel bound
less than or equal to 1 and such that dim (R(I —U*U)) =k < co. Let x; = (IfU*U)%wj, Jj=
1,...,k, where (wy,...,wg) is an orthonormal basis for R(I — U*U). Then (fn)k_; U (zn)n is
a Parseval frame for H.

When one compares the statement of Theorem 2.6.7 with those of Theorem 2.6.3 and
Corollary 2.6.6 it is natural to ask the following question: is it enough, in order to ensure a
finite extension of a given Bessel sequence to a Parseval frame, to assume that I — U*U is only
a compact operator (together with B < 1)?

The answer is negative. Namely, if I — U*U is a compact operator, then by Atkinson’s
theorem ([76], Problem 181), there exists a bounded operator V' such that I — V*U has finite
rank, but one can not conclude that the rank of I — U*U is finite.

Here is an example. Consider the canonical basis (e,), for 2 and the sequence (z,)n

defined by z, = ,/nLHen, n € N. Clearly, (z,)52; is a frame for ¢?: in fact, a Riesz basis

with the upper frame bound B, = 1. If we denote by U its analysis operator, then U*Ux =
Sonty 7 (@, en)en, Yo € (2. This implies (I — U*U)x = Y02 ﬁ(az, en)en, Vo € £%; thus,
I—-U*U is a compact operator. However; the sequence (z,,), can not be extended to a Parseval
frame by adding a finite number of elements. This can be seen directly, but it is easier to apply

Theorem 2.6.7: namely, it is evident that the operator I — U*U has infinite rank.

Theorem 2.6.7 shows that Bessel sequences and, in particular, frames for which I — U*U
is a finite rank operator are, in a sense, almost Parseval. Our next theorem provides two more
characterizing properties of such frames which also show, in a different way, a close relation
with the class of Parseval frames.

Theorem 2.6.11. Let (x,), be a frame for a Hilbert space H with the analysis operator U.
The following conditions are equivalent:

(a) dim (R(I — U*U)) < oo,

(b) There exists a sequence (hy)n in a finite-dimensional subspace L of H such that (xp+hy)n
is a Parseval frame for H,

(¢c) x =73, (z,xn)xpn, Yo € M, where M is a closed subspace of H of finite co-dimension.

Proof. (a) = (b). Since I — U*U is a self-adjoint operator and dim (R(/ — U*U)) < oo, we
have H = N(I — U*U) @ R(I — U*U). This implies

R(U) = UN(I — U*U)) + UR(I — U*U)).

Moreover, we claim that this sum is direct. Indeed, if Uz = Uy for some = € N(I — U*U) and
y € R(I — U*U) then, by injectivity of U, we conclude = = y and hence z =y = 0.

Now observe that all direct complements of a closed subspace in a given space are of the
same dimension. Thus,

dim (R(U) & U(N(I — U*U))) = dim (U(R(I — U*U))) = dim (R(I — U*U))

where the last inequality follows from injectivity of U.
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This allows us to find an isometry Fy : R(I — U*U) — R(U) such that R(Fp) L U(N(I —
U*U)). Put Up = Uln(r—v+vy- Since we have U*Ux = x for x € N(I — U*U), Uy is also an
isometry. Finally, let V' = Uy @ Fp; since the images of Uy and Fj are mutually orthogonal, V'
is an isometry. So, if we define g, = V*e,, n € N, where (e,), is the canonical basis for 2,
the sequence (g, )n is a Parseval frame for H. Obviously, F' =V — U is a finite rank operator.
Namely, F' acts trivially on N(I — U*U) and dim (R(I — U*U)) < oo. Put h, = F*e,, n € N.
Then (hy, )y, is a finite-dimensional perturbation of (x,),, such that (g, = x,, +hy )y is a Parseval
frame for H.

(b) = (a). If we assume (b) then (hy,), is a Bessel sequence, as the difference of two Bessel
sequences. Let T denotes its analysis operator. By our assumption, 7™ has finite rank. Hence,
T is also a finite rank operator. Since (U* + T*)e, = xy, + hy, Vn € N, and (z,, + hy), is a
Parseval frame for H, U + T is an isometry. Thus,

I=(U+T)(U+T)=UU+U*T+TU + T*T.

Let F =U*T +T*U +T*T. Then F is a finite rank operator and we have I — U*U = F.

(a) = (c). Let M = N(I — U*U). By (a), M+ = R(I — U*U) is finite-dimensional. For
z € M we have v = U Uz ie. . =Y 07 | (x, Tn)Tn.

(c) = (a). Suppose we have z = > °° (x,x,)z, for all z € M with dim (M1) < co. This
implies U*Uz = z, Vo € M. Hence, M C N(I — U*U), and this implies R(I — U*U) C M.
(]

Remark 2.6.12. (a) In contrast to Theorem 2.6.7, a general assumption in the preceding
theorem is that (z,), is a frame, not merely a Bessel sequence. The reason for that is the
proof of the above implication (a) = (b) where we have used injectivity of the analysis operator
U.

(b) Note that in condition (c) in the above theorem we do not claim that the frame elements
xn, belong to M. In this light, we may say that (x,), is, in a sense, an outer Parseval frame
for the subspace M.

Remark 2.6.13. Here we demonstrate an alternative proof of (a) = (b) from the preceding
theorem.

Consider the decomposition H = N(I — U*U) @ R(I — U*U). Since N(I — U*U) is an
eigenspace for the operator U*U, its orthogonal complement is invariant for U*U. So, both
subspaces in the above decomposition are invariant for U*U and we can write U*U in the form

A
UU =1¢& = I ® diag(\1,. .., A,) with respect to an ONB (wy, ..., wy) for
Ak
R(I —U*U) consisting of eigenvectors of U*U. Denote by A and B frame bounds of (), and
note that A < Aq,...,A\x < B. Let us write, with respect to the same decomposition of H,

Ty = Up + 2Zp, n € N. X X
Now observe that both subspaces are also invariant for (U*U)~2 and that (U*U)™ 2 acts
as the identity operator on N(I — U*U).
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Put 7, = (U*U )*%xn, n € N. Recall that (Z,), is the Parseval frame for H canoni-
cally associated with (z,),. Obviously, for all n € N we have Z,, = v, + w,, where w,, =

A2
Zn,n = 1,2,...,k. The sequences (z,), and (wy), belong to a finite-

Ao
dimensional subspace R(I — U*U), so does their difference and we have z,, + (w, — 2z,) =
Up + 2Zn + Wy — 2n = Ty, VN € N

NI

Concluding remarks. The results of this section are originally published in [14] However,
Theorem 2.6.7 is first proved in [90].

Exercise 2.6.14. Let (f,), and (g,), be Bessel sequences in a Hilbert space H. Prove that
there exist Bessel sequences (hy), and (k) in H such that (fn)n U (hn)n and (gn)n U (kn)n
form a pair of dual frames for H. Remark. This is the statement of Proposition 2.1 from [54].
Observe that here, in contrast to our considerations in this section, the extensions (hy,), and
(kn)n are, in general, infinite sequences.
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2.7 Perturbations of frames

The classical Paley-Wiener theorem states the following: Let (x,), be a basis for a Banach
space B, and let (v,), be a sequence of vectors in B. If there exists a constant A € [0, 1) such

that
N N
Z cn(Ty — vp) A Z Cnn
= n=1
for all scalars ¢y, ca,...,cy and every N € N, then (vy,), is a basis for B.

In this section we discuss similar results for frames. There are several papers in the literature
concerned with the perturbation theorems for frames. Here we begin our considerations with
the most general of these theorems from which the (chronologically) preceeding results follow
as corollaries. First we need a lemma that is interesting in its own. A classical result states
that a bounded operator 7" on a Banach space is invertible if || —T'|| < 1. The following lemma
shows that T is invertible under a much weaker condition; observe that even boundedness of
T is not a priori assumed.

Lemma 2.7.1. Let H be a Hilbert space, and let T : H — H be a linear operator for which
there exist constants A1, A2 € [0,1) such that

[T — zf| < Mllz] + A2l Tll, Vo€ H. (53)

Then T s an invertible bounded operator and

el < 7l < Tl Tl < Tl < Tl Ve e B (5)
Proof. First observe that
(53)
|Tz|| <||Tz — 2|+ 2| < Mol + X[ Tzl + |2l Yz € H (55)
and .
[Tz = ||lz|| - [Tz — | (02) @] = Adllz]] = Aof| Tx]|, Vo€ H. (56)

Clearly, (55) and (56) give us the first two inequalities in (54). In particular, 7' is bounded
and bounded from below. Also observe that, once we prove that T is invertible, the remaining
two inequalities in (54) follow from the first two by replacing = by T~ 1.

The rest of the proof consists of proving that T is invertible. Since T' is bounded from
below, we only need to show that T is surjective.

Let A = max {\, Ao} and p = 1+/\

For any a < 0 and all z in H we have

(53)

Allz]l + Al T

Azl + ATz — ax|| + Allaz|
Alzll + ATz — ax|| — Aal|z|
= Allaz = Tz| + A1 = o).

[l — Ta|

IN INE
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From this we conclude that
Mlaz =Tz| = |lz = Tz| — A1 — a)z]. (57)
Similarly, for any o« < 0 and all  in H we have
|z = Tzl| = |1 — @)z + (ax = Tz)|| = (1 - a)z]| — |az — Tz|.

This gives us
lox = Tzl| > —[lz = Tzl| + (1 = a) ]\ (58)

By combining (57) and (58) we obtain

1 -1 -«
(11_()\)Hx|| > pllzl|, Yo <0,V e H. (59)

low — Tf| >
In particular, this shows that for each a < 0 the operator ol — T is bounded from below and
hence injective.
Let us now define

E={a<0:|ax—T"| > %Hx”, Vo e H}.

The set E is closed and non-empty because « = —(1 + ||T||) € E.

By definition, for each o € F, the operator al — T™ is bounded from below. Proposition
2.1.7 (b) now implies that af — T is surjective. Thus, al — T is an invertible operator for each
«a in E. To end the proof, we only need to show that 0 € E.

Recall now that each bounded invertible operator L satisfies (L~')* = (L*)~!. Thus,

(59)

-7 = ||((ar - D)) = [z - 1)) '€ L, va e .

From this we obtain
(el = T*)z|| > p||z||, Yoo € E,Vz € H. (60)

Let us now take any a € E and ¢ such that 0 < 0 < &. Then we have

(60)
e+ 0)x = T 2| > [lax = T x| = d]lz]| >

1"
pllall = oz = Kzl Vo€ B, vu e .

This shows that « € E = [o,a+ 5§]N{a:a <0} C E. If 0 < o+ &, this gives us that 0 € E.
The other possibility is that a + § < 0. If this is the case, we repeat the argument replacing
a by a+ 5. Clearly, after finitely many steps, we obtain that 0 € E. g

Example 2.7.2. Let (e,), be an ONB of a Hilbert space H. Consider the operator 7' on
H defined by Te, = e, + %enﬂ, n € N, and then extended by linearity. Observe that
Tz — x| = HZZO:l(x,en)%enHH, for every x in H. Thus, T is bounded and ||T" — I]| < 1.
Moreover, since T'e; — e; = eg, we conclude that |7 — I|| = 1. So we can not use the classical
result to show that T is in fact invertible. However, in this situation Lemma 2.7.1 applies.
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To see this, first observe that ||T']| < 2. We also have for each z in H

oo +3 <<a:, en) + iz, en_1>> n

n=2

[T =

> [(z, en)]- (61)

Using this, we obtain

e}

1
Tz~ a2 =" |
n

n=1

2
(x,en)

1 2
< Yo P+ el < 72 4 |mﬁs(u%w+gm0,

and finally
1 7 1 1 7 3
1Tz =2l < I T]l + Sllell < STz + SITN - ll2ll + Sllzll = gl T2l + llz]l, Vo e H.

So, by Lemma 2.7.1, we conclude that T is invertible. Note in passing that this shows that the
sequence (e, + Le,41), is a Riesz basis for H.

Theorem 2.7.3. Let H and K be Hilbert spaces, let U € B(H, K) be an invertible operator,
and let V : H — K ba a linear operator. Suppose that there exist constants A1, Ao € [0,1) such
that

Uz — V| < \||Uz|| + X\o||V|, Yz e H. (62)

Then V is also an invertible bounded operator and

1-— 1+/\1
< < H
T HUwH V| HU |, Vx € H, (63)
)\2 1 1+)\2 1
V- < —2|U™ Yy € K. 64
1+>\ ||UHH yll < [[V-iz| H - llyll, vy (64)

Proof. Define a linear operator T : K — K by Ty = VU 'y, y € K. Using (62) with
x = U~ !y, we obtain that

ly = Tyll < Millyll + A2l Tyll, Yy € K. (65)
Lemma 2.7.1 now implies that T" is bounded and invertible. Thus, V is also a bounded and

invertible operator. Inequalities (63) and (64) follow easily from (54). O

If we a priori know that V' is bounded, then we are even allowed to take A = 1.

Corollary 2.7.4. Let H and K be Hilbert spaces, let U € B(H, K) be an invertible operator.
Suppose that V € (H, K) is an operator for which there exists a constant A\ € [0,1) such that

Uz — V|| < \||Uz|| + |Vz|, Yz <€ H. (66)

Then V is invertible and ||V | < 13A1 U1
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Proof. Let € > 0. Consider again VU ™! : K — K; note that here VU ™! is bounded. Using
(66) with z = U~'y we obtain that

ly = VU=l < Mllyll + VU™ Y < a + VU DIyl + (1= VU yll, Yy € K. (67)
We can now choose € small enough to have €1 := A\; + ¢||[VU || < 1. Then (67) becomes
ly = VU=l < ellyll + (1 = IVUy]l, vy € K. (68)

This enables us to apply Lemma 2.7.1 and conclude that VU™! is invertible. Hence, V is
invertible. Moreover, Lemma 2.7.1 gives us the estimate
1+1—c¢ 1+1—c¢

—1\—1 _
IO < ==, raqvo

From this we obtain by letting ¢ — 0

-1
v s 125

Finally, this gives us

2
1—-X

V= =llotov= < o - luvTt < o=

We are now ready for our first result on perturbations of frames.

Theorem 2.7.5. Let (zy), be a frame for a Hilbert space H with frame bounds A and B.
Suppose that (vy)n is a sequence in H for which there exist constants A1, Ao, n > 0 such that

max {)\1 + ﬁ,)\g} <1 and

N

N N N N
Z Cn(l'n - 'Un) <M Z CnTn|| + A2 Z CpUn|| + 1 (Z |Cn|2> (69)
n=1 n=1 n=1 n=1
for all scalars cy,ca,...,cy and every N € N. Then (vy)y, s a frame for H with frame bounds
Ao+ 2\ 2 Aot 2\ 2

Proof. Denote by U the analysis operator of (z,,),. Recall that |U]|| < v/B.
Let T be the operator defined on cgg by Tc = Zﬁf:l Cnn, ¢ = (cn)N_; € coo. Then (69)
can be rewritten as

[U* e = Te| < M[|U*e|l + X2 Te|| + pllell, Ve= (en)iZy € coo- (70)
This gives us

[Te|| < |U%e=Te|| + Ul < (1 + AU || + A2 Tel| + pllc]l
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wherefrom we obtain
14+ X\

ITell < T3, N0 el + 7 llell, Ve = (cn)nza € coo- (71)

Inequality (71) shows that 7" is a bounded operator on cgp. Thus, it can be extended to a
bounded operator from ¢? to H which we denote by V*; moreover we now conclude from (70)
and (71) that

1U"e = Ve < AUl + XallVZell + pllell, Ve = (ca)n € € (72)

and
\F(1+)\1)+M
1-—

Denote by (e,)n the canonical basis for 62 and observe that we have V*e, = Te,, = v, for all
n. Thus, (v,), is a Bessel sequence in H whose Bessel bound is

1+ M+ 2= 2 AL+ A+ = 2
1—X 1—X
Consider now the canonical dual (y,), of (x,),. Recall that y, = (U*U) 'z, for each n in N.
Its frame bounds are % and l and the analysis operator is equal to U(U*U)~!

U0 U)o = ((z,(UU)  an)), = (2, 2y,UUU) ), Va € H.

VZel < lell, Ve = (cn)n € £2. (73)

From this we have
. 1
Jo@ o) al® = 3 (o, 0) wa)[F < el v e B, (74)
We now apply (72) and (74) to ¢ = U(U*U) "z € £2, for each x € H. In this way we obtain

(72)
le =V U@ )y al| 'S el + AV U@V el + U@ 0)

(74)
< M+ =) ||z + N|VUUU) 2|, Ve e H (75
< (25 el + xalv U (D) e (1)

Lemma 2.7.1 now implies that V*U(U*U)~! is an invertible operator. In particular, V* is then
surjective. This is enough to conclude that (vy,)y is a frame for H. The first inequality in (54)
gives us the estimate for its lower frame bound. 0

Corollary 2.7.6. Let (zy,)n be a frame for a Hilbert space H with frame bounds A and B.
Suppose that (vp)n is a sequence in H for which there exist constants A, pu > 0 such that
A+ ﬁ <1 and

<A

N N N 3

Z Cn(xn - 'Un) Z CnTnl|| + 1 <Z ‘Cn|2) (76)
n=1 n=1 n=1

for all scalars c1,¢a,...,cn and every N € N. Then (vy,)n, s a frame for H with frame bounds

A(l—()\+ﬁ)>2 andB<1+A+%)2.
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Proof. This is the special case of Theorem 2.7.5 with Ay = A and Ay = 0. O

Corollary 2.7.7. Let (zy), be a frame for a Hilbert space H with frame bounds A and B.
Suppose that (vy,)n is a sequence in H for which there exists a constant pn > 0 such that ﬁ <1
and

(o]
D llan = val* < 4. (77)
n=1
2 2
Then (vn)n is a frame for H with frame bounds A (1 - ﬁ) and B (1 + %) )
Proof. Take any N € N and arbitrary scalars c1,co,...,cy. Then we have
N N
ch(xn_”n) < Z‘Cn‘ EZ |
n=1 n=1
1 1
N 3 /N 3
< (St nl?) (L)
n=1 n=1
1 1
e’} 2 N 2
< (o) ()
n=1 n=1

1
< u(Z\Cn\2> :
n=1

We are now in the position to apply Theorem 2.7.5 with A\; = Ao = 0. ]

Example 2.7.8. Consider, for 0 < b < 1 the frame (e2™"), ., for L2([0,1]). Recall that
(€2, ez is tight with the frame bound 3.

Take any sequence (\,)nez of real numbers and consider the sequence (e**!), 7 in
L%(]0,1]). Using the estimate }et — 1| <t one easily obtains that

. . 2 Agp?
He27rmbt o 627rz)\nt < 2 |nb o )\n|2’ Vn € 7.
2

Hence, if the sequence (\,)nez has the property

> fnb— Ml <

neL

31
472 b (78)

we have

: , 2 4gn? 1

2minbt 2miAnt . 2 -

E He —e ) < 3 g |nb — A\p|” < 2
nez nez

and the preceding corollary applies. This allows us to conclude that under the assumption
(78) the sequence (e?™Ant) 7 is a frame for L?(]0,1]). (Cf. Exercise 8.10 in [31].)
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Remark 2.7.9. Suppose that (z,), and (v, ), are as in Theorem 2.7.5. Then (x,,), is a Riesz
basis for H if and only if (vy,),, is a Riesz basis for H. To see this, recall that we have concluded
in the last paragraph of the proof of Theorem 2.7.5 that V*U(U*U)~! is an invertible operator,
where U and V' are the analysis operators of (x,), and (v,),, respectively. So, obviously, U is
invertible if and only if V is invertible.

Note that the same conclusion applies to the sequences (x,), and (vy,), from Corollary
2.7.6 and Corollary 2.7.7. This last fact should be compared with Lemma 2.4.6.

Remark 2.7.10. Suppose again that (), and (v,), are as in Theorem 2.7.5. Since V*U(U*U)~}
is an invertible operator, (x,), and (v, ), are pseudo-dual frames (see Exercise 2.5.15). There-
fore, by Exercise 2.5.15, (zp,)n and (vy,), have the same excess.

In particular, (x,,), is a near-Riesz basis if and only (v,,), is a near-Riesz basis.

Suppose that (z,), is a frame for a Hilbert space H with the analysis operator U and
the lower frame bound A. Then we know that ||Uz|| > v/A|z|, V& € H. Consider the open
ball K (U, +/A) in the norm-topology of B(H, ¢?). Each operator V € K(U,+/A) is by Exercise
2.1.19 bounded from below which implies that V* is a surjection. Hence, if denote by (e, )n
the canonical basis for £2, the sequence (vy,), defined by v, = V*e,, n € N, is a frame for H.
This tells us that each operator in the ball K (U, \/Z) is the analysis operator of some frame
for H.

This conclusion can be also deduced from Theorem 2.7.5. To show this, take any V' €
K(U,v/A) and consider the sequence (v,),, defined by v, = V*e,, n € N. Put |[U - V| =pu <
V/A. Then we have, for every N in N and any choice of scalars ¢1, s, .. ., ¢,

N
Z Cn(l'n - Un)
n=1

So, the sequence (vy,), satisfies condition (69) with A\; = Ay = 0. Therefore, by Theorem 2.7.5,
(vp)n is a frame for H.

N 2
= [|[(U* = V) ((en)n=n)|| < N1U* = V7| l(en)nzall = 1 <Z Icnl2> :

n=1

One can now raise the following question: does there exist a Parseval frame in this
"operator-neighborhood” of (z,),? In other words: can we find an isometry in the ball

K(U,VA)?

If U € B(H, K) is an operator of Hilbert spaces, we define minimum modulus y(U) of U by
Y(U) = nf{|[Uz] : 2 € NU)*, [l]| = 1. (79)

(see Exercise 2.7.14). Observe that, if U is bounded from below, then v(U) is the optimal
lower bound for U, i.e. the greatest number that satisfies ||[Uz| > v(U)||z||, for all z € H.

Proposition 2.7.11. Let H and K be Hilbert spaces, and let U € B(H, K) be bounded from
below. Put |U|| = VB and y(U) = V/A. Then there exists an isometry in the ball K(U,\/A)
if and only if the following two conditions are satisfied:

1
A _
>0 (80)

VB < VA+1. (81)
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Proof. Suppose first that there exists an isometry V € K (U,vA). Let |[U — V| = p < VA.
Then we have

[Uz[| = [Val| = Ve = Uzl = [l = Ve = Uzl = (1 = p)|lzl|, vz < H.

From this we conclude that VA = Y(U) > 1—p; thus, 1 < p+ VA < 2V/A. Therefore, i < A.
Similarly, we have

|Uz]| < |[Uz = V| + V|| < (p+ D], Vo< H,

which gives us |U|| < p + 1. Therefore, VB < p+1 < VA +1.

To prove the converse, assume (80) and (81). First observe that o(U*U) C [A,
VP be the polar decomposition of U. Notice that P = vU*U and hence o(P)
Secondly, since P is invertible and ||Pz|| = ||Uz|| for all z, V' is an isometry. We

IV =Ull =V =VP|<|V[-[I-P|=I[I-P|

B]. Let U =
C [VA,VB].

also have

So, in order to finish the proof, it is enough to conclude that ||I — P|| < v/A.
Since I — P is self-adjoint and o(I — P) =1 — o(P), we have

I = P|| =max{|A\|: A€ (1 —o(P))} =max{|l — A : X € a(P)}.
Observe now that /A4, VB € o(P). Since A — 1 — X is a monotone function, we conclude that
max {1 = Al : A € o(P)} = max {1 - VA|,[1 - VB|}.
We can now split the argument in three cases: (i) B < 1, (ii) A > 1, and (iii) A < 1 <
B. 1t is now easy to conclude by inspection: if B < 1 then max {]1 — VA1 - \/E\} =
1 — VA, if A > 1 then max{]l—\/ZHl—\/E\} = VB -1, and if A < 1 < B then
max {\1 — VA1~ \/El} is equal either to 1 — /A or to v/B — 1. Since inequalities (80)

and (81) imply 1 — VA < v/A and VB — 1 < /A, in each of the above three cases we have
max {|1—\/Z|,|1—\/§]}<\/Z. O

Corollary 2.7.12. Let (x,)y be a frame for a Hilbert space H with the optimal frame bounds
Aopt and By that satisfy inequalities (80) and (81). Then there exist a Parseval frame (vy)p
for H and a positive number p < \/Aopt such that ||z, —vy| < p, for all n in N.

Concluding remarks. The formulation of the Paley-Wiener theorem from the beginning of the

section is due to Boas (cf. [119], see also [63]). Lemma 2.7.1 is proved in [38] in the setting
of Banach spaces. The original Hilbert space result goes back to [35]. Example 2.7.2 is also
borrowed from [38] The main result in [358] is Theorem 2.7.5. Corollary 2.7.6 is proved in [52]
and Corollary 2.7.7 first appeared in [53]. Proposition 2.7.11 and Corollary 2.7.12 are proved
in [23], where one can find some other related results. The argument in Remark 2.7.10 is
borrowed from [13], but the fact that frames from Theorem 2.7.5 have the same excess is first
proved in [38].

92



Exercise 2.7.13. Let {ej1,e2,...,ep}, n € N, be an orthonormal set in a Hilbert space H.
Suppose that f1, fa,..., fn are vectors in H such that |e; — fi|]| < ﬁ foralli = 1,2,...,n.

Show that the set {f1, fa,..., fn} is linearly independent ([75]).
Exercise 2.7.14. Let H and K be Hilbert spaces and T € B(H, K). Prove that

(a) v(T) > 0 if and only if T" has closed range. When this is the case, we have v(T') = HT%I
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2.8 Reconstruction from frame coefficients with erasures

Frames are often used in process of encoding and decoding signals. It is the redundancy
property of frames that makes them robust to erasures and corrupted data.

In applications, we first use a given frame (z,,), to compute the frame coefficients (z, z,,)
of a vector (signal) = (analyzing or encoding x) and then apply the reconstruction formula to
reconstruct (synthesizing or decoding) x using a suitable dual frame. During the processing
the frame coefficients or data transmission some of the coefficients could get lost. Thus, a
natural question arises: how to reconstruct the original signal in a best possible way with
erasure-corrupted frame coefficients? One possible approach to this problem is to choose the
original frame (or an appropriate dual of the original frame) in order to minimize the error.
Another approach is oriented towards the perfect reconstruction of the original signal.

However, it is intuitively clear that the perfect reconstruction is impossible in full generality.
For example, if we work with a Riesz basis or with a frame with a finite excess, and if lose k
frame coefficients of some vector x, where k is greater than the excess of the frame, than it is
impossible to reconstruct x, unless x belongs to the subspace spanned by the remaining frame
members.

It turns out that the perfect reconstruction is possible as long as the erased coeflicients
are indexed by a set that satisfies the minimal redundancy condition - the condition we have
already seen in Lemma 2.5.3.

Definition 2.8.1. Let (z,), be a frame for a Hilbert space H. We say that a finite set of
indices E satisfies the minimal redundancy condition for (zy)y if Span{z, :n € N\ E} = H.

If the set E satisfies the minimal redundancy condition for a frame (x,),, then we will see
that the perfect reconstruction of each signal x is always possible even if the coefficients (z, x,,),
n € F, are lost. Here again, there are two possibilities. First, one can try to reconstruct the lost
coefficients using the non-erased ones, and then use the reconstruction formula with any frame
dual to the original one. An alternative approach consists of finding a dual frame, depending
on the index set of erased coefficients, in order to compensate for errors. More precisely, in the
second approach one wants to find a frame (vy,), dual to the original frame (z,), such that

v, =0, Vnek. (82)

Obviously, such an ” E-supported” frame (v,), (with E¢ denoting the complement of F
in the index set), enables the perfect reconstruction using the reconstruction formula x =
>oo2 {x, xy) vy, without knowing or recovering the lost coefficients (z, z,,), n € E.

In this section we will discuss both approaches to the perfect reconstruction described
above.

We begin by describing ”the bridging” - a technique for reconstructing the erased coeffi-
cients which is introduced in [93].

Let (zy)n be a frame for H. Denote by (yy), its canonical dual. Suppose that a set E
consisting of k elements, k € N, satisfies the minimal redundancy condition for (zy,),. Further,
suppose that for some € H the coefficients (z,x,), n € E, are lost.

We may assume without loss of generality that £ = {1,2,...,k}. Let

k o
Lz =) (,2)yn, and Rpz= > (2,2n)yn.
n=1 n=k+1
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Observe that
x = Lpx + Rgpx. (83)

By our assumption, we have Rgx, but Lgz is not known.
Consider now a finite set of indices S disjoint from E; let S = {j1,52,...,4q}, ¢ € N. The
idea is to replace each of the lost coefficients (x,x,) by (z,z!) such that

z;, € span{zj,, xj,,..., 25}, Vn=1,2,... k. (84)
Let
k
Bpx = Z(m,x%)yn, and T = Bpz + Rgx. (85)
n=1
Consider also
~ ~ k
Ng=I1-Rg—Bg=Lg—Bg, Npr=> (2,2, —2))yn (86)
n=1

We can regard Lg, Rp, Bg, Ng as operators on H. Suppose for a moment that Ng is nilpotent
of index 2. Since Rp+ B = I — Ng, this implies that Rg+ B is invertible and (Rg+Bg) ™! =
I + Ng. From this we obtain
85 - =L L s
2 @ (Rp + Bp)"'% = (I + Np)F = & + Npi. (87)
From this we conclude: if we can choose 2/,’s as in (84) such that N that is given by (86) is
nilpotent of index 2, then we can obtain Z from (85), and the original vector x can be perfectly
reconstructed using (87). .
Observe also that the operator N will be nilpotent of index 2 if we can choose o, 5, ...,z
in such a way that

/
n

Ym L (xp — ), Vm,n=1,2,... k. (88)

Theorem 2.8.2. Let (), be a frame for a Hilbert space H and let (yp)n be its canonical
dual. Suppose that the set E = {1,2,...,k}, k € N, satisfies the minimal redundancy condition
for (zy,)n. Then there exist a set S = {j1,J2,...,Jq} C N\ E with ¢ = dim(span{y1,y2,...yx})
and vectors x,xy, ...z, in span{xj, Ty, ..., x; } such that (88) is satisfied. In particular,

the operator Ng defined by (86) is nilpotent of index 2.

Proof. Let Hy = span{yi,y2,...yr}. Then we have ¢ = dim Hy. Let (b,), be an ONB
for Hkl Since the co-dimension of H ,i- is equal to ¢, and since (because of the minimal
redundancy condition) span {z, : n > k+1} = H, we can find g vectors xj,,j,,...,;, in the
set {z,, : n >k + 1} such that (b,), U (z;,){_; is a Riesz basis for H. Then we have

q (o)
tm= My 43 ™, vm=1,2,.. k. (89)
=1 n=1
Put
q
=Y M, V=12, k (90)
=1

Then (89) implies that ., — 2, € Hi; thus (zp, — 2),) L yy, for all n,m =1,2,... k. O
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Remark 2.8.3. It is clear from the proof that the above theorem (together with the preceding
considerations) remains true if we replace the canonical dual (y,), by any other dual frame
(vn)n of (p)n.

The set S from Proposition 2.8.2 is called the bridging set.

Remark 2.8.4. One should note that there is a small problem in the proof of Theorem 2.8.2
when the ambient space H is finite-dimensional.

To see this, suppose that dim H = N and that we are given a frame (f’fn)r]\L/[:1 such that
the set of indices E = {1,2,...,k} that satisfies the minimal redundancy condition consists of
k > N elements. Denote again Hy, = span {y1,y2,...yx} and dim Hy, = q.

If H, = H, i.e. if ¢ = N, then the desired condition (88) forces z/, = x, for all n =
1,2,...,k. If so, then actually the idea of the bridging method collapses. However one can
always recalculate the lost coefficients (z,x1),..., (z,z;) by expressing each z,, n = 1,...k
as a linear combination of zy41,...23. Of course, such method of reconstruction of the lost
coefficients is at our disposal in every case.

We now turn to the second approach to recovering erasures in which one tries to find a suit-
able dual frame that enables the perfect reconstruction without recovering the lost coefficients.
It is actually easy to see that such dual frames do exist.

Remark 2.8.5. Suppose that (z,), is a frame for H for which a finite set E satisfies the
minimal redundancy condition. Then there exists a frame (vy,), for H dual to (x,), such that
v, = 0 for all n € E. Indeed, since, by Lemma 2.5.3, (x,,)nepe is a frame for H, by taking an
arbitrary dual frame (vp)nege of (zn)nepe and putting v, = 0 for n € E, we get a dual frame
(vn)n of (x,)n with the desired property.

However, from the application point of view this is not enough; what we really need is a
concrete construction of such a dual (vy,)y.

In the proposition that follows we give alternative descriptions of the minimal redundancy
condition. We first need some additional notation.

Consider an arbitrary frame (z,), for H with the analysis operator U and a finite set of
indices E = {ny,na,...,ni}. Obviously, sequences (zy)ncpe and (z,)necp are Bessel. Denote
the corresponding analysis operators by Uge and Ug, respectively. Notice that (z,)ner is
finite, so U takes values in F¥. Tt is evident that the corresponding frame operators are given
by UpUpew = Y c pe(®, ) Tn, UsUpx = Y p{®, 2n)@pn, € H, and hence

Uk Upe = U*U — ULUp. (91)

Further, if (y,)n is the canonical dual of (zy,),, its analysis operator is V = U(U*U)~L.

The analysis operators of Bessel sequences (Y, )nepe and (yp)nep will be denoted by Vge and

Vi, respectively. Observe that Vge = Uge(U*U)~! and Vg = Ug(U*U)~L. Since V*U = I, we
obtain (in the same way as (91))

VipUge =1 — V5Ug. (92)
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Proposition 2.8.6. Let (x,), be a frame for a Hilbert space H with the analysis operator U
and the canonical dual (yp)n. Let E = {ny,na,...,ng} be a finite set of indices. The following
statements are equivalent:

(a) E satisfies the minimal redundancy condition for (x,)n,
(b) R(U) N span{e, :n € E} = {0} where (e,), is the canonical basis for (2,
(¢c) I —ViUg € B(H) is invertible,

(d) The matriz

<yn1 5 $n1> <yn2a IL‘n1> cee <ynka $n1>
<ym ) $n2> <yn2a xN2> s <ynka xn2> 7
<yn1 ’ xnk> (yn2 ’ xnk> s <ynk ; $nk>

1s invertible.

Proof. We can assume without loss of generality that £ = {1,2,...,k}.

(a)<(b) Suppose that we have s € R(U) Nspan{e, : n € E}, s # 0. Equivalently, there
exists x € H, x # 0, such that 1 x, for all n € E°. By continuity of the inner product,
this is equivalent to x L span {x,, : n € E°}. So, the intersection R(U) Nspan{e, : n € E} is
non-trivial if and only if the sequence (z,)nepe is not fundamental in H.

(a)<(c) By Lemma 2.5.3, E satisfies the minimal redundancy condition for (z,), if and
only if (xy)nepe is a frame for H, which is the case if and only if the operator Uy Uge is
invertible. Since

[-ViUe 2 Vi Upe = (UU) 'UkUse,

this is further equivalent to invertibility of I — ViU € B(H).

(c)<(d) By a well known result, I — ViUg € B(H) is invertible if and only if I — UV} €
B(F*) is invertible. But the matrix of UgV} — I in the canonical basis of F¥ is precisely

<y17$1> <y2,$1> <Z/k>$1>
(Y1,22) (y2,72) ... (Yk,T2)

. . . — 1.
ire) (2, 2k) o (Yo Tk)

g

The following theorem provides a concrete description of a dual frame with the desired
property (as in Remark 2.8.5) in terms of the canonical dual.

Theorem 2.8.7. Let (xy)n be a frame for a Hilbert space H with the canonical dual (yp)n.
Suppose that a finite set of indices E = {ni,na,...,ni}, k € N, satisfies the minimal redun-
dancy condition for (xyp),. For each n € E€ let (an1,n2, ..., ank) be a (unique) solution of
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the system

<yn1 s =Tn1> <yn27 $n1> . <ynk 5 mn1> (0751 <yna mn1>
<yn1 7.e’13n2> <yn2 ,.1'n2> e <ynk 7'l'n2> 7 Olfﬂ _ <yn7:rn2> . (93)
<yn17 xnk) <yn27$nk> s <ynk7xnk> ank <yn;$nk>
Put
k
Upy =Upy = ... =0y, =0, vn:yn—Zamyni, n#ni,ng, ..., Nk (94)
=1

Then (vn)n is a frame for H dual to (zy,)n.

Proof. Let U be the analysis operator of (x,),. Recall from Corollary 2.2.12 that a frame
(vp)n with the analysis operator V' is dual to (zy), if and only if V* is of the form V* =
(U*U)~'U*F where F € B(£?) is the oblique projection to R(U) parallel to some closed
subspace Y of £2 such that 2 = R(U) 4+ Y.

Hence, to obtain a dual frame (v,), with the property v, = 0 for all n € E, we only need
to find a closed direct complement Y of R(U) in ¢? such that e, € Y for all n € E. Then we
will have

Fe,=0, VnekFE,

and, consequently,
vy, = V*e, = (UU) 'U*Fe,, =0, VncE.

Since E satisfies the minimal redundancy condition for (x,),, Proposition 2.8.6 tells us that
R(U)Nspan {e, : n € E} = {0}. Denote by Z the orthogonal complement of R(U) + span {e,, :
n € E}. (Indeed, this is a closed subspace, being a sum of two closed subspaces, one of which
is finite-dimensional.) In other words, let

2= (R(U) + span{e, :n € E}) ®Z. (95)
This may be rewritten in the form
> =R(U) + (span{e,:n € E}® Z). (96)

Put
Y =span{e,:ne€ E}® Z. (97)

Clearly, Y is a closed direct complement of R(U) in ¢? with the desired property.
Assume, without loss of generality, that £ = {1,2,...,k}. Recall that the synthesis oper-
ator of our desired dual (vy,), is V* = (U*U)U*F, so v,’s are given by

v, = (U*U)"'U*Fe,, V¥neN. (98)
We want to express (vp,)y, in terms of the canonical dual frame (y,),. Recall that

yn = (U*U)'U*e,, VneN. (99)
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Let p, € R(U) and a, € R(U)* be such that
en = Pn+ an, VneN. (100)
Since a, € R(U)* = N(U*), we can rewrite (99) in the form
yn = (U*U)'U*p,, Vn€N. (101)

Recall now that U(U*U)~'U* is the orthogonal projection onto R(U). Hence, by applying U
to (101) we get
Uyn =pn, VneN. (102)

On the other hand, using (96), we can find r, € R(U), b, € span{ei,e2,...,ex} and ¢, € Z
such that
en="n+by,+cn, VneN. (103)

Since F' is the oblique projection to R(U) along span {ey,ea,...,ex} @ Z, we have

Fe,=r,, VYnelN (104)
Observe that
bp=¢n, rn=0, c, =0, VYn=12,...k. (105)
Since each b, belongs to span {ej,es, ..., e}, there exist coefficients ay,; such that
k
b, = Zamei, Vn € N. (106)
i=1
Note that (105) implies
Olnj :57”', Vn,i: 1,2,...,]{3. (107)
We now have for all n € N
103
én (19%) rn+ by +cp
k
106
(:) Tn+zaniei+cn
i=1
(100) b
= Tn + Z ani(pi + ai) + cn,
i=1

k k
= (Tn +) ozm;%) + (Z i + cn> .
=1 =1

Observe that (rn + Zle ampi) € R(U), while <Zf:1 ania; + cn> € R(U)*. Thus, comparing
this last equality with (100) we obtain

k k
T'n =Pn — Zanipia ap = Z Qi + cp, Yn €N (108)
=1 i=1
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Finally, we conclude that for all n € N
v, = (U'U)"'U*Fe,

=" (U*U)'U*r,

k
(1&8) (U*U)flU* <pn - Z%u]%)

i=1
(101) i
i=1
Note that (109) and (107) show that v; = vy = ... = v = 0, as required.
So far we have described our desired dual frame (vy,),, in terms of the canonical dual (y,)n.
Obviously, to obtain v,’s one has to compute all the coefficients ay;, 1 = 1,2,...,k, n > k+ 1.

To do that, let us first note the following useful consequence of the preceding computation.
We claim that
(Un,x3) = —ai, Yi=1,2,....k, Yn>k+1. (110)

Indeed, for i =1,2,...,k and n > k + 1 we have

(Unszi) = (vn,U'ey)

D W)U Fe,, e)
= (Fep,€;)

(124) <Tn7 ei)

(103) (en, — by — Cp,ei)  (since i <n and ¢, L €;)
— *<bn7 el>

(106)
= —Qpj

For each n > k 4+ 1 we can rewrite (110), using (109), as

k
<yn_zan]y]7xl> = —Qpy, VZ:1)27ak;
7=1

or, equivalently,

k
S (i 2i)omg — i = (yn, @), Vi=1,2,.. k.
i=1
The above equalities can be regarded as a system of k equations in unknowns a1, @no, . . ., Qi

that can be written in the matrix form as

(yi,21)  (y2,21) .. (yk,21) 1 (Yns 1)
<y1,.x2> <y27.332> e <yk,'$2> g a:nZ _ (yn,:JUQ) | (a11)
(i, zr) (2, ok) oo (YrsTh) Qnk (Yn, )
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where I denotes the unit & x & matrix. By Proposition 2.8.6 the matrix of the above system
is invertible; hence, the system has a unique solution (1, ana, ..., ani) for each n > k + 1.

Remark 2.8.8. (a) Clearly, if (z,,)y is a Parseval frame, our constructed dual frame (vy,),, is
expressed in terms of the original frame members x,,’s.

(b) Note that the matrix of the system (93) is independent not only of n, but also of all
x € H. Thus, the inverse matrix can be computed in advance, without knowing for which z
the coefficients (x, zy,), (z,Zn,), ..., (¥, s, ) will be lost.

(c) The frame (v )y from Theorem 2.8.7 coincides with the canonical dual if and only if
Tpy = Tpy = ... = Ty, = 0.

Finally we note the following obvious corollary to Theorem 2.8.7 in the case m = 1:

Corollary 2.8.9. Let (x,)n be a frame for a Hilbert space H with the analysis operator U
and the canonical dual (yn)n. Suppose that a set E = {m} satisfies the minimal redundancy
condition for (zy)n. Let v, =0 and

<yTL7 $m>

_AImIml i £ m. 112
T —— # (112)

Un = Yn +

Then (vy)n is a frame for H dual to (xy)n.

Concluding remarks. The discussion in this section is far from complete. For more results we
refer the readers to [26, 24, 44, 70, 80, 86, 93, 95, 91] and references therein. Since most of
these papers are concerned with finite frames, we will turn back to some of them in the next
chapter that is devoted to finite frames. Theorem 2.8.2 is proved in [93]. We refer the reader
to that paper for more details concerning various aspects of construction of bridging vectors.
Proposition 2.8.6 first appeared in [6]. The equivalence (a)<(d) in Proposition 2.8.6 is also
proved in Lemma 2.3 from [30] for finite frames using a different technique. More on Theorem
2.8.7 and several related results can be found in [6]. The existence of frames dual to (xy,),
with pre-determined elements indexed by indices from F is also proved in Theorem 5.2 from
[93], but only for finite frames in finite-dimensional spaces.

Exercise 2.8.10. Let (e,), be an ONB for a Hilbert space H. Consider a € H such that
(a,en) # 0 for each n in N. Let M = (span{a})" and let P € B(H) be the orthogonal
projection to M. Show that (Pe,), is a Parseval frame for M for which the set E' = {ng} has
the minimal redundancy, for each ng € N. Find the excess of the frame (Pey,)pnn,,-

Exercise 2.8.11. Suppose that (z,), is a frame for a Hilbert space H for which the set
E ={1,2,...,k} ,k € N, has the minimal redundancy property. Choose any hj, ha, ..., h; in
H. Show that there exists a sequence (hy,),>k+1 such that (hy), is a frame for H dual to (z,)p
([93], Theorem 5.2).

Exercise 2.8.12. For two vectors x and y in a Hilbert space let 6., denote the rank-one
operator defined by 6, ,v = (v,y)z, v € H. Suppose that x1,z2,...,2, and y1,%2,..., Y,
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k € N, are such that the operator F' = I — Zk Oz, 4, is invertible. Find F~'. Remark.

n=1
A closed form formula for F~! is provided in Theorem 6.2 in [03], but under the additional
assumption that the set {z1,z2,...,z;} is linearly independent. It is proved in [0] that this

additional assumption is unnecessary.
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3 Finite frames

3.1 Basics of finite frame theory

Here we consider frames for N-dimensional real or complex spaces with N € N. For the
ambient space we may take, without loss of generality, the space of all one-column matrices
Mp1(F) which we denote by Hy.

Recall from Remark 2.1.5 that a finite sequence (z,,)*, is a frame for Hy if and only if

span{x, : 1 <n < M} = Hy. Note also that each finite sequence is Bessel.

M

ne is a frame for Hy and write

Suppose that (zy,)

x11 T12 TiM

21 Z22 LaM
xl - . 7$2 - . 9 7J"M -

TN1 TN2 ITNM

Observe that the corresponding analysis operator U takes values in 5?\4 = FM_ Tt is now evident
that the matrix [U*] of the synthesis operator U* € B(£2,, Hy) in the pair of canonical bases
is given by

r11 X2 ... T1M
To1 X22 ... ToM
=1 . : : (1)
N1 IN2 ... INM
so that we can write
[U*]:[.%'l ro ... .%'M] (2)

Thus, each frame (and each Bessel sequence) in Hy can be identified with its synthesis operator;
more precisely, with the matrix representation of its synthesis operator in the pair of canonical
bases for @V[ and Hy.

Definition 3.1.1. A frame (xn)ﬁil for Hy s said to be uniform if there exists a constant c
such that ||z,||> = ¢ for alln=1,2,..., M.

Proposition 3.1.2. Let (z,)M.; be a frame for Hy with the analysis operator U. Then the
optimal frame bounds coincide with the smallest and the largest eigenvalue of the frame operator
U*U. If \1 > Xo > ... > Ay are all eigenvalues of U*U, then

N M
D A= llzal®.
k=1 n=1

In particular, if (xn)ﬁ/[:l is Parseval and uniform, then
N
[z ||? = 3 =12 M
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Proof. The first assertion is already proved in the preceding chapter; see formula (7) in
Proposition 2.1.11.

To prove the second assertion, denote by ( fk)fcvzl the ONB for Hy for which we have
UUfr, = M f for all k=1,2,..., N. Now we compute:

N
o= S Ml
k=1

T

N
= > (i fr)
ke

k=1
N /M
- 3 (S
k=1 \n=1
N
- 3 (Rt
n=1 \k=1
M
= D lzl?
n=1
The last assertion now follows immediately. O

The following proposition provides more details on the correspondence of finite frames and
their synthesis operators.

Proposition 3.1.3. Let T : (3, — Hy be a linear operator, let (fx)N_, be an ONB for Hy
and let (A\g)Y_, be a sequence of positive numbers. Denote by (e,)M | the canonical basis for

2, and by [T]£ the matriz representation of T with respect to (e,)M | and (fx)N_,. Then the
following conditions are equivalent:

(a) (Ten)M | is a frame for Hy and TT* has eigenvectors (fi)_, and associated eigenvalues
CYSNSE

(b) The rows of [T]g are orthogonal and the square of the norm of the j-th row is equal to
Aj for each j =1,2,...,N;

(¢) The columns of [T) make up a frame for Hy and [T]g[T*]? = diag (A1, Aa, ..., AN).

Proof. Put [T]] = (tij) and notice that then we have [T7]¢ = (Z;).
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(a) = (b). We have, for all i,7 =1,2,..., N,

M
((tiry o ting), (b1, o tian)) = > tinkyn
n=1

M M
= <thnenaztznen>
n=1 n=1
= (T7f;, T fi)
<TT*fj7fi>
= /\jdij.

() = (c). From (b) we conclude that [T]{ has N lincarly independent rows. Hence
r(T) = N, T is a surjection, and this tells us that (Te,)) is a frame for Hy. Consider
now the linear map ¢ : Hy — Hpy which every x maps to the column of its coordinates with
respect to ( fk){gvzl. Obviously, ¢ is an isomorphism. Observe now that the n-th column of
[T]g is in fact ¢(Te,), for all n = 1,2,..., M. Since (Te,)M , is a frame for Hy and ¢ is
an isomorphism, this implies that the columns of [T]g also form a frame for Hy. The second

claim in (c) is evident from (b).

(¢) = (a). If we assume (c) the first assertion in (a) follows (precisely as above) from
the fact that n-th column of [T]g is in fact p(Te,), for all n = 1,2,..., M. Finally, notice
that the assumed equality [T]g[T*]? = diag (A1, A2,...,An) can be rewritten as [TT*]; =

diag (A1, Ag,...,A\n), where [TT*]; denotes the matrix representation of the operator T'T*

with respect to the ONB (f¢)I_,. O
11 r12 ... T1M
. T21 T2 ... TaM ,
Corollary 3.1.4. For any N x M matriz X = . . . the following con-
TN1 TN2 ... INM

ditions are equivalent:
(o) XX*=1;
(b) The rows of X form an ON system in (3,;
Tin
(c) The columns of X, x, = : ,n=1,2....,M, make up a Parseval frame for Hy.
TNn
Proof. (a) < (b) is obvious.

(b) = (c). Let T : ¢3, — Hy be the linear operator whose matrix representation with
respect to the pair of canonical bases is X. So, if (e,)2 ; and (f;)i_, denote the canonical
f
€

bases in £2, and Hy, respectively, then [T]2 = X. Thus, if we assume (b), we see that the
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conditions in (b) from the preceding proposition are fulfilled with A\, = 1 forallk =1,2,... N.
Using the implication (b) = (c) from the preceding proposition, we conclude that (z,)M ; is
a frame for Hy. Moreover, if we denote by U its analysis operator, we know that X is the
matrix of the synthesis operator U* in the pair of canonical bases, so X X* = I is equivalent

to U*U = I. Hence, ()M, is Parseval.

(¢) = (b). This follows from the fact observed in the preceding paragraph that X X* =T

is equivalent to U*U = I. O
r11 X192 T1M
o1 o2 ... Io2M . .
Example 3.1.5. Let X = . . . be any unitary M x M matrix, M € N.
TM1 TM2 - TMM

Fix N < M and any N-tuple (i1,is9,...,iy) of indices such that 1 <iy <i9 < ... <iy < M.
Let
Tiin

Lion

Ty = . , n=12,..., M.

Tinn

Then, by the preceding corollary, (z,)*, is a Parseval frame for Hy. So, if we take any N
rows of a unitary M x M matrix, we obtain a Parseval frame for Hy consisting of M vectors.

It should be noted that the same conclusion can also be obtained from the observation
from the beginning of Section 2.1; see also Proposition 2.1.16 and Proposition 2.1.17.

Example 3.1.6. Given M € N, we let w = ¢37 . Then the discrete Fourier transform M x M
matrix DFT(M) is defined as

1 1 1 1
. . 1 w w? wM-1
; _ 2 212 M—1\2
DFT(M) = (ﬁwﬂk)%:g == 1w (w?) (W™7) (3)
i 1 wM—l (w2)'M—1 (wM—'l)M—l |

It is not difficult to show that DFT(M) is a unitary matrix. Thus, for each N < M, any
selection of N rows yields a uniform Parseval frame for the complex space Hy. In particular,
if we choose the first N rows, we get the frame (z,,)}

n=1»
1 1 1
1 |1 1 w 1 wM—1
= —— Ty = —— . e I = ——
UM T VM| MM :
1 WN_I (wM—l)N—l

that is called the complex harmonic frame.
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Example 3.1.7. Let M € N.

D=2k (R) =

If M = 2k we define

1
V2

1
0

V2 V2
2 221
COS M COS M
i 2w i 221
S1n i S1n NYE
2(k—1)m 2:2(k—1)m
COS Wi COS i
. 2(k—1)m s 22(k—1)m
Sin Sin 1
! 1
V2 V2

cos M=D2(k=1)

M
(M—1)2(k—1)7

sin
M

V2

One can check that Dj;_o;(R) is a unitary matrix. For N odd, N =2l +1 < M, we take

first N rows of the above matrix to obtain a real harmonic frame (z,,)

If M =2k + 1 we define

Dyr—op41(R) =

1 7
V2 )
CcoS n-zm
sin —”%“
M
n~27r%
COS —7
. n-27r¥
sin —7 ]
-1 1
V2 2
271
1 cos 7
s 27
0 sin i
2km
1 cos Y
. 2km
0 sin ST

) n= 07 17
L
2
2-2m
COS a1
s 22w
S0 A
L 2:2km
COS Ai
s 2:2km
Sin M

COS

M-1
n=0

(M—I)ka

(M—1)2km
M -

for Hy;

Again, Dps—ok+1(R) is a unitary matrix. For N even, N = 2] < M, we omit the first row
and take next N rows to obtain a real harmonic frame (z,)M ! for Hy;

n-2mw

Cos "3

n-2mw

ST

COSs

| sin

N
n 2#7

M

N
n2mwy

 n=0,1,...,M—1.

Corollary 3.1.8. For all M and N such that M > N there exists a uniform Parseval frame
for Hy consisting of M elements.
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An important problem both in theory and applications is a question of construction meth-
ods of finite frames; in particular, of frames with some additional properties (uniform, equian-
gular, etc). This also includes methods for extending given finite sequence of vectors to a
frame. It turns out that the following theorem, which we include without proof, serves as an
important tool for extending finite sequences to frames.

Theorem 3.1.9. ([/7]) Let S be a positive operator on Hy. Let A\y > Ao > ... Ay > 0 be the
eigenvalues of S. Fix M > N and real numbers a1 > as > ... > apr > 0. Then the following
conditions are equivalent:

(a) There exists a frame (x,)M., for Hy with the analysis operator U such that U*U = S
and ||zy|| = an, for alln=1,2,...,M;

(b) For every k, 1 <k <N,
k k M N
ZQ?SZ)\Z' and Za?:ZAi.
i=1 i=1 i=1 i=1

We now demonstrate several results which provide methods for extending finite sequences
of vectors to frames. The first one is fairly simple.

Proposition 3.1.10. Let (z,)*, be a sequence of unit vectors in Hy. Then there erists a
uniform tight frame (xnj)yjﬁl for Hy such that x,1 = xp, for everyn=1,2,..., M.

Proof. For each n we can find an ONB (mnj)é-v:l for Hy such that z,1 = z,. O

The following proposition provides an extension of a given sequence to a frame by adding
much smaller number of vectors.

Proposition 3.1.11. Let (x,)), be a sequence of vectors in Hy such that x,, # 0 for at least
one n. Then there exists a sequence (hj);VZQ such that (z,)M ;U (hj);\f:2 is a tight frame for
Hy.

Proof. Let U be the analysis operator of (z,)M. ;. Put S = U*U and observe that Sz =

ny:l(x, Tp)Tn, x € Hy. Let (gj)é-vzl be the ON eigenbasis for S with respective eigenvalues
()\j);v:l, A1 > Ao > ... > A\y. Notice that A\; > 0 since S # 0.

For 2 < j < N, let h; = /A1 — Ajgj. Denote by U; the analysis operator of (z,)3, U
(hj)év:? Let S; = U{U;. Then we have

M N
Sz = Z(l', Tp)Tpn + Z<$’ hj>hj
n=1 j=2
N N
= Z i, g5)95 + Z()\l — Xz, 95)9;
j=1 J=2
N
= M) (959
j=1
= )\13}.
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O

The frame that is obtained by the method from the preceding proof is tight, but not uniform
(even if the original sequence consists of vectors of equal norms).

Proposition 3.1.12. Let (mn)n 1 be a sequence of unit vectors in Hy with the optimal Bessel
bound B. Then there exists a sequence (g])j 1, K € N, of unit vectors such that (z,)M ;U

(gj) L, 15 a uniform tight frame with tight frame bound A < B 4 2.

Proof. Let U denote the analysis operator of (z,,) ;. Write S = U*U and denote by (e;)X,
the eigenbasis for Hy with respective eigenvalues ()\Z-)fil, A1 > A9 > ... > Ay > 0. Observe
that B = A\;. We also have

|
.}
WE

Ajlejsej)

<
Il
—

<.
Il
-

<U*U€j, €j>

I
WE

1

.
Il

N
= D _llUej|?
7j=1
N M
= Z( |<€j,wn>l2>
7j=1 \n=1
M N
= D> D Kwn,e)P
n=1 \ j=1
M
= > laal?
n=1
— M. (6)

For € € [0,1] consider f(¢) = N(A\ +1+¢) — M. Notice that f(0) = NA\; + N — M and
f(1) = NA\i+2N—M. Thus, there exists € € [0, 1] for which we have f(¢) = N(Ai+1+¢)—M =
K € N. Observe that (6) implies K > N.

Let us now define the operator Sy on Hy by Spej = (M +1+¢€) — Aj)ej, j=1,2,...,N.
Note that Sy > 0.

Since each of the eigenvalues of Sy is greater than 1, letting a; =1 for i = 1,2,..., K, we
immediately obtain the first condition (the inequality) in Theorem 3.1.9 (b). Also,

N K
D AM+1+4e)=X) =N +1+¢)— Z/\j_NA1+1+e) M=K=) a.
i=1 -

We are now in position to apply Theorem 3.1.9: there exists a sequence (gj)fil of unit vectors

which is a frame for Hy having Sy for its frame operator (that is, Spx = Zjl-(zl@,gj)gj,
T € HN).
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Consider now (z,,)M ; U (gj)le. We know that

M K
(S + Sp)x = Z(m,xn>azn + Z(m,gj>gj, Vo € Hy,
n=1 j=1

and, on the other hand,
(S + So)ej = Ajej + (M+1+¢e)— )\j)ej =\ +1 +6)€j, Vi=1,2,...,N. (7)

Put A\ + 1 +e=A. Then A < \; +2 = B+ 2 and (7) tells us that (z,)} ;U (gj)JK:1 is an
A-tight frame for Hy. O

We end these considerations by showing that any finite sequence in Hy can be extended
to a tight frame for Hy.

Proposition 3.1.13. Let (z,) ., be a finite sequence in Hy with a Bessel bound B. Then
there exists a sequence (gj);\/:1 in Hy such that (z,)M ;U (gj)é-v:l is a B-tight frame for Hy.

Proof. Denote by U the analysis operator of (z,,)) ;. Then we know that U*U < B-I; thus,
B-I—-U*U > 0. By Exercise 3.1.20, there exists a sequence (gj)j.vzl in Hy with the analysis
operator V such that V*V = B -1 — U*U. This implies that

M N
Z(l‘,%ﬁﬂfn + Z(:U,gj>gj =UUxs+VVe=UUx+ (B-I1-U"U)xr =B -z, Yz & Hy;
n=1 j=1

thus, (2,)M, U (gj)évzl is a B-tight frame for Hy. O

Consider a frame (xn)fl/[:l for Hy and assume we are given the image of a signal x € Hy
under the analysis operator U:

M

Uz = ((z,2n))p—1 -

Theoretically, one can reconstruct x using the reconstruction formula

M

=S (e

n=1

where (y,)M_; is the canonical dual frame. Recall that y, = (U*U) la,, n = 1,2,..., M.
In applications the reconstruction formula might not be utilizable because inversion is com-
putationally expensive and numerically instable. Proposition that follows (Frame algorithm)
provides us with an iterative method to derive a converging sequence of approximations of x
from the knowledge of frame coefficients (z,x,), n =1,2,..., M.

Proposition 3.1.14. Let (x,)) | be a frame for Hy with frame bounds A, B and the analysis
operator U. Given a vector x € Hy, define a sequence (vi)72, in Hy by

v =0, v =vE_1+ UU(x —vg_1), Yk €N.

A+B
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Then x = limy_,, vx and the rate of convergence is

B— A\*
Ix—wH§< )nxukzo

B+ A

Proof. First observe that for all x € Hy we have

2
I — * 2 W2 < [z 2 2
<< A+ B U) > Il = A+BZ“” W< el = A+BH =" = B+A” 7™

In a similar way one obtains

B+AH$H < <<I A U>x 3:>
Hence,
2 B—-—A
— * < .
A—i—BU UH_B—i-A )

By definition of v; we have, for any k > 0,

2
A+ B

r— V=T — Vp—1—

A+BU U(:L’—’Uk_l): <I—

U*U> (z — vp_1).

Iterating this computation we obtain

9 k
o= (1 * — w).
T — v ( A+BU U) (x — o)
We now use (8) to get

2
A+B

2
A+ B

rxmmzH(I tﬂU)vaw

ol 1ot < (54) e

0

< Hz

Remark 3.1.15. (a) We assume in the preceding algorithm that A # B, i.e. that our frame
is not tight. If, on the other hand, A = B, then U*U = A - I and the reconstruction formula
reads © = > (2, 2p) S 2.

(b) Observe that the iteration formula contains z, but the algorithm uses only the frame
coefficients (z,x,), n =1,2,..., M, since

m
U'U(x —vg_1) Z T, Tpn) — (Vk—1,Tn))Tn.

(c) The inspection of the proof shows that the proposition is also true for infinite frames.

(d) One drawback of the frame algorithm is the fact that the convergence rate depends on
the ratio of the frame bounds in a sensitive way. A large ratio of the frame bounds leads to very
slow convergence. To tackle this problem, in [72], the Chebyshev method and the conjugate
gradient method were introduced.
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Concluding remarks. The material in this Section is standard. We refer the reader to [15] for
a comprehensive exposition of the finite frame theory.

Theorem 3.1.9 is proved in [17]. Proposition 3.1.11, Proposition 3.1.12, and Proposition
3.1.13 first appeared in [18]. Here, the reader is also referred to [31] and [65]. In general, frame
constructions have a long history; in particular, there are various methods for construction of
uniform Parseval frames since those frames are most advantageous for applications. A relevant

concept in some constructions is the so-called frame potential; see [20] and [10]. More on
harmonic frames can be found in [14], [70], and [116]. In [12] the so-called Spectral Tetris
algorithm for constructing of uniform tight frames is introduced; see also [13], [15], and [50]

A frame (z,,)M_; is said to be equiangular if there exists a constant ¢ such that |(x,,, )| = ¢
for all n # m. For theoretical aspects of equiangular frames and their applications we refer
the reader to [17], [1&], [24], [66], [86], [112], and [113].

A frame (avn)nM:1 is said to be scalable if there exist non-negative numbers ai, ao, ... ans
such that (a,x,)M , is a Parseval frame. Scalable frames are introduced and studied in [92].

Here we also mention some of the papers devoted to various methods (and appropriately
designed frames) compensating for erasures, noise reduction and similar disturbances in signal
transmissions: [14], [24], [71], [36], [0, [95], [<0]

For connection of finite frames to sparsity methodologies we refer to [13], [91], and [15].

Exercise 3.1.16. Let

270 _ 2| L _ 2] =
531—517332—5_% 7333—§ _%-

Show that (xn)izl is a uniform equiangular Parseval frame for Hs. For obvious reasons, this

frame is called the Mercedes-Benz frame.

S

Exercise 3.1.17. Prove that every finite frame can be completed to an invertible matrix by
adding a suitable set of rows. (Here we identify frames with the matrix representations of their
synthesis operators in the pair of canonical bases.)

Exercise 3.1.18. Show that the matrices given by (3), (4), and (5) from Example 3.1.6 and
Example 3.1.7 are unitary.

Exercise 3.1.19. Prove that DFT(M) diagonalizes the cyclic shift Zy; = 0 .

1 0
Exercise 3.1.20. Let S be a positive operator on a Hilbert space H. Prove that there is a
Bessel sequence (gp,), in H with the analysis operator V such that V*V = S. If dimH = N <
oo show that one can find a finite sequence in H, consisting of precisely N vectors, with the
desired property.

Exercise 3.1.21. Let (x,)), be a Parseval frame for Hy. If T is any linear operator on Hy
show that tr 7T = 22/1:1<T$na Tn).
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3.2 Full spark frames

Definition 3.2.1. A frame (a:n)ﬁ/lzl for Hy is said to be 1-robust if for every 7,1 < j < M, the
reduced sequence (l’n){l;ll U (a:n)ﬂf:j+1 is a frame for Hy. (In other words, (z,) ., is 1-robust
if each {j}, j=1,2,..., M, satisfies the minimal redundancy condition.)

Similarly, we say that (z,)M_, is K-robust, K € N, if any set of different indices {i1,42,...,ix} C
{1,2,..., M} of cardinality K satisfies the minimal redundancy condition for (z,)M_,.

One can show (see Exercise 3.2.24) that each Parseval frame (x,,), with the property that
|zn|| < 1 for all n is 1-robust.

Clearly, a K robust frame is resistant to erasures of any K frame coefficients. So, in
applications it is most convenient to work with K-robust frames with maximal possible K.
Obviously, a frame (x,)M ;| for Hy is maximally robust if it is (M — N)-robust and when this
is the case, for any set of indices {i1,42,...,ip—n} C {1,2,..., M} of cardinality M — N, the
reduced sequence (xn)ne{lz,...,M}\{z’l,ig ’’’’’ ini_n) 18 @ basis for Hy. Such frames are called full
spark frames.

Definition 3.2.2. ([01]) Let T € My be a matriz with columns S1,Sa,...,Sym. The spark
of T is the cardinality of the smallest linearly dependent subset of {S1,S2,...,Sn}.

Equivalently, spark(7’) can be formulated in terms of the Hamming weight. Recall that the
U1

V2
Hamming weight is defined, for any v = ) € Hyy, by

Upm
|v]jo =card{j € {1,2,...,M} : v; # 0}.
Observe now that Tv = v151 + 1252 + ... + v Spys. From this we conclude that
spark(T") = min {||v]|o : Tv = 0,v # 0}. 9)

When T has a zero-column, then, obviously, spark(7") = 1. Similarly, spark(7T") = 2 means
that all columns of T" are non-trivial and at least two columns are proportional.

If T is a N x M matrix with M < N it can happen that the set of all its columns
{51, 52,...,Sn} is linearly independent. When this is the case, we understand that spark(7") =
00.

If T'is a N x M matrix with M > N (which is the case of our interest since frames for
Hy are represented by such ”long” matrices), then any set of N + 1 columns of T is linearly
dependent. Hence, the spark of each ”long” matrix (M > N) is at most N + 1.

Definition 3.2.3. We say that T € My, M > N, is a full spark matriz if spark(T) = N +1.

Remark 3.2.4. It is useful to note the following immediate observation: T' € My, N < M, is
a full spark matrix if and only if any set of its columns of cardinality NV is linearly independent.
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Remark 3.2.5. Suppose that (z,)), is a frame for Hy. Let

Tin

Ton
Ty = . , n=1,2..., M.

TNn

As before, we identify (z,)M ; with the matrix X = [U*] of its synthesis operator in the pair
of canonical bases for E%w and Hy:

r11 12 TiM

r11 12 TiM
X = .

IN1 IN2 ... INM

It is now immediate from Definition 3.2.1 together with the subsequent comments and Remark
3.2.4 that (z,)M, is a full spark frame (that is, maximally robust) if and only if X is a full
spark matrix.

Example 3.2.6. For N < M and any sequence ()., of distinct scalars let

1 1 1
(05} (65)] e (034
VNa1,02,an = .
-1 N-1 —1
o Qg Xy

Then (Vandermonde) Vi o, as,.. is a full spark matrix.

QM

A subject of a prominent interest in frame theory is to develop methods for construction
of full spark frames, possibly with some additional properties (e.g. uniform, equiangular etc).
Note that immediately from the preceding example we get

Example 3.2.7. The complex harmonic frame (x,)* ; from Example 3.1.6 is full spark.

Remark 3.2.8. Recall that the complex harmonic frame is obtained by taking the first N rows
and deleting the remaining M — N rows from the descrete Fourier transform matrix DFT(M).
We know that deleting any M — N rows from DFT(M) yields a uniform Parseval frame for
Hpy. However, such frames are not necessarily full spark.

Consider
1 1 1 1
1 1 7 —1 —1
DFT(4)_§ 1 -1 1 -1
1 -7 -1 7

After deleting the second and the forth row we get the matrix

1T1 11 1
X_§1—11—1
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which represents a uniform Parseval frame for Hy consisting of 4 vectors. Obviously, spark(X) =
2 and hence this frame is not full spark.
In this context, the following classical result (which we include without proof) is useful.

Theorem 3.2.9. (Chebotarév, [2], [109]) Let M be prime. Then every square submatriz of
DFT(M) is invertible.

Corollary 3.2.10. Let M be prime and N < M. Then every choice of N rows from DFT(M)
produces a full spark uniform Parseval frame for Hy.

The first class of real full spark uniform tight frames is constructed in [103]. The same paper
also provides a technique for constructing full spark tight frames based on some properties of
orthogonal polynomials ([111]).

Another construction of full spark tight frames appears in [2]. The proof of the following
theorem, which we omit, is based on Chebotarév’s theorem.

Theorem 3.2.11. ([2], [11/]) Let M be prime and pick any N < M rows of DFT(M); denote
by F' the resulting N x M matriz. Next, pick any K < N and take D to be the N x N diagonal

matriz whose first K diagonal entries are \/W, and whose remaining N — K diagonal

entries are \/%. Then concatenating DF with the first K elements of the canonical basis

for Hy produces a full spark uniform tight frame for Hy consisting of M + K wvectors.

Example 3.2.12. Let M =5, N =3, K =1, and w = ¢, Let F be the matrix obtained by
taking the first, the second, and the fifth row of DFT'(5):

1 1 1 1 1
F=|1 w w? ¥ wt
1wt W W ow

Next we take

o o%
(S

Then by Theorem 3.2.11 the columns of
1 1 1 1 1
VB s
X = % \/gw %w2 %w3 \/gwd‘ 0

make up a full spark uniform tight frame for Hs.

In the remaining part of this section we will characterize all finite full spark frames and
provide another technique for constructing such frames.
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Definition 3.2.13. An N x M matriz T is said to be totally non-singular if all its square
submatrices are invertible.

Theorem 3.2.14. Let (v,)_; be a basis for Hy and let T = (tij) € Mk, K € N, be a

totally non-singular matriz. Define tny11,TN+2, ..., TN+K € Hy by
N

TN+j = Zfijxi, Vi=1,2,...,K. (10)
i=1

Then (:cn)T]yle is a full spark frame for Hy.
Conversely, each full spark frame for Hy is of this form. More precisely, if (xn)g:ﬁK s a
full spark frame for Hy, then there is a totally non-singular matrix T = (t;;) € Mk such

that TN4+1,TN12, ..., TN+K are of the form (10).

Proof. Suppose that we are given a basis (z,,)Y_; for Hy and a totally non-singular matrix
T = (tij) € Myk. Consider (:J:n)fzvle with £N4+1, ZN12, - ., ZN+K € Hy defined by (10). Let
k be a natural number such that 1 < k < N, K. Consider two arbitrary sets of indices of
cardinality k; I = {i1,i2,...,ix} C {1,2,...,N} and J = {j1,J2,...,Jk} € {1,2,..., K} and
let 7¢={1,2,...,N}\ I. We must prove that a reduced sequence

(T )nere U ($N+j)j€J (11)

is a basis for Hy.

Note that the case k = 0 is trivial. On the other hand, if N < K and k = N (so that all
x,’s are omitted), then our assumption on 7" guarantees that the resulting sequence is a basis
for H,. Thus, we only need to consider the case 1 < k < N and the sequence of the form (11).

Denote by C' € My the matrix that is obtained by representing our reduced sequence (11)
in the basis (z,)Y_,. It suffices to show that C is an invertible matrix. We shall show, using
an argument from the proof of Theorem 6 in [2], that det C' # 0. By suitable changes of rows
and columns of C, where only the first N — k columns of C' are involved, we get a block-matrix

C' of the form /
o-[% o]

where In_j € My_ is a unit matrix while 7" € My_j , and T” € M}, are some submatrices of
T (up to appropriate permutation of rows and columns). By the hypothesis, T” is invertible.
Hence, det C" = det Iy_j - det T" = det T” # 0 and this obviously implies det C' # 0.
To prove the converse, suppose that (xn)nN:JrlK is an arbitrary full spark frame for Hy. In
particular, (33n)7]:[:1 is a basis for Hy, so there exist numbers ¢;; such that xy 1, N2, ..., TNk
are of the form (10). We must prove that each square submatrix of T' = (¢;;) € Myk is in-
vertible.

Consider two sets of indices I = {iy,i9,...,i} and J = {j1,J2,...,jk} with 1 < k <
N, K and the corresponding k x k submatrix 177 = (tij)icr,jes of T. Denote again [¢ =
{1,2,..., N} \ I and consider the corresponding reduced sequence

(Tn)nere U ($N+j)j€J-
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By the assumption, these N vectors make up a basis for Hy. Denote by C' the matrix repre-
sentation of this basis with respect to (x,)_; and notice that C' is an invertible matrix. In
particular, the rows of C' are linearly independent. Observe now that the £ x N submatrix Cf
of C' that corresponds to the rows indexed by I is a block-matrix of the form

Cr=[0 | T1s].

In particular, the rows of C are linearly independent. This immediately implies that the rows
of Ty j are linearly independent. Thus, 77 ; is invertible. O

We proceed with some applications of Theorem 3.2.14. Let us begin by providing examples
of totally non-singular matrices.

Recall from [67] that a square matrix T is called totally positive if all its minors are positive
real numbers. Clearly, each totally positive matrix is totally non-singular. We will construct a
class of infinite totally positive symmetric matrices which can be used, via Theorem 3.2.14, for
producing new examples of full spark frames. A construction that follows may be of its own
interest.

For a matrix T = (t;;) € M, and two sets of indices I,J C {1,2,...,n} of the same
cardinality we denote by A(T") s the corresponding minor; i.e. the determinant of a submatrix
Tr.j = (tij)icr jes. A minor A(T); s is called solid if both I and J consist of consecutive indices.
More specifically, a minor A(T); s is called initial if it is solid and 1 € I U J. Observe that
each matrix entry is the lower-right corner of exactly one initial minor. In our construction we
will make use of the following efficient criterion for total positivity which was proved by M.
Gasca and J.M. Pena in [09] (see also Theorem 9 in [07]): a square matrix is totally positive
if and only if all its initial minors are positive.

To describe our construction we need to introduce one more notational convention. Given
an infinite matrix 7' = (tij)ioj»:l and n € N, we denote by 7 a submatrix in the upper-left

n x n corner of T', that is T(") = (tij)ij=1- Its minors will be denoted by A(T™); .

Theorem 3.2.15. Let (a,), and (by)n be sequences of natural numbers such that by = az and
anbnt1 — bnans1 =1 for alln € N. Then there exists an infinite matriz T = (tij),?j»:l with the
following properties:

1. ti; €N, Vi,5 € N;
tz‘j = tjl', Vi,j S N,‘
tin =tn1 = an, Vn €N, and to, = t,o = by, Vn € N.

all minors of T are positive (i.e. T™ s totally positive), for each n € N ;

Gvo e

For each n € N, it holds
AT™) 1 13 = tn1 = an,
A(T(n)){n,n—l},{1,2} =1,
A(T(n)){n,n—l,n—z},{1,2,3} =1,
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A(T(n)){n’n—17n—2,n—3},{1,2,3,4} = 1’

A(T(n)){n,n—1,...,1},{1,2,...,n} =detTMW =1

(i.e. all solid minors of (T(")) with the lower-left corner coinciding with the lower-left
corner of (T™), except possibly A(T(”)){n}’{l}, are equal to 1).

Proof. We shall construct 7' by induction starting from 7™ = [a;]. Observe that T =

b . L .
[ Zl bl ] : note that T is symmetric since by assumption we have b; = ao.
2 02

Suppose that we have a symmetric totally positive matrix with integer coefficients T
M,, which satisfies the above conditions (1)-(5),

aj a9 as e (079
a9 b2 bg e bn
a b t oo t
T(n) . 3 3 33 3n
an-1 bp_1 th-13 - tn—1ipn
| an by, ths ...  tom
Put ) )
ay a9 as N Ay, Ap+1
a9 bQ bg e bn bn+1
as b3 t33 N tgn I3
T+ — : : : : : , (12)
apn-1 bp_1 th-13 -+ thn—1n Tn-1
Qg bn tng e tnn In
L On+1 b1 T3 s L, Tn+1

Note that, by the hypothesis on sequences (ay,), and (by),, we have

det[ tn bn ]:1.
an+1 bn+l

We must find numbers 3, x4, . . ., Zp, p41 such that T+ satisfies (1)-(5). Consider a 3 x 3
minor in the lower-left corner of T(+1):

an—1 bp—1 tho13
A(CF(nJrl)){n—&—l,n,n—l},{1,2,3} = det an, bn tn3
ant1 bny1 73

We can compute A(T(n+1)){n+1,n,nfl},{1,2,3} by the Laplace expansion along the third row. By

ap-1 bp—1

the assumption on sequences (ay,), and (b,), we have det [ } = 1; hence, there

b
n n
exists a unique integer xg such that A(T(n+1)){n+17n7n,1}7{172’3} = 1; take this z3 and put
Int1,3 = T3.
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Consider now

an—2 bp—2 th23 th-24

An-1 bn-1 th-13 th-14
an by, tn3 tna

nt1 bny1 thi13 T4

A(T(n+1)){n—i—l,n,n—l,n—2}7{172’3’4} = det

Note that the only unknown entry in this minor is 4. We again use the Laplace expansion
along the bottom row. By the induction hypothesis we know that

n-1 bn_2 tp_23
det | an—1 bp1 tho13 | = A(T(n)){n,n—l,n—2},{1,2,3} =1
an by, tn3

hence, there is a unique x4 € Z such that A(T(”H)){nﬂ,n’n,17n,2}7{172,374} =1. Putt,y14 = 24.
We proceed in the same fashion to obtain x5, ..., x,+1 in order to achieve the above condition
(5) for T+ Since T Y is symmetric, all its essential minors with the lower-right corner
in the last column are also equal to 1. By the induction hypothesis T is totally positive, so
all essential minors of 71 with the lower-right corner in the ith row and jth column such
that ¢, 7 < n are also positive. Thus, we can apply the above mentioned result of M. Gasca
and J.M. Pefia (Theorem 9 in [(7]) to conclude that 71 is totally positive. In particular,
the integers x3, x4, ..., Tn, Tn41 that we have computed along the way are all positive. This
completes the induction step. ]

Example 3.2.16. Let us take a, = 1 and b,, = n, for all n € N. Clearly, the sequences (a,)n
and (by,), defined in this way satisfy the conditions from Theorem 3.2.15. Thus, Theorem
3.2.15 gives us a totally positive matrix

1 1 1 1
3 4 5 6
6 10 15 21

10 20 35 56
15 35 70 126
21 56 126 252

N

Il
Gy S Gy
S U i W N =

By the construction, the coefficients of T" in the first two rows and columns are determined
in advance. One can prove that all other coefficients of T', those that must be computed by an
inductive procedure as described in the preceding proof, are given by

tijr1 = tij + 41,541, Vi >3, V) > 2. (13)
This means that T is in fact a well known Pascal matrix; i.e. that t;;’s are given by ¢;; = (ZJ;J_ _12)
for all 4,5 > 1. A verification of (13) serves as an alternative proof of Theorem 3.2.15 with
this special choice of (ay,), and (b, ). The key observation is the equality that one obtains by
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subtracting each row in A(T(n+1)){n+1,n,...,n—j+1},{1,2,...,j+1} from the next one and then using
(13):

T tn—jr12 ta—j+13  -+- Tn—jt+1,j+1
0
+1 =
AT D) 1) {12041} = 9 ATD) it e j+21 (12,5}
0

We omit the details.

Another example of an infinite totally positive symmetric matrix is obtained by a different
choice of sequences (a,), and (by)y.

Example 3.2.17. Let a,, = n and b, = 3n — 1, for all n € N. Evidently, these two sequences
satisfy the required conditions; namely, by = ao and a,bp+1 — bpan+1 = 1 for all n € N. An
application of Theorem 3.2.15 gives us a totally positive matrix

2 3 4 5 6 7 8
5 8 11 14 17 20 23
8 14 21 29 38 48 59
1

1

2

3

4 11 21 35 54 79 -
T—| 95 14 29 54 94

6 17 38 79

7 20 48

8 23 59

Remark 3.2.18. Obviously, by choosing suitable sequences (a,,), and (b,), one can generate
in the same fashion many other totaly positive symmetric matrices with integer coefficients.

It is also clear from the proof of Proposition 3.2.15 that, by applying a similar inductive
procedure, one can construct any infinite totally positive matrix (not necessarily symmetric)
with coefficients merely in RT, with a prescribed first column or the first row.

We can now provide, using Theorem 3.2.14 and the preceding two examples, further ex-
amples of full spark frames for Hy of arbitrary length. To do that, we only need to fix some
K € N, and choose arbitrary set of indices I = {i1,12,...,in}, J = {Jj1,J2,...,JKx}. Then we
can take a totally positive matrix T from Example 3.2.16 or Example 3.2.17, its submatrix
Tr; € Myg and apply Theorem 3.2.14. In this way we obtain a full spark frame for Hy
consisting of NV 4+ K elements.

Example 3.2.19. Denote by (x,))_; the canonical basis for Hy. Take arbitrary K € N and
the upper left N x K corner of the matrix from Example 3.2.16. An application of Theorem
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3.2.14 gives us a full spark frame (xn)r]yle for Hx whose members are represented in the basis
(7,,)N_; by the matrix

1 0 0 01 1 1 1 ]
01 0 01 2 3 K
0 01 0 1 3 1tz - t3x
Fxe=10 0 0 01 4 ty3 - tig
_0 00 --- 1 1 N tng - INK |
with 0
tl]:(z—ijjz >7 :1)2) aN)]:1727 aK
]_

We end the section with a general theorem concerning infinite matrices from Examples
3.2.16 and 3.2.17. It turns out that these matrices are just two representatives of an infinite
family of infinite symmetric totally positive matrices. This is the content of the following
theorem which we include without proof.

Theorem 3.2.20. Let d by any non-negative real number and let T¢ = (tij(d))75=1 be an
infinite matriz defined by

i+j—2

t,;j(d)—(1+(2'—1)d)(1+(j—1)d)+( it )—1, Vi,j € N. (14)

Then T is an infinite symmetric totally positive matriz whose all essential k X k minors, for
all k > 2, are equal to 1.

In particular, for eachn in N, T4" = (t; (d))7 =1 is a real symmetric totally positive matriz
with the Cholesky decomposition

T¢”::L¢”<L¢">”, (15)

where ()" denotes the transpose and

1+ (¢@—1d forj=1
dn — (1 (d))*. (d) = A
L - (lZ] (d))z,]=17 lz] (d) { (‘;:i) fO’I"j 1 Vn € N. (16)
Remark 3.2.21. Note that we have, for every d > 0,
1 1+4d 14 2d 14 3d i

14+d (+d1+d)+1 (I+d)(1+2d)+2 (1+d)(1+3d)+3
Lol w2a e ad 2 Q421420 45 (142d)(14+3d) 49 ..
T=11434 (17)

144d
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If we substitute d = 0 and d = 1, we get matrices form Examples 3.2.16 and 3.2.17, respectively.
It is also useful to note that

toj(d) = (1+d)(1+(j —1)d) + <jil> —1= 1+d+(j—1)(1+d+d2), Vi eN,
so the coefficients in the second row and in the second column of 7% make up an arithmetic
sequence.

Remark 3.2.22. Since, for all d > 0 and n € N, T%" is a real, symmetric, and positive-definite
matrix, it has a unique Cholesky decomposition. Observe that (16) shows that, for a fixed
n € N, all lower triangular factors L™ differ only in the first column. Taking, for example,
n = 6 we have

100 0 00 1 00 000
110 0 00 1+d 1 0 0 0 0
121 0 00 1+2d 2 1 0 0 0

0,6 _ d6 _

L 133 100/ T 1434 3 3 1 00| "4>0
146 4 10 1+4d 4 6 4 1 0
15 10 10 5 1| 1454 5 10 10 5 1 |

We note that it is well known that L% is the lower triangular Cholesky factor of the Pascal
matrix of order 6 (and analogously for every n in N).

Concluding remarks. The notion of the spark of a matrix is introduced in [61]. The motivation
for the definition is the observation that matrices whose spark is large enough are naturally
equipped to distinguish sparse signals. To see this, consider a full spark N x M matrix T and
observe that v € Hyy, ||v]jo < N,v # 0= Tv # 0. In particular, from this one concludes that
v1,v2 € Hyr, ||v1]o, [Jv2]lo < %, vy # v9 = Ty # Tos.

Chebotarév’s theorem was first used in this circle of problems in [32] for sparse signal
processing.

Theorems 3.2.14 and 3.2.15 and the subsequent results first appeared in [0].

Exercise 3.2.23. Let (x,), be a frame for a Hilbert space H with the lower frame bound A.
If ||| < V/A for some index m, then the set {m} satisfies the minimal redundancy condition
for (zp)n.

Exercise 3.2.24. Let (z,), be a Parseval frame for a Hilbert space H. Show that the following
conditions are equivalent:

(a) (zp)n is 1-robust;

(b) ||zn] < 1, for all n.
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Exercise 3.2.25. ([24], [89]) Let (z,), be a Parseval frame for a Hilbert space H that is not an
ONB. Suppose that ||z;|| = 1 for some i. Show that there exist an index j such that |z;|| <1
and a Parseval frame (x7,),, for H with the properties ||z < 1, [[}]| < 1, and z;, = z;, for all
n # 1, j. Hint. Take a real number ¢ such that 0 < ¢ < § and define

cospx; +sinpx;, ifn=7i;
T, =4 —sinpz; +cospx;, ifn=j;
T, ifn#£14,j5.

~

Exercise 3.2.26. Prove equality (13) for the matrix T from Example 3.2.16.
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4 Frames in wavelet theory

4.1 Shift-invariant spaces

For a function f on RY and a € RY we define the translation of f by a as the function T, f
defined by T,f(z) = f(z —a), x € RY. In this chapter we shall restrict ourselves to integer
translations Ty, k € ZV. It is easy to see that {T} : k € ZV} is a group of unitary operators
on L?(RY).

Definition 4.1.1. A closed subspace V of L*(RY) is said to be shift-invariant (or a shift-
invariant space, SIS) if V is invariant under the action of all Ty, k € ZN, i.e. if

feV=T.feV, YkeZ".
Given f € L*(RN), we denote by (f) the smallest SIS that contains f;
(f) = span{Tyf : k € ZV}.

Such spaces which are closed subspaces of L*>(RY™) that are generated as shift-invariant spaces
by a single function are called principal shift-invariant spaces.

A major role in the study of shifAt—invariant spaces is played by the Fourier transform. Recall
that the Fourier transform Ff = f of a function f € L*(RY) is defined by

[© = |  f@e?fde, € cRY. (1)

The Plancherel formula

(f.g) = (f.9), Vf,g € L"(RY)n L*(R") (2)

enables us to extend F from L'(RY) N L2(RY) to a unitary operator on L%(R).
It is convenient to note the following useful (and well known) formula:

T f(€) = e 208 f(e), vk e ZV. (3)

Given f € L%(RY), the principal shift-invariant space (f) is generated, as a closed subspace
of L2(RY), by the sequence (T} f)yezy- A natural question arises: can we characterize those
f for which the sequence (T} f)ieznv is an ONB/Riesz basis/frame for (f)? A related question
is the following one: given f, can we find g € (f) such that (f) = (¢g) and that the sequence
(Tkg) ez~ has "nicer” properties than the original sequence (T} f)pezn?

We denote by TV = R¥/ZN the N-dimensional torus. By LP(T") we denote the space of
all ZN-periodic functions (i.e., f is 1-periodic in each variable) such that

/ (@) Pdz < oo,
CN
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where CV denotes the standard unit cube [—%, 1)V in RV, In fact, we shall freely identify

LP(TN) with LP(CV).
For f,g € L?>(RN) we denote by [f,g] the bracket product which is the function defined
a.e. by
[f.9l(@) = Y fla+k)glz+k), xeC. (4)
kezN
Clearly (see Corollary 4.4.17), we have [f, g] € L'(TY). In particular, for any ¢ € L*(RY), we
denote by o, the function defined a.e. by

0,(6) =16, 21(6) = ) e+ k)P, we . ()

kezZN

We begin our study with a simple result concerning orthogonality of principal shift-invariant
spaces.

Proposition 4.1.2. Let f,g € L>(RN). Then (f) L {g) if and only if [f,§] = 0 a.e.
Proof.
(f) Llg) & (Tif,Trg) =0, VI,k € Z¥
e (f,Th_ig) =0, Vi, ke zZN
< (f TkQ)—O vk e 7NV
@ (f, Teg) =0, VkeZN
& / F(O)Thg(€)de =0, Vk € ZN
RN
& / £+l)md§_o vk € 7V
CN

f§+1) itk &) 5e 3 ) = 0, Vk e ZN

(c)
\

€
< / [f,9](6)e®™F8qe =0, Vk € ZN.
CN

The last equality tells us that all Fourier coefficients of the function | f , §] with respect to the
ONB (e~ 2mk8)), _,n of L?(TN) vanish; thus, by the uniqueness theorem (see Theorem 4.4.20

and [31], Corollary 13.26), [f, 4] = 0 a.e. O

We proceed by considering the situation in which, for ¢ € L2(RY), the system (Tj¢)gzezn
makes up a Parseval frame for (). As before, we denote by U : (p) — £2(Z") the correspond-
ing analysis operator. Here and throughout this chapter we denote by (ej)czv the canonical
basis of £2(Z"N). Recall that U*ej, = Ty for all k.

Proposition 4.1.3. Let (Tip)czn be a Bessel sequence. Then for each ZN -periodic function
m € L2(TV) we have mp € L?>(RN). (Here and in the sequel we understand that m is extended
by ZN -periodicity to the function m on RN.) Moreover, if (Tx@)ezn is a frame for (o), then

(p) ={f € L*(RY) : f =mp, m € L*(TV)}. (6)
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Proof. Suppose that (Ti¢),ezn is a Bessel sequence and denote by U its analysis operator.
Take any m € L*(TV). Since the system (e=27€), _,~ is an ONB for L*(T), we have

m(§) = Y pre TR, (7)
kezZN
In particular, we know that u = (ug)ezy € €2(ZY) and
I = Nlpll® =D lwl? (8)
kezZN

Let f = U = > pcqn ikTip € (o). Since this series converges in norm, by applying the
Fourier transform we obtain f € L2 (R™N) that is given by

F& =7 e H0p(0) = | Y7 e O | p(6) = m(€)@(¢). 9)

kezZN kezN

This proves not only the first statement, but also the inclusion
{f e PRY): f = mp, m e L*(TV)} C {p).

Suppose now, additionally, that (Tx¢),ezn is a frame for (). Then U* : (2(ZN) — (¢) is a
surjection; thus, for each f in (¢) there exists u = (ug)pezy € £2(Z™) such that

[=U'n=U" Z prek | = Z U ey = Z pk TPk -

kezN kezN kezZN

Applying the Fourier transform we get

FO =" e 0o = | > e ™R ) (6). (10)

kezN kezN

Since the system (e=27#€)), - x is an ONB for L*(TV) and p = (1) gezn belongs to (2(ZV),
we know from Lemma 1.1.4 that the function m defined by

mig) = 3 pue )

kezZN

is a well defined element of L?(T"). Hence we can rewrite (10) in the form

f(&) =m(§)P(8)- (12)

Remark 4.1.4. In the sequel we shall freely identify Hilbert spaces ¢?(Z") and L?*(T") using

the unitary operator = (jg)gezy = D rezn e 2mikE)
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Remark 4.1.5. Suppose that for ¢ € L?(RY) the sequence (Txp)pezn is a frame for (¢).
Each function m € L?(T") that satisfies (12) is called a filter for f. Observe that for each f
in (o) there exists a unique po € R(U) such that f = U*pg ie., f = mo@ (here we have used
the identification g = my established in the preceding remark). This function my is called
the minimal filter for f since, obviously, we have ||uo|| < ||| and hence ||mgl| < ||m]| for every
w such that U*p = f.

If (Typ)rezn is a Parseval frame for (p) we claim that

A~

mo = [f,¢]. (13)

To see this, observe that the Fourier coefficients of [f, ¢] with respect to the ONB (e~ 27k:4)), v
of L2(TV) are

/ > FE+DeE+Derm™de = / FE+ DB+ Dermithethae
CcN c

lezZN

On the other hand, we know that py = Uf (because U*Uf = f, Uf € R(U), and pg is the
only element in R(U) with the property U*po = f); thus, po = ((f, Tky))rez~ and hence the
Fourier coefficients of mg with respect to (e=2™8)), _,n are also (f, Try), k € ZN.

In the following proposition we give another description of minimal filters for Parseval
generators.

Proposition 4.1.6. Suppose that p € L2(RY) is such that the sequence (Typ)pezn is a Par-
seval frame for (p). Put Q = supp(o,) = {& : 0,(§) # 0}. Then

RU) = {m e LA(TN) : m(&) = 0, for a.e. £ & Q}. (14)

In particular, for each f € (p), the minimal filter mg is characterized among all filters for
f by the property mo(§) =0, for a.e. £ & .

Proof. Since o, is a ZN -periodic function, the set € is also Z"-periodic.
Observe that each m € R(U) is of the form

m=Uf= 3 {fTig)e 7k,
kezN

Take any £ ¢ 2. Then we have 0,,(¢) = 0 which implies @(£ + k) = 0 for all k in Z". Equality
(13) now implies m(&) = 0 for a.e. &.

To prove the opposite inclusion in (14), suppose that m(§) = 0 for all £ € Q. We want to
show that m € R(U) = N(U*)*. Let m = my + mg with m; € R(U) and ma € N(U*). By the
first part of the proof we have m;(§) = 0 for a.e. £ € Q. Thus, we also have mg(§) = 0 for a.e.
& & Q. Since mg € N(U*), we know that U*mgy = 0 which means that ms(£)@(€) = 0 a.e. By
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the ZN-periodicity of msy this implies mo(&)@(£ + k) = 0 a.e. for all k. Now, if £ € Q, we know
that 0,(£) # 0, so we must have @(& + k) # 0 for at least one k. The preceding equality now
implies m2(&) = 0. Hence, mg = 0 a.e. and m = m € R(U). O

We can now describe those ¢ € L?(R") which have the property that the system (Typ) ey
is a Parseval frame for (¢).

Theorem 4.1.7. Let ¢ € L2(RY). Then the system (T0)pezn is a Parseval frame for ()

if and only if there exists a Z™ -periodic set @ C RN such that o, = Xq a.e. In particular,

(Tep)rezn is an ONB for (@) if and only if 0,(§) = 1 for a.e. £ € RY i.e., if and only if
0

Q =RV,

Proof. Let (Typ)rezn be a Parseval frame for (p). Put Q = {£: 0,(&) # 0}. Recall from
Remark 4.1.5 that

F(&) = [f, &l(©)@(6), ae. Vf € (¢) (15)
and, in particular,
P(&) = 0,(§)P(8), a-e. (16)

For any ¢ € Q we have 0,(£) # 0; thus, there exists k € ZY such that $(¢ + k) # 0. Now
equality (16) implies o,(£ + k) = 1 which gives us, since o, is Z"-periodic, 0,(¢) = 1.

To prove the converse, suppose that ¢ has the property o, = xq a.e. for some ZN -periodic
set . Take any f € L2(RY). Then we have

/ [f, l(&)e*mFRdg = / D7 FE+DGE+ ekt gg
CN

lezZN

= [ FO#Oe g

= (f,Tip)
This implies that
~ 2
|70y = 2 W T (17)
kezZN
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We now continue our computation:

S AT = |if.)

keZN

2

:/ S FE+R)@E+k)| de

kezN
< / (Z (€ + k)| )(Zs0£+k )
kezZN kezZN
= [ X e nr | ono
o kezZN
- Z/ 7€ + )20y (€)de
kezZN
= Z/ FE+E)Poy (& + k)dg
kezZN
= [ el
< |fIP
= [IF1*

This shows that (Tk¢)rezn is a Bessel sequence in L2(RY); thus, its analysis operator U :
L2RY) — ¢2(Z") is well defined and bounded. To finish the proof we now only need to show
that

IULIF= W1 VS € (o). (18)

To prove (18), it suffices to obtain the same equality for all functions from span {Tj¢ : k € ZV}
which is a dense set in (p).

Take any f = Y ,cpaxTip € span{Typ : k € ZV} where F is a finite subset of ZV. By
applying the Fourier transform we get

- (Z ake—w'ﬂv@) P(6).

keF

After denoting

_ Z e 2milke)

keF

we can write

f(&) =m(§)P(8)-
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We now compute

~ no
[V}
=
z
Il
S~
z
=
©,
=
S~—
no
Q
72x%

2

}: E+k)p(E+ k)| de
cZN

I
S
e

2

Z E+R)RE+E)P| de
cZN

Im(€)a,(&)]>dE  (since 0,(£)* = ,(€))

I
é-\>§-\ S~

= | Im@Foa(€)de
= [ m©OF 3 lele+ b
o kezZN
= [ X mle B ot + R P
kezZN
- Z/ ml€ + K) 2 G(€ + k) 2d
keZN

S MCGEGRE
RN

- / (o)
RN

= I
ILF11%.

This, together with (17), gives us the desired equality.

Let us now prove the second statement. If the measure of the complement of the set 2
is greater than zero, equality (14) from Proposition 4.1.6 shows us that the analysis operator
U is not a surjection and hence (Tj¢)zezn is not a basis. If  is equal to RY up to a set of
measure zero, then the same argument shows that the analysis operator U is surjective; thus,
(Tkp)pezn is an ONB. Alternatively, the same conclusion follows by a simple calculation:

(Tip, Trp) = (0, Ti—ip) = (&, Tr_pp) = /CN 0, (&)™ RO de = 5.

0

Consider now an arbitrary ¢ € L?(RY) and (). As before, for each f € span {Tyf : k €
ZNY} we have a finite subset I of ZV and scalars ay, k € F, such that f = > rer @ Trp. This

implies
_ (z akezmw) #(6)

keF
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So, if we put

we can write

Observe now that
117 = 1A
o UGIREGRE
= Z/ t(E + k)2 (€ + k)2de

keZN

= [ 3 e+ b

kezZN

- / [H(E) oo (€)de.
CN

This shows that the map W that assigns to f € span {Tif : k € Z"} the unique trigonometric
polynomial ¢ such that f = ¢ is an isometry between span {Txf : k € ZV} and the space P,
of all trigonometric polynomials endowed with the norm

lelzscev.op = ( [ 16OPo(€)de)

Thus, /I/f/; has a unique extension to a unitary operator W, between (¢) and the space
L3(TV,0,) consisting of all ZN-periodic functions s satisfying [|s| L2(TN < oo. Let us
note that

D)

I = W fll = [t L2 nn o), VS € (0)- (20)

Proposition 4.1.8. For each ¢ € L*(RY) there exists 1 € () such that {p) = () and that
the system (Ty)rezn is a Parseval frame for ().

Proof. Let Q = {{:0,(§) # 0}. Consider the function s defined by

;7 é‘e 9]
= U*P(g)
s(¢) { M (21)

Since s € L2(TV, 0,), by the preceding discussion there exists a unique function ¢ € () such
that

)= sp. (22)

Clearly, we have




Thus, by Theorem 4.1.7, the system (Tjt),czn is a Parseval frame for (). Also, since (p)
is shift-invariant and contains 1, we conclude that (p) D (¢). Let us now take any f € (p).
Then

T = (T
e / SEGRGEGEALEE

= [ OO S (e + D
oN lezZN

- / HE) 5@ ()2 O e
CN

This shows us that ((f,Tkv))rezn is the sequence of the Fourier coefficients of the function
t(&)s(&)o,(€). From this we conclude that

Z\<f,Tw>|2=/ H(E)215(6) 2o (€)%de = / 2712

kezZN

which tells us that (Tjv),czn is a Parseval frame for (p). O

Theorem 4.1.9. Suppose that V # {0} is a closed subspace of L2(RN). Then V is shift-
invariant if and only if there exists a sequence of functions (cpj);";l iV such that, for each j,
the system (Txp;)pezn is a Parseval frame for (¢j) and V = @32, (p;).

Remark. All but a finite number of the ¢; can be the zero function; in this case (p;) = {0}. We
always assume that the ¢; are ordered so that the non-zero ones are listed at the beginning.

Proof. Choose a non-zero ¢ € V. Applying Proposition 4.1.8 we obtain 1) € (p) such that
(p) = (¥) and that the system (T;9)czn is a Parseval frame for (). We let ¢1 = 1 and
consider the orthogonal complement of (1) in V. We now apply the same argument to the
shift-invariant space (see Exercise 4.1.13) V © (p1). Continuing in this fashion we obtain the
desired conclusion. A rigorous argument uses Zorn’s lemma and separability of V. g

Let us now consider a shift-invariant space V in L?(RY) and the decomposition V =
@;’;1<ij> from the preceding theorem. Applying Theorem 4.1.7 we can find, for each j, a

ZN -periodic set Q; such that oy, (£) = xa,(£)”.
Fix j and ¢ and consider the vector L;(€) in ¢2(Z") defined by

L;i(€) = (@5(§ + k))pezn- (23)

Observe that
IL; (N7 = > [G5(E+ k)P = 0,(&) = xa,(€) € {0,1}. (24)

kezZN

In order to avoid to repeatedly add the expression ”a.e.” we tacitly assume that we only choose ¢ in a
subset of RY whose complement has measure 0 and, for all such ¢ all related properties we invoke are valid.
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The orthogonality of the spaces (y;) and Proposition 4.1.2 give us

(L; (), Ly (&) =0 for j #j" (25)

Let

L(¢) =span {L;(¢) : j € N}. (26)
It is evident from (24) and (25) that the sequence (L;(§))72, is a Parseval frame for L(€) (even
if L(§) = {0}).

Definition 4.1.10. Let V = @;-”;1<<pj> be a decomposition of a shift-invariant space V' as in
Theorem 4.1.9. The dimension function dimy of V is defined by

dimy (€) = dim L(€), ¢ € RY. (27)

Remark 4.1.11. Suppose that V = @32, (p;) is a decomposition of a shift-invariant space V
as in Theorem 4.1.9; let o, (§) = xq; (), j € N. Since (L;(£))32; is a Parseval frame for L(§),
we have

dim £(§) P S L @)12 2 S v, (). (28)
j=1 i=1

o0

In fact, the first equality above follows simply from the fact that the sequence (L;(§))52; is
almost - up to some zero-vectors - an ONB for L(£); nevertheless, it is always enjoyable to
invoke the beautiful statement of Exercise 2.1.26 :) ). Anyhow, we conclude from the preceding
equality that

dimy (§) = > xa, (€)- (29)

However, one should note that a decomposition from Theorem 4.1.9 is not unique (see Exercise
4.1.14) and hence, at the moment, our definition of the dimension function depends on the
decomposition under consideration.

Remark 4.1.12. It is evident from (28) that dim L(¢) = dim L(£ + k) for all ¢ € RY and k in
ZN . However, this can be seen directly. Namely, given k € Z%, we see that L;(£+k) = U L;(€)
for all ¢ and j, where Uy € B(¢2(Z")) is a suitable unitary operator. (For example, if we take
N = 1and k > 0, then U, = S*, where S is the bilateral shift.) Consequently, we have
L&+ k) = UZL(E), so these two spaces, being unitarily equivalent, must have the same
dimension.

Concluding remarks. For more results and details we refer the reader to [27], [118], [21] and
the references therein. Theorem 4.1.7 is first proved in [25]. Theorem 4.1.9 is borrowed from
[27]. In Theorem 10.19 in [31] various characterizations of the shift-invariant space generated
by a single function are collected. Among other characterizations, this theorem contains a
description of all functions g € L?(R) for which the system (Tkg)rcz makes up a Schauder
basis for (g) ([99]).
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The Appendix at the end of this chapter contains some useful technical results which are
stated in the form as in [73].

Exercise 4.1.13. Let V; and V be shift-invariant subspaces of L2(RY). Show that V5 = Vo)
is also shift invariant.

Exercise 4.1.14. Show that any principal shift-invariant space can be decomposed (as in
Theorem 4.1.9) in any number of mutually orthogonal spaces of the form (1)) with the property
that the system (Tyv),czn is a Parseval frame for (¢). Hint. Suppose that (Txp)pezy is a
Parseval frame for (p), let 0,(£) = xq(£), ae. Put S = QN CY. Take a disjoint union
S = 51 U Sy such that S; and S2 both have positive measure and put m; = xg,, ¢ = 1,2.
Consider f1, fo € (¢) defined by fi = mip, i =1,2.

Exercise 4.1.15. Let V < L2(RY) be a shift-invariant space of the form V = B521(¢5)-

For any ¢ € RN and j € N consider the sequence K;(€) = (¢(€ + k))rez. Show that K;(€)
belongs to (2(ZN) for all £ and j. Let K(&) := span{K;(¢) : j € N} < ¢2(Z"). Prove that
dimy (§) = dim K (§) for a.e. & Remark. Observe that the functions ¢; are not necessarily
Parseval generators for the spaces (¢;).
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4.2 The spectral function

We proceed our study of shift-invariant spaces. Let V = @;’il (¢4) be a decomposition of a shift-
invariant space V' as in Theorem 4.1.9 which means that, for each j, the sequence (Ty¢;)rcz~
is a Parseval frame for (;). Recall that this implies that there exists a sequence (;); of ZV-
periodic sets such that o, = xq, a.e. for all j. Using this, we have introduced the dimension
function dimy by the formula dimy (§) = Zjo’;l x9,(§). Finally, we shall need the subspaces
L(&) of £2(ZN) that are generated by sequences (L;(€));j, where L;(&) = (2;(€ + k))pegn, for
every &.

Denote additionally by P(¢) € B(£2(Z")) the orthogonal projection onto L(¢).
Definition 4.2.1. Let V = @;-";1<<pj> be a decomposition of a shift-invariant space V' as in
Theorem 4.1.9. Denote by (ex)rezn the canonical basis for ¢2(ZN). The spectral function oy
of V is defined by

av(€) = [IP(&)eol®, € € RY. (30)

It will be useful to obtain an alternative formula for the spectral function oy . First we
need a lemma.

Lemma 4.2.2. Let M i L be closed subspaces of a Hilbert space H for which there exists
a unitary operator U € B(H) such that L = U*M. Denote by Py and Pp the orthogonal
projections to M and L, respectively. Then we have Py, = U* Py U.

Proof. We leave the proof as an exercise. O

Remark 4.2.3. Let V be a shift-invariant space with a decomposition as in Theorem 4.1.9.
Consider, as before, the subspaces L(§) and the corresponding orthogonal projections P(€).
Given ¢ € CN and k € ZV, we know from Remark 4.1.12 that L(+k) = U; L(), where U is a
unitary operator with the property Uxeg = ex. Using (30) and Lemma 4.2.2 we now conclude
that

ov(E+ k) = |P(§+ k)eol|* = |Ui P(Ukeol” = || P(&ex|?, V€€ CN, Ve ZN.  (31)

Remark 4.2.4. Let V' ba a shift-invariant space with a decomposition V' = &32,(p;) from
Theorem 4.1.9. Let us keep the notation from the preceding considerations. Then we have

ov(€) =D 5O, VRN (32)
j=1
and
dimy (&) = Y ov(E+k), V&R, Vk ez, (33)
keZN
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To prove (32), recall that (L;(§))72, is a Parseval frame for L(§). Now we compute.

ov(§) = [[P©E)eol?
= D UP©eo, L)

J=1

[(eo, P(E)L;(€))?

I
NE

<.
Il
-

[{eo, L (€))?

I
NE

[
Il
—

5.

[
WE

.
Il
—

Let us now prove (33).

S ok ES S sie+ k)P

kezZN kezN j=1

= Z U@j (‘5)
j=1

= 3 xe,(©) = dimy(©).
7j=1

Alternatively, (33) can also be obtained using (31). For all £ € CV we have

S ovie+k) P ST IP©el?

keZN kezZN

= ) (P()ex, P(&)ex)

kezZN

= Y (P©erer)

keZN
= w(P(E))
= dim(R(P(¢)))
= dimL(&)
=" dimy(§).
However, one should keep in mind that our definition of the spectral function (like the
definition of the dimension function) is formulated in terms of a decomposition of V' as in

Theorem 4.1.9. Since decomposition of this type is not unique, it is now time for the following
theorem.
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Theorem 4.2.5. Let V be a shift-invariant space. The definitions of the dimension function
dimy and the spectral function oy do not depend on the choice of a decomposition of V into
the orthogonal sum of principal shift-invariant spaces.

Proof. Let V = @32, (p;), where the sequence (Tip;)iczn is a Parseval frame for (p;), for

every j € N. Denote by P € B(L?(R")) the orthogonal projection to V.
Since the sequence (Tj¢;)ezn jen 18 a Parseval frame for V', we have for each f € L?(RN)

Pf="Y" Z Pf, Tep)Thpj = > Z F Tep) Thep;

kezZN j=1 kezN j=1

and hence

(PrfI=> Z (f, Trspj) (Tieps, f)- (34)

kezZN j=1

We shall apply the preceding equality to the function f = XCN 4m, Where m is a fixed (but ar-
bitrary) element from Z". In the computation that follows we shall use the fact that ©;xcn 4,
belongs to L?(CN 4 m) and that the sequence (e*™F€)), ;v is an ONB for L2(CN + m).

PrH C ST S (T )

kezN j=1

= 3N (Tugs, P

kezN j=1

—
~

o0

Z Z ‘<@X0N+m,€2m<k’£>>‘2

j=1 \kezN
= ZH%XcMmH
— Z / GO de

- / S EEF ] de
CN+m

If we now take another decomposition of V, say V' = @32, (¢;), where the sequence (Tj1;) ez~
is a Parseval frame for (1;), for every j € N, repeating the same computation we get

[e.9]

vz e _ o 2
Lo \Xmer)ae=@rn=[ S wEer) e

Jj=1 Jj=1

From this we conclude that

Z]@ ZW}J (€)]? for ae. £ € CN +m.
=1
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Since m was arbitrary, this implies
oo oo -
D UIGEOP =D 1459 ae.
7=1 7j=1

Equality (32) now shows that the definition oy (§) does not depend on the decomposition under
consideration. Invoking (33) we obtain the same conclusion concerning dimy (£). O

The following proposition provides more useful properties of the spectral function.
Proposition 4.2.6. The spectral function has the following properties:
(a) 0L2(]RN) =1 a.e.

(b) If (Vi)n is a sequence of mutually orthogonal shift-invariant spaces and V = &2V,
then oy = > | ov,.

(¢c) If V and W are shift-invariant and V< W, then oy < ow .

(d) 0 <oy <1, for each shift-invariant space V. Moreover, oy = 0 if and only if V = {0}
and oy = 1 if and only if V = L*(RY).

Proof. (a) Consider the sequence (¢y,),czn defined by @, = xon i, n € ZY. Observe that
Thpn(§) = e 2RO (€) = e 2RO\ (v 1 (€), Vhyn e ZV.

Thus, the system (T/kEL) knezy makes up an ONB for L?(RY). Since the Fourier transform is
a unitary operator, this implies that (Txpn)y nezn is an ONB for L*(RY). In particular, we
have

L*(R") = @pegn (12n)

and the sequence (Ti¢n)rezny is a Parseval frame (in fact, an ONB) for (¢,). Hence, by
definition, we have

aLz(RN)(f) = Z ’@(f)’Z = Z XN gn(§) =1

nezZN nezZN

(b) We can decompose each V,, as in Theorem 4.1.9 and apply (32) to each V,, and to V.

(c) Clearly, W © V is also shift invariant; therefore, (c) follows from (b).

(d) The first assertion follows from (30). It is clear that oy = 0 if and only if V' = {0}.
We also know from (a) that orz@eyy = 1. It remains to discuss the possibility oy = 1. Let
W = V<. Now we have L2(RY) = V @ W and we conclude from (b) that oy = 0. Thus, by
(c), W = {0}. O

Corollary 4.2.7. If (V,,)n is a sequence of mutually orthogonal shift-invariant spaces and
V = @22, V,, then dimy =) >7 dimy,.
Proof. Equality (33) from Remark 4.2.4 and Proposition 4.2.6 (b). O
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The following refinement of Theorem 4.1.9 is useful in applications, in particular in devel-
oping generalized mutiresolution technique in wavelet theory.

Theorem 4.2.8. (The canonical decomposition, [27]) Let V be a shift-invariant space. Then
there exists a sequence (@Z@-)?il in V' such that, for each j, the system (Ty1;)pezn s a Parseval
frame for (1;), V = @32, (1;), and that oy, = xE; a.e., where the sets E; satisfy

Ei1DFE,DFE;3D ...

Remark. As before, we allow the possibility that all but a finite number of the 1); can be the
zero function.
Proof.  We start with a decomposition of V' as in Theorem 4.1.9: V = &32,(yp;) with
0p; = Xa;, for every j € N. Recall that dimy (§) = =22, xq, (§)-
Here we again neglect sets of measure zero. Denote as before by CV the unit cube in R
and put
S;=;,nCY, jeN.

We also introduce the sets
Ey=RN, E,={¢cRY :dimy(&) >m}, Ty =E,NnCN, meN.

In particular, 77 is the support of dimy in the unit cube. We now decompose 17 into a disjoint
union. Put

T = 51, T12=SQ\51, T13=Sg\(SlUSQ), leISj\(Slu...Uijl), 7 €N

Then, clearly, we have
Ty = U Thy. (35)

We now introduce the functions
mi; = X1y, Y1 =miej, jeN.

One should observe that the functions m1; belong to L?(TY), but in the second equality above
that defines functions v;; we understand (as in Proposition 4.1.3) that m;; is extended by ZN-
periodicity to the function mj; on RY. Notice that by Proposition 4.1.3 we have 11; € (p;),
for every j in N. Moreover, we claim that

Y1:=91 B P12 B P13 D ... € BT (p;) = V. (36)

Indeed, since we have
P1 D P2 D3 ®... € B (p) =V,

we know that > 2%, ;% < oo. Since [|11;]]? < ||¢;]|* for each j, we have

oo o0
Dol <D leil? < oo
j=1 j=1

and this is enough to conclude that the function v, defined in (36) does belong to V.
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Consider now the subspace (¢1) < V. We claim that v, is in fact a Parseval generator for
(¢1). Indeed, since the sets T7; are pairwise disjoint, we have

05 (€) = D (€ +k) +Pra(E+k) +... 2

keZnr

= > ImuE+R)BIE+ k) +m€+ k)P + k) + ..
kezm

= > K (E+R)BIE+E) + X+ R)Pa(E+ k) + ...
keZm

= ZX(TU-i-ZN)(f)
j=1

= XU?‘;l(le-i-ZN)(g)
= X1 +2V)(§)
We now let Vi =V © (¢1), i.e. V = (¢1) + V1. Observe that V; is shift-invarant and that, by

Corollary 4.2.7, we have
dimy = XE, + dimvl.

We now apply the preceding argument to the shift-invariant space V1. Inductively we obtain a
sequence (¢j)?.;1 of principal shift-invariant subspaces of V' such that, for each j, the sequence
(Txj) ez~ is a Parseval frame for (1) and oy, = x ;. Thus, we have

B2 (Yy) <V

and - -
dimoz () = D XE, = )Xo, = dimy. (37)
j=1 j=1
This is enough to conclude that
S () =V,

since the orthogonal complement of ©72, (¢;) in V is a shift-invariant space which, by Corollary
4.2.7 and equality (37), has the dimension function that is equal to 0 a.e.
O

We end the section with another property of the spectral function which will play an
important role in our study of multiresolution analysis in wavelet theory.

Let A be an invertible N x N matrix with integer coefficients; A € My(Z). Let d =
|det A] € N. We define the dilation operator D4 on L?(RY) by

Daf(z) = Vdf(Ax). (38)

It is easy to see that D4 is a unitary operator. It does not commute with translations T},
k € ZN, but we have the following commutation relations:

Tu(Da) = (Da)Y Tasy, Yk € Z",Vj € L. (39)
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It is immediate from the preceding formula that D 4 preserves shift-invariance: if V' is a shift-
invariant space, then D4 (V) is also shift invariant.
It is also useful to note that

(D) f(€) = — f(BTE), VieL (40)

where B = A’ is the transpose of A.

For a € RY we define the modulation by a as the operator on L?(R") that is given by
M, f(x) = ) f(x). (41)
Her we have the following commutation relations:
TeM, = e 27BN Ty VYa, k, (42)

from which we see that M, also preserves shift-invariance.
Finally, we note

Tif = M_y.f, Mof = Tof, Vk,a €RY. (43)
We now state the result that gives us the spectral function of shift-invariant spaces that

arise by applying dilations and modulations to such spaces.

Theorem 4.2.9. Let V. C L2(RYN) be a shift-invariant space. If A is an invertible N x N
matriz with integer coefficients then D4 (V') is shift-invariant and

opuv) (&) = ov(BTTE), (44)

where B = A'.
Likewise, for any a € R, M, (V') is shift-invariant and

om,(v) (&) = ov(—a). (45)

For the proof we refer the reader to [28] or [100]; however, we note that a crucial part of
the proof is the content of Exercise 4.2.14.

Take again an invertible N x N matrix A with integer coefficients; let B = A’ and d =
|det A| = |det B|. It is well known that Z~ /BZ" is a group of order d (see Exercise 4.2.13).
In the following corollary we will make use of a set of d representatives of different cosets of
7N /| BZN.

Corollary 4.2.10. Let V C L?(R") be a shift-invariant space. Let A be an invertible N x N
matriz with integer coefficients with d = |det A| = |det B|, where B = A’. Take any set
{ag, a1, ...,aq-1} of d representatives of different cosets of ZN /BZN. Then

IS

-1
dimp ,(vy(&) =)  dimy (B~ (€ + ay)). (46)

<.
Il
o
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Proof.

dimp, (v)(€) ® > o€+ k)
kezZN
2 Y B+ B
kezZN
d—1
= > Y ov(B'¢+ B Y(a; + Bk))
J=0kezZN
d—1
= Z Uv(B_1§+B_1aj—|—/{7)
J=0 \kezZN
DN P
= dimy (B~ (€ + ).
j=0
n
Concluding remarks. The results of this section are taken from [106] and [28]. The canonical
decomposition (as in Theorem 4.2.8 is first proved in [27]), but the proof presented here is

different in the sense that it does not make use of the range function.

Exercise 4.2.11. Verify formulae (39), (40), (42), and (43).
Exercise 4.2.12. Prove Lemma 4.2.2

Exercise 4.2.13. Let A be an invertible N x N matrix with integer coefficients, let d = | det A].
Prove that A='ZY /ZN and ZV /AZ" are isomorphic groups of order d.

Exercise 4.2.14. Suppose that (¢), is a sequence of functions in a shift-invariant space
V C L*(RY) such that the system (Tx1n) ez nen is a Parseval frame for V. Let A € My(Z)

be an invertible matrix, let d = | det A|. Take any set {mg, m1,...,mg_1} of d representatives
of different cosets of Z~ /AZ". Prove that the system (T (DATom;¥n)) kezN  nen, jefo,1,....m—1}
is a Parseval frame for D4 (V). ([106], Lemma 2.5.)
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4.3 Semi-orthogonal Parseval wavelets

Definition 4.3.1. We say that a function ¢ € L*(R) is an orthonormal wavelet if the system

(Yjk)jkez, Yik = Q%Tﬁ(?j -—k), j,keZ (47)

is an ONB for L*(R). More generally, 1 is said to be a Parseval wavelet if (k) jrez is a
Parseval frame for L*(R).

Let us denote by D € B(L?(R)) the dyadic dilation operator that is defined by
Df(z) = V2f(2x), f€L*(R), (48)

and let
Tpf(x) = f(z — k), feL*R). (49)

Then we see that 4
1/’j,k = DJTI&?; ja ke Z?

thus, ¢ is an orthonormal (Parseval) wavelet if the system (D7Ty1); rez is an ONB (a Parseval
frame) for L*(R).

More generally, one can define wavelets not only in L?(R) with dilation factors other than
2, but also in L2(RY), N € N. In N dimensions one takes a matrix A € My(Z) and consider
the corresponding dilation operator defined by (38): Daf(x) = Vdf(Az), f € L>(RY), where
d = | det A|. For technical reasons we require that A is an expansive matrix which means that
all eigenvalues of A, both real and complex, have absolute value greater than 1. Notice that
this implies that d > 2.

For simplicity we shall denote D4 by D whenever the dilation matrix A is fixed and clear
from the context. We also need translations Ty € B(L?(RY)), k € Z". Now, again, we say
that ¢ € L2(RY) is an orthonormal wavelet (resp. a Parseval wavelet) if the system

(Dka¢)jeZ, keZN (50)

is an ONB (resp. a Parseval frame) for L?(RY).

1, 0<z<}
Example 4.3.2. The Haar wavelet is the function v defined by ¢¥(xz) = ¢ —1, % <z<l.
0, otherwise
It is relatively easy to see that (D/Ty1));kez is an orthonormal system (see e.g. [51], p.
73). For the proof of the spanning property we refer to [57] (the reader may also consult [$1]

or [117]).

Example 4.3.3. The Shannon wavelet is the function ¢ defined by ’QZJ = X[-1,- 1yt 1) One
b 2 2 b

can show that the Shannon function is an orthonormal wavelet by using the following charac-

terization theorem (but see also Exercise 4.3.20).

Theorem 4.3.4. Let A € My(Z) be an expansive matriz and let B = A'. A function i) €
L?(RN) is a Parseval wavelet if and only if the following two conditions are satisfied:
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(a) Yjen [b(BIOP =1 ace;

(b) Y220 P(BIEP(BI(E +q)) =0 ace., Vg € ZN \ BZN.

In particular, 1 is an orthonormal wavelet if and only if in addition to (a) and (b) v satisfies

[Pl = 1.

For the proof, which is omitted, we refer the reader to [33]. Here we just mention that the
last assertion trivially follows. Namely, since D4 and T} are unitary operators, the hypothesis
9| = 1 implies that ||[D/Ty1| = 1 for all j € Z and k € Z". Then one applies the simple
observation (cf. Exercise 3.2.24) that an element of a Parseval frame with the norm equal to
1 is orthogonal to all other frame members.

We now turn to the multiresolution analysis which is the most prominent concept in con-
structing wavelets. In what follows we fix an expansive matrix A € My(Z). As before, let
B = A’ and d = |det A|. We denote by D the operator induced by A: Df(x) = Vdf(Az),
f € L2(RN).

We will also fix a set {ag, a1, ..., aq_1} of d representatives of different cosets of Z~ /BZN
(see Exercise 4.2.13). If we denote 3; = B~ la; for i = 0,1,...,d — 1, then {0, 81, ..., Ba_1}
is a set of d representatives of different cosets of B=1ZV /ZN.

First we need to introduce a class of wavelets in between orthonormal and Parseval wavelets.

Definition 4.3.5. A Parseval wavelet ¢ € L?>(RN) is said to be semi-orthogonal if DI Tiap L
D2Ty) for all j1 # jo in Z and all k,1 from ZN.

Note that semi-orthogonality simply means that the spaces D7(¢), j € Z, are mutually
orthogonal.

Theorem 4.3.6. Let ¢ € L2(RY) be a semi-orthogonal Parseval wavelet. Let
Vo =span {D’Tyip : j < 0,k € ZN} (51)

and '
Vi =D'Vy, je. (52)

Then the sequence (Vj)jez of closed subspaces of L*(RY) has the following properties:
(a) Vi1 = DVj, Vj € Z;
(b) V; C Vi1, Vj € Z;
(¢) NiezVs = {0}, UjezV; = L*(RY);
(d) Vi is shift-invariant.

Proof. Since Vj is closed and D is a unitary operator, all V}’s are obviously closed. Also, we
see from (51) and (52) that

Vi =span {D/ Ty : j' < j, k € ZN}, Vj € Z, (53)
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which immediately implies (a) and (b). Since L?(RY) is generated by all DIT}y1), we also have
UjEZV}' = LQ(RN).
Observe also that the assumed semi-orthogonality together with (53) implies

Vi = ®p; DV (¥), VjeL. (54)

Let W; := Vj11 ©Vj, j € Z. Obviously, (54) implies W; = DJ(¢)) for each j and, in
particular, Wy = (). Now we see that f € NjezV; implies f € V41 = V; @ Wy, for each j,
which gives us f € T/VjL for all j. Thus, f L DTy, for all j and k and hence, since 1 is a
Parseval wavelet, f = 0.

It remains to prove (d). First observe that V; is invariant for all T if and only if Vi~ is
invariant for all T;7. Since T}’ = T_, for each k, we conclude that Vj is shift-invariant if and
only if Vj" is shift-invariant. Note that

feVi < fLDTw, Yj<0,VkeZV.

This, together with the fact that the system (D?Tyv);cz pezn is a Parseval frame for L (RM),
gives us

FeVi <= fIP=>Y_ > (£, DITwyp)*. (55)

J=0 kezZN

Consider now arbitrary f € VOL and ko € Z". Since Tk, is unitary, we have
1Tk fIIP = IIfI?
(55) 12
= > D (DT

J=0 kezZN

= YN (T Th DT |2

J=0 kezZN

(39) :
= 30 U Tk fs DI T 1))

J=0 kezZN

Observe that A7ky+k € ZY, for each j > 0 and for all k. Since (DVTit)) jez ez is a Parseval

frame for L?(R"), this equality implies that all other frame coefficients vanish. In particular,
we have (T, f, D' Tj1)) = 0 for all j < 0 and all k in Z. Thus, T}, f € V5~ O

Definition 4.3.7. A sequence (V;);jcz of closed subspaces of L>(RY) is said to be a generalized
multiresolution analysis (GMRA) if the following conditions are satisfied:

(a) Vit1 = DVj, Vj € Z;
(b) ‘/J g ‘/}-‘rl; v.] c Z;
(¢) NjezVj = {0}, UjezV; = L*(RN);

(d) Vo, that is called the core space, is shift-invariant.
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Clearly, this definition is motivated by the preceding theorem: we can now say that each
semi-orthogonal Parseval frame generates a GMRA. In fact, much more is true.

Remark 4.3.8. Suppose that (V;);ez is a GMRA in L?(RY). As in the preceding proof we
introduce the orthogonal complements W; := V11 ©V}, j € Z. Observe that V; .1 = DVj
implies DW;,1 = DW; and, in particular, W; = DIW,. Moreover, we also have

LQ(RN) = DjezW; = @jeZDjWO- (56)

Further, since Vj is shift-invariant, it follows that V3 = DVj is shift invariant and then, using
Exercise 4.1.13, we conclude that W) is also shift-invariant. If Wy is a principal shift-invariant
space, i.e. if there exists a function ¢ € Wy such that (Tj)pczy is a Parseval frame for W,
then (56) tells us that this function is a semi-orthogonal Parseval wavelet. When this is the
case, we say that 1) is a wavelet associated with (V;);ez.

Definition 4.3.9. We say that a GMRA (V;);ez in L*(RY) is admissible if Wy is a principal
shift-invariant space.

Observe that, by Theorem 4.2.8, a GMRA (V});cz is admissible if and only if dimy, (£) €
{0,1} a.e. By Remark 4.3.8 semi-orthogonal Parseval wavelets can be constructed from ad-
missible GMRA’s. In fact, by putting together Theorem 4.3.6 and Remark 4.3.8 we conclude
that all semi-orthogonal Parseval wavelets arise from admissible GMRA’s. More precisely,
semi-orthogonal Parseval wavelets are Parseval generators of the orthogonal complements W)
of V in Vi in admissible GMRA’s (V) cz.

Two questions now naturally arise. First, how to recognize admissible GMRA’s among all
GMRA’s and, secondly, how to construct admissible GMRA’s?. In what follows we provide
answers to these questions.

Definition 4.3.10. The dimension function of a Parseval wavelet 1 € L?(RYN) is defined by

ZZ‘ BJ§+k)( . (57)

J=1 kezZN

Remark 4.3.11. For each ¢ € L2(R") (not necessarily a Parseval wavelet) we have

Dol = [ S faien)| g

J=1 kezZN

> N2
- dBie)| de

5 e
= > el

j=1

1
=

which shows that D, (&) is finite for a.e. .
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Definition 4.3.12. For a Parseval wavelet ¢ € L>(RY) and & in RN we define the sequence
of vectors (vj(§))521 by

vi(€) = (V(B7 (€ + k))pezn - 58)
Remark 4.3.13. Observe that Remark 4.3.11 shows that v;(§) € (2(ZN) and Dy(§) =
P |vj(€)]|? for a.e. & We also note that |[vj(§ + 1)|| = |jv;(€)]| for all j € N, ¢ € RY,

and [ € ZV.

Proposition 4.3.14. Let ¢ € L*(RN) be a semi-orthogonal Parseval wavelet. Put Vo =
span{DiTy) - 57 <0,k € ZVY. Then

dimy, (&) = dim (span{v;(§) : j € N}) a.e. (59)
Proof. We first claim that
Vo =span {TpD 7+ : k € ZV,j € N}. (60)
To prove this, first observe that
Vo =span {D T :j € N,k e zZN} Dspan {D 74 : j € N}.
In particular, we have Vo D {D7J¢ : j € N}. Since Vp is shift-invariant, this implies
Vo 2 span{TyD ¢ : k € ZV,j € N} and since Vj is closed, from this we obtain Vy D

span {1, D9y : k € ZV,j € N}.
The opposite inclusion we obtain in the following way:

span {TxD ¢ : k € ZV,j € N} 39 span {D T, 0 : k € ZV,j € N}
D span{D Ty : k' € ZV,j e N}
- 1.
Thus, we have proved (60). This in fact means that we can write V = ]‘?‘;1(D_j 1) (observe

that (T, D7y, TiD~™)) = 0 for all k,l,7,m; this follows from equality (39) and assumed
semi-orthogonality of ¢). Using Exercise 4.1.15 we now conclude that

dimy, () = dim (5pam { (D I0(E + k))pezy j € N}) aue.
The proof is now completed by observing that

(DTD(E+ F)ezs = A5 (B (E+ k)hean = dbu;(€), Vj € N,

g

Theorem 4.3.15. Let v € L?(RYN) be a semi-orthogonal Parseval wavelet and Vy = span{ DI Ty
j<0,k€ZN}. Then
dimy, (§) = Dy (), for a.e. &. (61)
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Proof. We claim that

&) = (vp(&),v; () (§), forae. & VpeN. (62)

Jj=1

Observe that this equality is all what we need. Namely, Exercise 2.1.26 now implies that
dim (span{v;(§) : j € N}) = >°22, |v;(€)||? a.e. Hence, by the preceding proposition, we
have dimy, (§) = >, |v;(€)]|? a.e. On the other hand, we know form Remark 4.3.13 that
Dy (§) = 32721 05 ()1 ace.

Thus, we only need to prove (62) (which is not quite easy).

We start by noticing that

> D(BI(E+ k(€ +k) =0, ae.,VjeN. (63)

kezZm

To see this, let V; = DiVy and W; = Vj;1 ©Vj, j € Z. Recall from Theorem 4.3.6 that
Wo = (), W; = DIW, for all j, and L*(RY) = ®jezWj. Therefore, for each j in N,
we have D™7Wy 1 Wy, i.e. D77(¢p) L (). In particular, we conclude that D=7¢) L (¢))
and, since (1) is shift-invariant, this implies T, D71 L <1/1> for all k in Z™. Thus, we have
<D‘jﬂi (¢). By Proposition 4.1.2 we now have [D Jap, w] = 0 a.e. It remains to observe

that D=Iy(§) = dz Y(BI€) for a.e. € and for all j in N.
Next we claim that the series

i 3" BB + k)(BI(E + k)D(BIE), peN, (64)

Jj=1kezZN

converges absolutely. To see this, first observe that, since (D’ Tj)) jez,kezn 18 a Parseval frame
for L2(RY) and the spaces D’(1)), j € Z, are mutually orthogonal, the sequence (Tjt)czy i3
a Parseval frame for (1). From this we conclude, using Theorem 4.1.7, that oy, = xg a.e. for
some measurable ZV-periodic set E. We now compute:

S iwresoimiern)| < [ peem) [ poenl)
kezN kezN kezZN
(since BPZN cZV) < [ 3 (&(Bp§+k’))’2 2 Z) (BI(¢ + k) ‘ 2

k'eZN kezN

N|=

= B} | X [pBerr|

keZN

N

(since oy <l ae) < Z W(Bj(f + k))‘z

kezZN
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From this we obtain, for each p € N,

N|=

> Y e e miwe| < 3 X [pwern)| ) i
=1 kezZN J=1 \kezN
< (% Pwiem| (Z (B )
Jj=1kezZN Jj=1

( by Theorem 4.3.4 (a) <

z 3 [émie+m)

N

< o0

Let us denote the sum of series (64) by Gp(§). By interchanging the order of summations we
obtain

= 3 d(BE+ k) Z (Bi(€ + k))P(B€). (65)
kezZN

We now observe that we can add to this sum the term that corresponds to j = 0 since this
term is by (63) equal to 0. Thus, we have

D(BI(E + k)b (BIE). (66)

NE

= 3 BB+ )}

kezN

<.
Il
o

Another observation is in order. If k € ZN/BZM the corresponding term is equal to 0 by
Theorem 4.3.4 (b). Therefore we need to take into account only the terms in which k is of the
form k = Bk’ and hence (66) can be rewritten as

Y(BI (€ + BR))(BE). (67)

NE

= D U(B(&+ BR);

kezZN

<.
Il
o

If we now replace £ with B¢ in (67) and compare the result to (65) written with p + 1 instead
of p we see that

Gp(BE) = Gpia(8).

By induction we then obtain

Gp(€) = G1(BP71¢), ae., VpeN. (68)
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Finally, we have

8

Gi(&) = D U(BE+R)Y OBIE+R)NBIE (-1=j =)
kezZN Jj=1
= ) ¥(BE+k) Z@@(BJ‘(BHBI@))@Z(BJB@ (using Theorem 4.3.4 (b))
kezZN =0
= > P(BE+k) Z O(BI(BE + k) (B BE)
kezZN Jj=
= Y G(BE+RG(BE+R)(BE) + > D(BE+E) Y d(BI(BE + k)i (B BE)
kezZN kezN j=1
ST G(Be + k)D(BE + ky(BE)
kezZN
= U(BEoy(BE) (since oy = xx)
= (BY).
Using (68), from this we obtain X
Gp(§) = ¥(BPE) ae
which we rewrite explicitly:
)(BPE) = Z Z $(BP (& + k) O(BI(E + k) (B€), peN. (69)
Jj=1kezZN

We now fix kg € Z" and rewrite (69) with ¢ + ko instead of & on the left hand side we
get the koth component of v,(§), while the right hand side becomes the koth component of

22521 (vp(€), v (£))v;(§)- .

Theorem 4.3.16. A GMRA (V})jcz in L?(RN) is admissible if and only if the following two
conditions are satisfied:

dimy, (§) < o0, a.e., (70)
d—1
> dimy, (€ + Bi) — dimy, (BE) <1, ae. (71)
i=0

Proof. Suppose that (V}),cz is admissible. This means (see Remark 4.3.8) that there exists
a function ¢ € Wy such that (Tx1)),cz~ is a Parseval frame for (i) and, consequently, that v
is a semi-orthogonal Parseval wavelet. Now Remark 4.3.11 and Theorem 4.3.15 imply (70).
Consider now V3 = D(Vj). Recall from Corollary 4.2.7 that the dimension function of
shift-invariant spaces is additive on orthogonal sums: since V; = V;; @ Wy, this gives us

diHlV1 = dimvo + dimWO.
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Now (70) allows us to rewrite this equality as
dimyy, = dimy, — dimy,
which, for technical reasons, we write with the argument B¢ instead of &:
dimyy, (B) = dimy, (B) — dimy, (B¢).

By Proposition 4.1.8, dimy;, = xq a.e. for some measurable ZN -periodic set . Thus, from
the preceding equality we obtain

dimy, (B) — dimy, (BE) <1, a.e.

Recall now from Corollary 4.2.10 that we have

d—1
dimp(yy) (&) = Y _ dimy, (B¢ + Bi).
1=0

Taking into account that D(Vpy) = Vi the last equality combined with the preceding inequality
gives us precisely (71).

Conversely, suppose that (V;)jez in L2(RY) is a GMRA with properties (70) and (71).
Arguing precisely as in the first part of the proof (again, the role of (70) should be recognized)
we conclude that dimy, < 1 a.e. It is easy to conclude that dimy, = 0 a.e. is impossible;
therefore, there exist a measurable set © such that QN CY has positive measure and dimyy, =
xn- Theorem 4.2.8 now implies that there exists a function ¢ € Wy such that the sequence
(Tk) ez is a Parseval frame for (v). O

Concluding remarks. The material presented in this section is oriented toward theoretical
aspects of wavelet theory with the emphasis on the role played by frames in the (generalized)
multiresolution technique. Our approach is influenced very much by the work of G. Weiss
and his collaborators. However, applications of wavelets is why such reproducing systems are
invented and the interested reader is urged to consult Daubechies’ book [57].

The MRA concept is present in the theory from the very beginning. GMRA’s entered into
the theory only after [21] and [101]. Basically, a GMRA (Vj}),cz is called an MRA if the core
space Vj is singly generated as a shift-invariant space. In fact, in a coarser sense, one requires
more; i.e. that there is a function ¢ € V) such that the sequence (T¢)pcrny is an ONB for
Vo. Our next section is devoted to MRA’s. One should note (which is clearly visible from
Corollary 4.4.1) that there is a real "added value” when working with MRA’s only in the case
d=2.

Theorem 4.3.16 is first proved in [9], but see also [25].

Exercise 4.3.17. Let (¢,), be a sequence of real numbers such that lim, o ¢, = 0. Show
that the sequence (7, ), converges to the identity operator in the strong operator topology of
L3(R).
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Exercise 4.3.18. ([76]) Show that there does not exist a function ¢ € L?(R) for which the
system (T}, D71))k jez is orthonormal, where D is the dyadic dilation operator on L*(R). Hint.
Consider | TD™") — D™ "4|| and use the result of the preceding exercise.

Exercise 4.3.19. Let (Xj)jez be an increasing sequence of closed subspaces of a Hilbert
space H. For each j in Z denote by P; € B(H) the orthogonal projection to X;. Show that
UjezX; = H if and only if lim; o I and NjezX; = {0} if and only if lim;_, _,, 0, where both
limits are in the sense of the strong operator topology.

Exercise 4.3.20. ([31], Ex. 12.4) Let E C RY be a measurable set. We say that E is a tiling
domain by integer translations if ((E + k))czn is, up to a set of measure zero, a partition of
RYN. Analogously, given the expansive matrix A € M,(Z), we say that F is a tiling domain
(by A-dilations) if (A7(E)) ez is, up to a set of measure zero, a partition of RV,

(a) Prove that if E is a tiling domain by integer translations then the sequence (e>™F)), _ v
is an ONB for L?(E).

(b) Prove: E is a tiling domain by integer translations and by by A-dilations if and only if
the function ¢ € L*(RY) defined by ¢ is an orthonormal wavelet with respect to the
dilation operator D = D 4.

(¢) Characterize those measurable sets for which the function ¢ € L2(RY) defined by ¢ is a
Parseval wavelet with respect to the dilation operator D = D 4.

T

Vo = (p) and V; = DIV, j € Z, where D € L*(R) is the dyadic dilation operator. Show that
(Vj)jez is a GMRA, in fact an MRA (see the concluding remarks above).

Exercise 4.3.21. Consider the function ¢ = x_1 1) and observe that ¢(z) = SILTZ - ot
272

Exercise 4.3.22. Let ¢ = x[o1), Vo = (¢), and V; = D'V, j € Z, where D € L2(R) is the
dyadic dilation operator. Show that (V}),cz is an MRA.
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4.4 Orthonormal wavelets and multiresolution analysis

It is convenient to restate Theorem 4.3.16 that characterizes admissible GMRA’s (V}) ez using
the canonical decomposition of the core space Vj.

Corollary 4.4.1. Let (V;)jez be a GMRA in L*(RN). Suppose that Vo = @22, {pn) where
Oy, = X0, a.e. foralln in N and

2120 D030
so that we have

dimy, () = Z X0, (€), a.e.

with Then (V}) ez is admissible if and only if the following two conditions are satisfied:

ngn(é) <00, a.e., (72)
n=1
d—1 oo )
D xa. E+B8) =D xa.(BE <1, ae (73)
=0 n=1 n=1

A number of corollaries and comments is now in order.

Remark 4.4.2. (a) Condition (72) is equivalent to |N9%;€,| = 0, where |S| denotes the
Lebesgue measure of the set S. Of, course, if V; is finitely generated as a shift-invariant space
(we then tacitly assume that Q, = 0, for all n > M, for some M € N), (72) is authomatically
fulfilled.

(b) A GMRA admits an orthonormal wavelet if and only if

SH

-1

> xa.(E+8) = > xa.(BE =1, ae; (74)
n=1

n=1

I\
o

7

this follows immediately from the proof of Theorem 4.3.16 and the second assertion of Theorem
4.1.7

Definition 4.4.3. A multiresolution analysis (MRA) is a GMRA (Vj) ey~ whose core space
Vo is singly generated by an orthonormal generator. A function ¢ € Vi such that Vo = (p) and
that the sequence (Ty)rezn is an ONB for Vj is called a scaling function.

Remark 4.4.4. (a) The concept of an MRA preceded that of a GMRA. Observe that for an
MRA the left hand side of (73) reduces to d — 1. Thus, an MRA is admissible if and only
d = 2. This explains why the MRA concept was that successful in the classical dyadic case on
the real line: each MRA with the dyadic dilations is admissible and, moreover, the resulting
wavelets are necessarily orthonormal. Obviously, the same is true in RY as long as we work
with dilation matrices such that d = 2.
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(b) If, on the other hand, we work with dilation factors d greater than 2, an MRA can not
be admissible. However, it should be noted that GMRA’s with singly generated core spaces
can produce wavelets even when d > 2; a necessary and sufficient condition is

d—1
> xal€+8) —xa(BY <1, ae. (75)
i=0

However, if d > 2 and Vp = (p) is the core space of the GMRA under consideration, (75) can

be satisfied only if ¢ is only a Parseval and not orthonormal generator of Vj. In other words,
if d > 2 and 0, = xq a.e. a necessary condition for (75) is RV \ Q| > 0.

Here we state a general theorem that characterizes functions which generate GMRAs whose
core spaces are principal shift-invariant spaces.

Theorem 4.4.5. Let p € L*(RY), Vo = (¢), and V; = D'V, j € Z. Then (V)jez is
a GMRA such that the sequence (Tip)pezn s a Parseval frame for (p) if and only if the
following conditions are satisfied:

(a) 0, = xq a.e. for some Z" -periodic set §2;

(b) there exists a measurable ZN -periodic function mg € L*(TN) such that $(BE) = mo(£)p(€)
for a.e. &;

(¢) im0 |P(B7IE) =1 for a.e. &.

We omit the proof of this theorem. For the proof concerned with scaling functions (i.e.
orthonormal gnerators) in the dyadic case on the real line we refer the reader to Theorem 7.5.2
in [34]. One should mention that in applications one prefers to work with scaling functions
as smooth as possible. We refer the reader to Sections 12.5 and 12.6 in [31] for more details
concerning construction of scaling functions.

The proof if Theorem 4.4.5 in N dimensions for d = 2 can be found in [15] (Theorem 3.7).
The general proof can be obtained by an easy adaptation of these standard arguments. Here
we only mention that the above condition (b) corresponds to the equality Vi = D(V}), while
(c) reflects the equality L*(RY) = U;czn V.

We now restrict our discussion to dyadic wavelets on the real line. Observe that in this case
our dilation operator D is defined by Df(x) = v2f(2x), f € L*(R). Also, note that {8y =
0,61 = %} is a set of d = 2 representatives of different cosets in %Z/Z. Here we demonstrate
a technique for construction of wavelets from multiresolution analyses. The following theorem
describes all wavelets that arise from a given MRA.

Theorem 4.4.6. Suppose that ¢ is a scaling function for an MRA (Vj)jcz. Let mo be a
measurable 1-periodic function mg € L*(T) such that $(28) = mo(€)p(€) for a.e. & (from
Theorem J.4.5 (b)). Then a function ¢ € L?*(R) is an orthonormal wavelet associated with
(Vj)jez if and only if 1 is of the form

9(26) = (26 mo(E + 5)(6) (76)

where s is a unimodular (i.e. |s(§)| = 1) 1-periodic measurable function.

154



Proof. Let V; = D(Vp) and Vi = Vy @ Wy. It is clear from our preceding considerations that
Wy is singly generated as a shift-invariant space and, moreover, that wavelets associated with
(V})jez are in fact those functions 1) € Wy such that the sequence (T3v)kez is an ONB for W
It can be proved (see Exercise 4.4.11) that

Vi={f €L*R): f(26) = t(§)p(€) : t € L*(T)}.

In particular, as we already know from Theorem 4.4.5, there exists a function mg € L?(T)
(that is called the low pass filter) such that

P(28) = mo(§)P(§).
Since (Tr¢)kez is an ONB for Vj, Theorem 4.1.7 implies that

g,(§) =1 ae.
It turns out (see Exercise 4.4.11 and Exercise 4.4.12) that this implies
2 L2
mo(§) + mo(§ + )7 =1 ae. (77)

Furthermore, we conclude from Proposition 4.1.2 and Exercise 4.4.12 that a function ¢ € Vi,
where 1(26) = t(£)p(€), with t € L?(T), belongs to Wy if and only if

HEmO(E) +HE + Dymo(e + 1) =0 e (79)
Now we see from (78) that ¢ € Wy is equivalent to
(te1tts+3)) £ (mo(@.male+3)) e (79)
On the other hand, we also have
Qm@+;rwm®>LQm@wm@+;0 a.e. (80)
Since (mo (&), mo(¢ + 3)) is, by (77), a non-trivial vector, we conclude from (79) and (80) that
(1661 tle + ) = =Ate+ 3) (male + 3).-mo@) ne (1)

where A is an appropriate (necessarily 1-periodic) function. The preceding equality with &
replaced with n + % gives us

(10 + 3t)) = =200+ 1) (i), ol +3) ) e (52)
which is equivalent to
(t(€1t6 + 3)) = 2(©) (mole + 5).-ma(@ ) e (53)
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From (81) and (83) we now have

AE) =—-AE+ é) a.e. (84)

Let
3

2)
Then (84) shows us that s is a 1-periodic function and we have

A(&) = e ™E5(26).

s(€) = €TEA(

Thus, we obtain from (83) that

t) = e_QWigs(Qf)mo(ﬁ + %) a.e.

In this way we have proved that a function ¢ belongs to Wy if and only if ¥ is given by

h(26) = 62m£3(2§)mo(§+;)¢3(§) a.e.

where s is a 1-periodic function. The proof is now finished by a simple observation that a
function 1 is an orthonormal generator of () if and only if the function s is unimodular. O

Example 4.4.7. The Haar wavelet from Example 4.3.2 is an MRA wavelet arising from the
MRA whose scaling function is ¢ = xo,1). See Exercise 4.3.22. For more details we refer the
reader to [34], pp 59-60 or to [117], p 186.

Example 4.4.8. The Shannon wavelet from Example 4.3.3 is an MRA wavelet arising from
the MRA whose scaling function ¢ = X[-1,1)
272
Obviously, this function satisfies the conditions from Theorem 4.4.5; it turns out that

mo = X[_1 1),z Now we apply (76) from Theorem 4.4.6 to obtain associated wavelets. In

particular, we can choose the function s which is defined by s(¢) = €2 for £ € [—1, 1) and
then extended to a unimodular 1-periodic measurable function. With choice of s (76) gives us

the wavelet v that is defined by 1[1 = X[-1,—L)u[L,1)- Compare Exercise 4.3.21
—3)U[5,

Remark 4.4.9. It is clear from Definition 4.4.3 and Theorem 4.3.15 that the dimension func-
tion Dy, of each MRA wavelet (i.e. a wavelet that arises from an MRA) satisfies D,y = 1 a.e. In
fact, the equation D, = 1 a.e. characterizes all orthonormal wavelets which arise from MRA’s.

However, there are orthonormal wavelets which are not associated with MRA’s which means
that such wavelets come from GMRA’a with core spaces generated by at least 2 generators.
The simplest non-MRA wavelet is the Journé wavelet which is defined by

N 16 1 2 21 16
. — =2 ) u|-=, =2 Uz s ule, ).
w XS5 S |: 7 >U|: 9’ 7>U|:772>U|:77>

It can be seen that in this case Dy, takes values 1 and 2 on sets of positive measure which indi-
cates, by Theorem 4.3.15, that the underlying GMRA has the core space Vj that is generated
as a shift-invariant space with two functions.
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One approach to non-MRA wavelets can be based on a study of dimension function of
orthonormal wavelets. Here we state without proof the key result from [29] that characterizes
dimension functions of orthonormal wavelets.

Theorem 4.4.10. Let D : R — N U {0} be a 1-periodic function that is integrable on the unit
interval [—%, —%] Then D is a dimension function of an orthonormal wavelet if and only if

the following conditions are satisfied:
(a) liminf;_,o D(279¢) > 1 a.e.
(b) D(€) + D(¢+5) — D(2¢) =1 a.e.
(¢) ez Xxal+k) > D(€) ae. where A={{€R:D(277¢) > 1, j e NU{0}}.

It should be noted that the original result from [29] is proved in N dimensions and for
arbitrary expansive matrices with integer coefficients. Another remarkable fact obtained in
[29] is that for each natural number M there exists a dimension function whose essential
maximum is equal to M. In addition to that, the first concrete example of an essentially
unbounded dimension function is provided.

Related results can be found in [12], [7] and [3]. In [7] more properties od dimension
functions are obtained as well as a method for construction of dimension functions. In [12]
(see also [7]) the first concrete example of an orthonormal wavelet with essentially unbounded
dimension function is constructed.

At the end we mention that there are also many examples of wavelets on the real line with
dilation factors other than 2. Here we mention a series of examples from [16] in L?(R) with
the dilation operator D defined by Df(x) = vdf(dz), d € N, d > 2.

Let d > 3. Take any k such that 1 < k < d — 1 and the set

C[dk—d) k—d koodk—1 d(dk—1) d2k
W‘[d2—1 ’d2—1>U[d2—1’d2—1>U[ Z—1 d&-1

Then the function v defined by

Y= xw
is an orthonormal wavelet. It should be mentioned that for k£ = 1 this reduces to the series of
examples first presented in [50].

In fact, [16] provides a method for construction (in N dimensions, for arbitrary expansive
matrix with integer coefficients) of all sets S C RY such that the function ¢ defined by ¢ = x5
is a Parseval generator of a singly generated admissible GMRA (i.e. such that the sequence
(Vj)jez, where V; = DIVy, j € Z, Vy = () is an admissible GMRA). In a sense, this result
with its consequences complements those from [9]. [16] also contains more interesting examples
of so called WSF wavelets (i.e. those of the form ¢) = xy, where W is a measurable set) on
the real line for all dilation factors d € R, d > 2.

Concluding remarks. For the general theory of wavelets and many more aspects we refer the
reader to [57], [34], and [117].
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Exercise 4.4.11. Suppose that (V});ez is a dyadic MRA in L?*(R) with a scaling function ¢.
Show that

Vi={feL*R): f(26) = t(&)p(&) : t € LA(T)}

Exercise 4.4.12. Suppose that (V});ez is a dyadic MRA in L*(R) with a scaling function ¢.
Let mg € L%(T) be the low pass filter, i.e. the function with the property

¢(§) = mo(§)@(S)-

Show that X
[mo(O) + [mo(¢ + )P =1 ae.

Furthermore, if f; and f, are any two functions from Vi such that f;(26) = t;(€)$(€) with
t; € L*(T), i = 1,2, show that

[f1, £2)(28) = t1()t2(E) + 11 (€ + %)t2(£ - %) a.e.
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Appendix

A.1 Tonelli’s and Fubini’s theorem. Let p and v be positive Borel measures on RV
and let p x v be their product measure on R?¥.

Theorem 4.4.13. (Tonelli.) If f > 0 is a measurable function on R*N then

Swgduxn = [ ([ faga)ae

= [ ([, @0 dua) (85)

In particular, either these three integrals are finite and equal or they are all infinite.

R2

Theorem 4.4.14. (Fubini.) If f € L*(R?N,u x v), then (85) holds. Furthermore, for almost
all ¢ € RN the function x — f(x,€) is in L*(RY, 1) and for almost all all x € RN the function
s f(x,8) is in LY(RN,v). If o and  are defined by

o@)= [ fle.&)dv(e), b(e) = / F(a, €)dp(z),
RN RN

then o € LY(RN, 1) and ¢ € L' RN, v).

In applications one chooses an appropriate order of integration, verifies that the iterated
integral is finite and then applies Fubini’s theorem.

In these notes we use only Lebesgue measure dx and the discrete (counting) measure
v = Y ez~ Ok- The integration with respect to v is just the summation: [pn f(z)dv(z) =
> rern f(k). Therefore Fubini’s theorem implies the following special cases regarding the
interchange of sums and integrals.

Corollary 4.4.15. Let (fi)pezn be a sequence in LY (RYN) such that Yo~ || frll1 < 0o. Then

LA X a@)ae= 3 [ i

kezZN kezN

Corollary 4.4.16. Let (ckn)pnezy be a sequence of scalars such that 3 con |ckn| < oo
Then

2 am=D | 2 am| =2 | D cm

(k,n)ez2N kezZN \nezZN neZN \kezZN

A.2 Periodization. The following periodization trick has numerous applications.

Corollary 4.4.17. If f € L*(R") then for all a > 0,

o f(a:)da::/[o’a)N Z f(z + ka) | du.

kezN
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Proof. The translated cubes ka + [0,a)" form a partition of RY. Thus

f(z daj—Z/ fxdac:/ . Zf(x—i—k‘a) dx.

RN keZN ka+[0,a)N

Since f € L*(RY), the sum and the integral can be interchanged by Fubini’s theorem. O

A.3 Double sums revisited. The unconditional convergence is good enough.

Lemma 4.4.18. Suppose that zj,, k,n € ZV, and x are vectors in a Banach space X such
that Z(k,n)ezw Tkn converges unconditionally to x. Then the partial sum sp N = Z\nISN Tkn

converges to some element y, € B for each k € ZV, and x = Y keznN Yk with unconditional
convergence.

Likewise, ZIkISK Tn converges to some element z, € B for each n € ZV, and x =
Y nezN Zn With unconditional convergence.

Thus, the order of summation can be interchanged in the double sum.

A.4 Integration by parts. We will make use of the following formula for integration by
parts.

Lemma 4.4.19. Suppose that f,g € L*(R) are such that f'g,¢'f € L*(R). Then

| r@gtes=- [~ f@@a

A.5 The uniqueness theorem. For f € L!(T) we define the Fourier coefficients by

1
:/ f(x)e ™% dy n € 7.
0

Note that the sequence (e2™%), o7 is an ONB for the Hilbert space L?(T) that is contained in
L'(T); thus, we have )
feL*T), f(n)=0,Yne€Z, = f=0.

Although the trigonometric system is not a basis for L!(T), the Fourier transform f +
(f(n))nez is injective on L(T).

Theorem 4.4.20. If f € L*(T) is such that f(n) =0 for alln € Z, then f =0 a.e.

160



5 Gabor frames

5.1 The short-time Fourier transform

Given f € L?(R), the knowledge of the values f(x) for all € R determines, theoretically, all
properties of f and also of f , because the Fourier transform is a unitary operator on L?(R).
However, it is very difficult to obtain properties of f by looking only at f. In time-frequency
analysis we study representations that combine the features of both f and f . (Recall that in
signal analysis f(x) describes temporal behavior, and f (&) describes the frequency behavior;
accordingly, we say that x is time variable, while & is frequency variable.)

The ideal time-frequency representation would provide direct information about the fre-
quencies £ occuring at any given time z. In other words, one wants to describe something
that can be called instantaneous frequency spectrum. However, it is evident already from the
definition of the Fourier transform that in order to obtain f(£) we need to know all values
f(z). But there is a deeper obstruction to the concept of instantaneous frequency: a collection
of inequalities that involve both f and f and are called uncertainty principles. In a very row
form the uncertainty principle states that a function f and its Fourier transform f cannot be
supported on arbitrarily small sets.

We shall state and prove later in this chapter the Heisenberg-Pauli-Weil uncertainty prin-
ciple and also the Balian-Low theorem. Here we state without proof the uncertainty principle
of Donoho and Stark.

Definition 5.1.1. A function f € L*(R) is e-concentrated on a measurable set T C R if

(jgcuxxn2dx>é <elfl.

If € < L then most of f is concentrated on T'. If € = 0 then f is essentially supported in 7.
2 Yy supp

Theorem 5.1.2. ([62]) Suppose that f € L2(R), f # 0, is ep-concentrated on T C R and f is
eq-concentrated on ) CR. Then

T]-19] > (1 - er — ).

Corollary 5.1.3. Let f € L2(R). If supp(f) C T and supp(f) C Q, then

7] -10) > 1.

Suppose now we want to determine the instantaneous frequency spectrum of f at x. In
order to do that, we need to record f at least over a short period [z — d,z]. This can be
done by considering the function f, s := f - g, s, where g, s is some window-function supported

on [x —0,z], .8 gys = X[z—62]- Then we take the Fourier transform m of fzs and we
interpret the support of ﬁ; as the local frequency spectrum. But by the uncertainty principle
the support of fgc; cannot be small. Moreover, by Corollary 5.1.3, as § — oo, the Lebesgue
measure of the support of ﬁ; will tend to infinity.
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Despite this fundamental obstacle there are still some useful forms of time-frequency anal-
ysis. Here we briefly describe the short-time Fourier transform. The idea behind is implicit in
the preceding discussion.

Before we introduce the formal definition, we need to recall fundamental operators and
their basic properties. For z,£ € R and a > 0 we define

T.f(t) = f(t — x) translation by =z, (1)
M f(t) = ™ f(t) modulation by &, (2)
D.f(t) = vaf(at) dilation by a. (3)
Recall that the Fourier transforms of these basic operators are given by
1/-‘1-‘\.](. = M—$f7 (4)
Mcf =Tef, (5)
Duf =D f. (6)

Formula (5) explains why modulations are also called frequency shifts. We also have the

following commutation relations:

T Mcf(t) = ™0 f(t — ), (7)
MT, f(t) = ™ f(t — x), (8)
MT, = e*™*T, Mg, (9)
T:Dof(t) = Vaf(at — ax), (10)
DT f(t) = Vaf(at — ), (11)
T:Dg = DTy, (12)
Do Mg f(t) = v/ae*™ " f(at), (13)
M D, f(t) = Vae*™" f(at), (14)
DoM¢ = MaeDy, (15)

Definition 5.1.4. Fiz a function g € L*(R) (called the window function). Then the short
time Fourier transform of a function f with respect to g is defined as

Vof(z,w) = /OO ft)gt —2)e ™ adt, 2, w € R. (16)

Suppose for the moment that g is compactly supported with its support centered at the
origin (for example, one may take g = X[-11 ]). Then V, f(z,-) is the Fourier transform of
a segment of f centered in a neighborhood of . As x varies, the window slides along the
z-axis. For this reason the short time Fourier transform is sometimes called the sliding Fourier
transform. With some reserves, V(f,w) can be thought of as a measure for the amplitude of
the frequency band near w at time z. To avoid artificial discontinuities one usually chooses a
smooth cut-off function as a window g.

The short time Fourier transform V, f is linear in f and conjugate linear in g. Our first
lemma provides more properties of V; f that can be obtained directly from the definition.
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Lemma 5.1.5. Let f,g € L*(R) Then V,f is uniformly continuous on R? and

Vof (z,0) = [Tog(w) = (f, MuTeg) = (f, TuM_.4). (17)

Proof. The uniform continuity of V; f follows from the facts

lim | Tof — f|| =0, ¥f € L*(R) (18)
and
1 — =1 A— F = 2
tim [|Mf — fI| = lim |T..f — fI| =0, Vf € L2(R). (19)
The equalities (17) follow directly from (16), (4), and (5). O

Theorem 5.1.6. Let f1, f2,91,92 € L?>(R). Then Vy, fi € L*(R?) for j = 1,2 and

(Vo f1, Vo f2) = (f1, f2) (91, 92)- (20)

Proof. We first assume that the window functions g; are continuous compactly supported
so that f;T,g; € L*(R) for all z in R. Therefore

[ oo = [ ([ AT AR o
= [ (T ) e

— 00

= /OO <f1Tmﬁ, f2Trﬁ> dx

—00

= [ ([ n@R@nt = - o) s

Here we have f1fa € L'(R,dr) and grg2 € L'(R,dt), therefore Fubini’s theorem allows us to
interchange the order of integration. Continuing the preceding computation we now obtain

e}

Vi Vutsd = [ 51050 ( | n= - :c)dx) dt = (f1. fo) (g2 g0).

— 0o
The extension to general g; is done by a standard density argument. (Here one should observe
that there is nothing special in using continuous functions in the above computations; we could
also work with g1, g2 € L'(R) N L>¥(R).)

With g; continuous and compactly supported fixed, the mapping ga — (Vg f1, Vg, f2) is a
linear functional that coincides with (f1, f2) (g2, g1) on the subspace consisting of all continuous
compactly supported functions which is dense in L?(R). It is therefore bounded and extends
to all g € L*(R).

In the same way, for arbitrary fi, f2,go € L?(R), the conjugate linear functional g; +
(Vg1 f1, Vg, f2) coincides with (f1, f2)(g2, g1) on the subspace consisting of all continuous com-
pactly supported functions and extends to all of L?(R). O
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Corollary 5.1.7. If f,g € L*(R) then |Vyf|| = [If[| - llgll. In particular, if ||g]| = 1 then
Vo fll = ]l for all f € L*(R).

If ||g|| = 1 we see from the preceding corollary that f is completely determined by V; f since
f =V, f is an isometry and hence an injection. In particular, if V,f =0, i.e. if V,f(z,w) =0
for all z,w (or, equivalently, if (f, M, T,g) = 0, Vx,w), then f = 0. In other words, we
have span {M,T,g : z,w € R} = L?(R). However, there is still a question of how f can be
reconstructed from Vj f.

Suppose now that F' € L?(R?) and g,h € L?(R) are given. We know from Theorem 5.1.6
that, for each k € L2(R), the function V,k also belongs to L?(R?). Thus, the integral

/ / a:thkzwwdxdw—/ / w) (M, Tyh, k)dxdw

converges. Let

Y (M,Th, k)drdw. (21)
o=

Clearly, [ is a well defined conjugate linear functional on L?(R). We claim that [ is bounded.
Indeed, applying the Cauchy-Schwarz inequality we obtain

(k)] < IIFIIIIthH IIFHIIhIIIkaH Vh € L*(R). (22)

This implies that [ defines a unique element f € L%(R) for which we have
oo o0 -
/ / Fz,0) (MyToh, kydwdw = (. k), Vk € LX(R). (23)
In this (weak) sense we now write

f= / / F(z,w)M,Tyh dzdw. (24)

Theorem 5.1.8. (Inversion formula for the short time Fourier transform.) Suppose that
g,h € L?(R) are such that {g,h) # 0. Then we have for each f € L?(R)

_ <h1g>/°o /oo V, f (2, w) MyTyh dadw. (25)

Proof. Recall from Theorem 5.1.6 that V,f € L*(R?) for all f € L*(R). By the preceding
considerations the integral

1

- (h,g)

/ / Vo f(x,w)M,Tph dedw
—00 J =00
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is well defined in the weak sense for all f € L?(R). This means, by (23), that we have for all
kin L2(R)

(f k) = (hlg> /OO /OO Vo f (2, w0) (M, Tyh, k) dedw
D s [ it G e
1
(20) 1
Thus, f = f. O

At the end we mention that there is also a strong version of the inversion formula for the
short time Fourier transform which uses a nested sequence of compact sets K,, C R which
exhaust R. For the details we refer the reader to Theorem 3.2.4 in [73].

Concluding remarks. The material in this section is adapted from [73]. There the interested
reader will find a much more elaborated discussion in d dimensions and many more results.
Here we restricted ourselves only to the basics to provide a motivation for the introduction of
Gabor systems.

Exercise 5.1.9. Verify formulae (4) - (15).

Exercise 5.1.10. Prove formulae (18) and (19).

1

R
Exercise 5.1.11. Show that g(z) = { € 10‘ i Ix; i i is infinitely differentiable function
Y z =

supported in [0, 1].
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5.2 Basic properties of Gabor systems

The short time Fourier transform provides us with a ” continuous expansion” of f € L?(R) with
respect to the uncountable system of functions M T,g, r,w € R. However, since L?(R) is a
separable Hilbert space, a series expansion with respect to a countable subset of time-frequency
shifts should suffice to represent f. The first attempt towards a discrete representation of f
would be to replace the integral by a sum over a sufficiently dense lattice, writing f as

f = Z Z<f’ Mmanag>Mmanah (26)

MmEZNEL

for some suitable window functions g and h from L?(R) and lattice parameters a,b > 0. This
motivates the following definition.

Definition 5.2.1. A Gabor system is a sequence in L*(R) of the form

G(ga a, b) = (Mmanag)m,neZ (27)

where g € L2(R) and a,b are fized. We call g the generator or the atom of the system (some-
times also the mother wavelet) and refer to a,b as to lattice parameters. The sequence G(g, a,b)
is said to be a Gabor frame if (MypThag)mmnez makes up a frame for L*(R). Frames of this
type are also called the Weyl-Heisenberg frames.

More generally, an ”irregular” Gabor system is a system of the form G (g, A) = (MgTng)a,pen,
where A is an arbitrary countable set of points in R2. Lattice Gabor systems have many nice
properties and applications and are much easier to study than irregular Gabor systems, so here
we focus on lattice systems.

Remark 5.2.2. Observe that the operators M,,;, and T,, do not commute, so one can also
consider systems of the form (73,4 Mn9)m nez; however we see from (9) that

‘(fv Mmanag>’2 = ’<f7 TnaMmbg>|2a Vm, n € Z.

Thus, (MpmpThag)mnez is a frame if and only if (15,4 Mympg)m nez is a frame.

The product ab of the lattice parameters appears in many calculations involving Gabor
systems. It turns out that the product ab is important, rather than the individual values of a
and b. This is made visible in the next lemma.

Lemma 5.2.3. Let g € L>(R) and a,b > 0. Then, givenr > 0, G(g,a,b) is a frame for L*>(R)
if and only if G(D,g,%,br) is a frame for L*(R).

Proof. Since D, is a unitary operator, (MpTpnag)mnez is a frame for L?(R) if and only if
(DyMppThag)mmnez is a frame for L?(R) (with the same frame bounds). Now,

15 12
D, M Thag (:) Mpr Dy Tung (:) MmbrT%nDrg'
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Remark 5.2.4. Whenever G(g, a, b) is a Bessel sequence we have a well defined and bounded
analysis operator

U: LZ(R) - EQ(Z x Z)a Uf = (<f7 Mmanag»)(m,n)eZXZ‘

We shall write Uy * when it is necessary to emphasize the dependence on g, a, b.

Lemma 5.2.5. Let g € L?(R) and a,b > 0. Suppose that G(g,a,b) is a Bessel sequence. Then
the corresponding frame operator U*U commutes with all M,y The, m,n € Z.

Proof. Let f € L?(R) and m,n € Z. Then

UUMpToaf = DY AMywTnaf, MisTrag) MiThag
keZ Iez

Z Z<fa TfnaM(l—m)kaag>Mlekag
keZ leZ

- ZZ emimell= MbM(l b —naTkag) MinTkag
keZ 1€z

= ZZ e2minalt=mb g T n)a9) MisThag
keZ Iz

—~
=

We now change indices (k — k' +n, I — I’ +m) and continue our computation:

UUMppTnaf = (™M Thoag) My T -n)ad
KELVEL

(Q) T / i ’
= > (O My Ty ag)e™ O My T My Thrag

k' ELVEL
= MuwThU'Uf.

O

Proposition 5.2.6. Let g € L?(R) and a,b > 0. Suppose that G(g,a,b) is a frame. Then
its canonical dual is also a Gabor frame G((U*U)~'g,a,b). Moreover, the associated Parseval

frame is G((U*U)_%g,a,b).

Proof. We know that the canonical dual of (M;,pT0a9)m.nez is ((U*U)_lebng)m’neZ.
However, (U*U)™! commutes with all M,,,T,., m,n € Z, smce U*U does. For the second
assertion recall that the associated Parseval frame is ((U*U)™ 2 MypThag)mnez and observe
that (U*U)fé also commutes with all M,z Tna, m,n € Z. O

Gabor systems are named after the Nobel prize winner Dennis Gabor. In his paper [68]
Gabor proposed using the system G(¢, 1, 1) generated by the Gaussian function ¢(z) = e
Gabor conjectured (it turned out incorrectly) that every function f in L?(R) could be repre-

F=Y> el /)MuTyo (28)

mEZnEL

sented in the form
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for some scalars ¢, (f) depending on f.

Von Neumann ([115]) had earlier claimed, without proof, that G(¢,1,1) is fundamental
in L?(R). Von Neumann’s claim was proved in 1970’s ([22], [102]). However, the fact that
G(¢,1,1) is fundamental does not imply the existence of representations of the form (28).

On the other hand, there are simple examples of Gabor frames. The simplest exam-
ple is G(X[O,l]a 1,1). To see this, observe that if we fix a particular n € Z, the sequence
(€™ X (n.n+1))mez is an ONB for L?([n,n 4 1]). Hence the Gabor system G(xp,1,1) is
simply the union of ONB’s for L?([n,n + 1]) over all n € Z and therefore G(X[o]51,1) is an
ONB for L*(R).

However, this Gabor basis is not very usefull in practice. The generator xg 1) is well local-
ized in time in the sense that it is zero outside of a finite interval. However, it is discontinuous
which implies that the expansion of a smooth function in the ONB G(xo1],1,1) does not
converge faster than the expansion of a discontinuous function. Moreover, the problem is that
the Fourier transform of x[ 1] is

. g sin 7r§‘

X[o,l}(f) =e —

thus, X/[O,\l] is not localized, decays only on the order +; and is even not integrable.

In general, we want to find Gabor frames generated by functions that are both smooth and
well localized. In fact, we now know how to create Gabor frames with smooth and compactly
supported generators. This was first done by Daubechies, Grossmann and Meyer ([59]) who
reffered to this as ”painless nonorthogonal expansions”. We first state a lemma whose proof is
a simple verification and hence omitted.

(29)

Lemma 5.2.7. The map V : L*([0,1]) — L%*([0,¢]), ¢ > 0, V f(x) = ﬁf(%) is a unitary oper-

ator. In particular, since (€2™™), <z is an ONB for L*([0,1]), it follows that (ﬁe%im%)mez

is an ONB for L*([0,c]). The same applies for L*>(I) where I is any segment on the real line
of length c.

Theorem 5.2.8. ([59]) Suppose that g € L*(R) is such that suppg C I = [0, §] for some b > 0
and that a > 0 is such that ab < 1. Then G(g,a,b) is a frame for L*(R) if and only if there
exist constants A, B > 0 such that

Ab < Z lg(z — ak)|* < Bb for a.e. x. (30)
keZ

In this case A and B are frame bounds for G(g,a,b). If ab < 1 then there exist g supported in
[0, ] that satisfy condition (30) and are smooth as we like.

Proof. Let f be any continuous compactly supported function in L?(R). Fix n € Z and
observe that the function f7,,g is supported on I + na. Note that (30) implies that ¢ is
bounded a.e. Hence, fTh.g € L*(I 4+ na). Since by the preceding lemma (v/be*™™b%), 7 is an
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ONB for L%(I + na), we have

o0 na-i—%
| t@g—naPas = [ | f@ gt Pl

—o0 a

= N fTnadll 12 ((11na))

_ Z ‘< FThad, \@62mmbx>

meZ

2

2

na++ )
= b Z / ’ f(2)g(x — na)e 2 mb dy

a

2

na+i
= b Z / ’ f(x)e2mimbzg(z — na)dx

a

= b Z |<f7 Mmanag>|2 .

mEZ

We now use Tonelli’s theorem to interchange the sum and integral:

SN T Mo Thag) P = %Z / T f(@)g(@ — na)2dx

mEZLnEL neL"”

= [ P (Z \g(x—na)\Q) d. (31)

neL

Using (30) we now obtain

AIFIP < 30D K MawTuag)* < BIfII%.

MEZLNEL

Since the subspace of all continuous compactly supported functions is dense in L?(R), this is
enough to conclude that G(g,a,b) is a frame for L*(R) with frame bounds A and B.

Suppose we have 0 < ab < 1. Take any continuous function g such that g(z) > 0 for all
z € (0,4) and g(z) =0 for all z & (0, ;). Because a < ¢, it follows that the a-periodic function
Go(z) = Y ez l9(x — ak)|? is continuous and strictly positive at every point. Hence, 0 <
inf Gg < sup Gy < co. There are many smooth functions that satisfy the above requirements
(see Exercise 5.2.15). O

Remark 5.2.9. The hypothesis ab < 1 was used only implicitly, already in the statement of
the theorem. Observe that a >  would imply Y, ., |9(z — ak)|> = 0 on [},a). So in this case
condition (30) cannot be satisfied.

Remark 5.2.10. We observe the following remarkable fact: if ab = 1, then any ¢ that is
supported in [0, 3] and satisfies condiiton (30) must be discontinuous.
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To see this, first notice that if supp g C [0, ] = [0, a], then T,,4g is supported in [na, (n+1)al.
If g is continuous, the fact that g(x) = 0 for all ¢ [0, a] forces g(0) = g(a) = 0. Since the
intervals [na, (n + 1)a] overlap (pairwise) at at most one point, it follows that the function
Go(z) = X ,cz |9(z — na)|? is continuous and has the property Go(na) = 0, for every n € Z.
But then G cannot satisfy condition (30) and hence, by Theorem 5.2.8, G(g,a,b) cannot be
a frame.

Remark 5.2.11. Let g, a, and b be as in Theorem 5.2.8 and suppose that
=Y _lg(z —na)? (32)
neL

satisfies (30). Denote by U the analysis operator of the frame (M,,3Ta9)m nez. Take again f
continuous with compact support. By (31) we have

VLD = US = 3 S MusToag) P =5 [ 1@ Gote)ds

MEZnEL

By continuity of U*U we now conclude that

(e o]

U=y [ If@PGuw)dn, vf € I®)

—00
Consider now the operator M 1, On L?(R) defined by M 16, f= %Go f. Obviously, M 16, is

a well defined, bounded, and self-adjoint operator on L?(R). Clearly, we have (U*Uf, f) =
<M%Gof, f) for all f from L?(R). Since both operators are self-adjoint, this is enough to

conclude that U*U = M%Go' We now observe that (U*U)~! = Mbcia ie.
0

(U*U)Lf =b—f, Vf € I3(R).
Go

Therefore the canonical dual of our frame (M;,pT749)m,nez is

b
((U*U)_leanag)m,neZ = (Mmana(U*U)_lg)mmeZ = <MmanaGg> .
0 mneZ

The reconstruction formula gives us

1
=b Z Z f Mmanag mana g, Vf € L2(R)

meZnel GO
Note that

-1
Tna (Z lg(x — ka — na)| ) g(x —na) = Gol(a:)ng(x);

kEZ

thus, the reconstruction formula can be rewritten in the form

Z Z I manag M Thag, Vf € LQ(R)

mGZ nez

and this formula is in fact what can be considered as the painless nonorthogonal expansion.
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Corollary 5.2.12. Suppose that g is a continous function supported on an interval I of length
L > 0 which does not vanish in the interior of I. Then G(g,a,b) is a frame for L*(R) for any
0<a<Land0<b§%.

Proof. Take any 0 < a < Land 0 <b < % Since % > L, the support of ¢ is contained

in an interval of length %. Consider Gg defined by (32). The result will follow from Theorem
5.2.8 if we show that G is bounded above and below. Since g is compactly supported, the
sum defining G is in fact finite sum with at most ﬁ terms and therefore (G is bounded above
since ¢ is continuous and compactly supported and hence bounded.

Now let J be the subinterval of I with the same center but with length a (recall that
a < L). Given z € R, there is always an n € Z such that z — na € J. Hence inf,cr Go(x) >
inf,e s |g(x)|? > 0. O

Corollary 5.2.13. Assume that ab < 1, take 0 < € < § such that a + 2¢ < %, and choose a
function g € L*(R) such that suppg C [0,a + 2¢], g(z) =1 for x € [e,a + €], g € C°(R), and
glloc = 1. Then G(g,a,b) is a frame for L*(R) with frame bounds } and 2.

Proof. It is easy to verify that the assumptions on € and ¢ imply 1 < Gy < 2. Note that
the generator of the canonical dual is the function Gio g that is also compactly supported and
belongs to C*°(R). O

Corollary 5.2.14. Suppose that g is a continous function supported on an interval I of length
L > 0. Then G(g,a,b) is a Bessel sequence for any a >0 and 0 < b < %

Concluding remarks. The material in this section is borrowed from Section 11.2 in [31].

Exercise 5.2.15. ([¢1], Exercise 11.9) Let f(x) = 6_”%2)((0,00)- Show that for every n € N
there exists a polynomial p, of degree 3n such that
1

F™ (@) = pu(z™h)e” 52 x(0,00) (2)-

Conclude that f is infinitely differentiable, every derivative of f is bounded, and f(™) () =0
for every x < 0 and n > 0.

Show that if 0 < a < b, then g(z) = f(z — a)f(b — =) is infinitely differentiable, is zero
outside of (a,b), and is strictly positive on (a,b).

Exercise 5.2.16. Prove that for any g € C.(R) there exist a,b > 0 such that (M,,Thag)mnez
is a frame for L?(R).
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5.3 Sufficient conditions

We begin our discussion by showing that the necessary part of Theorem 5.2.8 extends to
systems generated by any g € L?(R) and a,b > 0.

Theorem 5.3.1. Suppose that g € L>(R) and a,b > 0 are such that G(g,a,b) is a frame for
L2(R) with frame bounds A and B. Let Gy be as in (32). Then we have

Ab < Go(z) < Bb, for a.e. . (33)
In particular, g must be essentially bounded.

Proof. Let f € L?(R) be any function that is bounded and supported on an interval I of
length . Then we have fT,,g € L*(I). Since (Vbe*™ ™), 7 is an ONB for L2(I), it follows,
exactly as in the proof of Theorem 5.2.8,

b [f, My Toag) 2 = / F(@)g(x — na)de.
MmEZ o0
applying the lower frame bound for G(g, a,b) we find that
/ @) PGo(w)dz = 3 / F@)g( —na)Pde =b S S 1 MusTaag) 2 > bA| F2

o0
—00 nez”’ meZneZ

Thus, for every bounded f € L?(I) we have

|1 @PGo@) - bariz = 0 (34)

—00

Suppose now that Go(z) < bA on some set £ C I of positive measure. Then we can take
f = xE and obtain a contradiction to (34). In a similar way we prove the second inequality in
(33). O

Corollary 5.3.2. Suppose that g € L*(R) and a,b > 0 are such that G(g,a,b) is a frame for
L?(R) with frame bounds A and B and the analysis operator U. Then
(a) Aab < ||g||* < Bab.
(b) If G(g,a,b) is a Parseval frame, then ||g||* = ab.
(c) 0<ab<1.
(d) (9, (U*U)"'g) = ab.
(e) G(g,a,b) is a Riesz basis if and only if ab = 1.
Proof. Integrating the function Gy defined by (32) over the interval [0, a] and using (33) we
obtain
¢ 2 > 2 2
aab< [*3 gta —na)Pde = [ la(w)Pde = ol
neL 0
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In a similar way we obtain the second inequality in (a). Moreover, if G(g,a,b) is a Parseval
frame we have A = B = 1; thus, ||g||* = ab.

To prove (c), recall from Proposition 5.2.6 that G((U*U)_%g,a, b) is a Parseval frame.
Part (b) therefore implies that H(U*U)_%g”2 = ab. On the other hand, the elements of each
Parseval frame belong to the closed unit ball; hence ab = H(U*U)_%QH2 <1

To prove (d) we combine the equality H(U*U)_%Q‘P = ab with the fact that (U*U)_% is
self-adjoint:

(g, (U*U)1g) = (U*U) 29, (UU) " 2g) = |(U*U) " 2g|* = ab.

Finally, G(g, a,b) is a Riesz basis if and only if the associated Parseval frame G((U* U)_%g, a,b)
is a Riesz basis - which is in this situation necessarily an ONB - so

1= |(U*U)~3g|? = (g, 0 U)"g) L ab.

Remark 5.3.3. Note that Corollary 5.3.2 (c) implies: if ab > 1 then G(g,a,b) cannot be a
frame (and this is true for all functions g from L?(R)).
However, ab < 1 is only a necessary condition and not sufficient. To see this, consider
b=1, % < a < 1 and the system (ManaX[o l])m,nGZ- Clearly, X[2 L Manax[O 1 for all
D) 27 72
m,n from Z; hence, the sequence (ManaX[o l])m,nGZ is not even fundamental in L?(R).
2

The value % is called the density of the Gabor system (MThag)m,nez. We refer to the

density % =1 as the critical density or the Nyquist density.

a]

Corollary 5.3.4. Suppose that g € L*(R) and a,b > 0 are such that G(g,a,b) is a frame for
L?(R). Then both g and § must be essentially bounded.

Proof. Observe that (MmpThag),, nez 18 also a frame for L?(R) since the Fourier transform
is a unitary operator on L?(R). Now we have

—

Mmanag = Tmanag = TmbM—naga Vm, n € 7.

Using Remark 5.2.2 we now conclude that (MqTmpd)mnez is also a frame for L%(R). An
application of Theorem 5.3.1 finishes the proof. g

Suppose now we are given a function ¢ € L?(R) and a,b > 0. For k € Z we define the
sequence

on(z) = <g(x na— i))nez, TER. (35)

We claim that gi(x) € £2(Z) for a.e. = and all k. To see this, observe that

¢ k 2 ¢ k 2 k 2 2 2
| S lsta—na=5)Pdz =3 [Mlgte—na=)Pde = [ lota= ) = Tyl = ol

oo
nez nezZ o
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From this we conclude that
k
Z lg(z —na — g)\z < oo, fora.e. z. (36)
neZ

Now take any f,g € L*(R). Since we have, for all k,l € Z, that the sequences f;(x), gr(z)
belong to ¢?(7Z), the inner product

(), 90(@)) = 3 Flw—ma— Dgla—na— 1) (37)

nez

is well defined for a.e. 2. Moreover, we know from the general £2 theory that the series in (37)
is absolutely convergent. Thus, we have proved

Lemma 5.3.5. Let f,g € L2(R), a,b > 0, and k,l € Z be given. Then the series

Zf(a:—na— é)g(w—na—%)

neZ

converges absolutely a.e. and defines an a-periodic function. Moreover, the function

.’Ei—)z

ne’

fle—na— Dol —na— ) (33)

belongs to L([0, a)).
Corollary 5.3.6. Let g € L?(R) and a,b > 0. Then for each k € 7 the series
Gr(z) = Zg(:c—na)g(x—na—ﬁ) z€eR (39)
b ) )
neL
converges absolutely a.e. and the function

=

neL

k

g(x —na)g(r —na — E)

belongs to L([0,a]).
Proof. Ggp(z) = (g9o(z),gx(x)), where gi(z) is defined by formula (35) in the preceding

considerations. O

It should be observed that (39) for k = 0 is in accordance with our earlier definition (32)
of the function Gy.

Lemma 5.3.7. Let f,g € L2(R) and a,b > 0. Given n € Z, let
k k
Fala) = 3 S = Dgla—na— ). (40)

keZ
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Then F,(x) is well defined for a.e. x and defines a function in L'([0, §]). Moreover, for any

m € 7 we have

S

<f,Mmbng>:/0 Fn(az)e*%imbxdm. (41)

In particular, the m-th Fourier coefficient of Fy,(x) with respect to the ONB (v/be?™™b%) 7
for LQ([O, %]) 18
Cm = \/> <f7 manag> (42)

Proof. By interchanging n <> k in (40) we see that
Z f(z g(x — ka — %)
nez

Now Lemma 5.3.5 with interchanged the roles of a and ¢ tells us that F,(z) is well defined
a.e., the series (40) converges absolutely a.e., and that F, G L'([0, £]). Moreover,

(f, My Thag) = / F(2)g(@ — na)e=2mimbe gy,

k
— Z/ f(L‘—* x_na_g) —27rzmbxdx

kGZ

R Y )

keZ

o=

— / Fn(l‘)e_%rimbxdl'.
0

O

Lemma 5.3.8. Let f be a bounded measurable function with compact support. Consider any
g € L2(R) and the functions Gy, defined by (39). If Gy is essentially bounded then

S S M Toag) bz/ F@)f (e~ )Gyl (43)

meZnel kEZ

Proof. For n € Z consider the %—periodic function F,,(z) defined by (40). We already know
that F,, € L'([0, %]) Since f has compact support, for a given x € R, f(x — %) can be non-zero
only for finitely many k’s. The number of k’s for which f(x — %) # 0 is uniformly bounded,
i.e. there is a constant C' such that at most C values of k appear in the definition of Fj,. It
is now easy to conclude that F), is bounded; this follows from the Cauchy-Schwarz inequality
and boundedness of f and g (notice that g is essentially bounded by the hypothesis on Gy).

This is enough to conclude that F,, € L*([0, ]). In fact, it follows that

LU’-)Z

kEZ

k 1
(x — -)g(x — na — 3) € L2([O’E])'
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Now the last assertion of Lemma 5.3.7 implies that, by the Parseval equality,

1 2

1 b .
: / | Fo(w)Pda = / Fo(a)e 2% dy (44)
0 meEZ
We now observe that, since f is bounded, measurable, and compactly supported,
Z/ $—7|Z T —na)g x—na—g) dx < oo. (45)

keZ neL

This is what is needed to justify all interchanges of integration and summation in the compu-
tation that follows. In the course of this computation, in order to obtain the second equality,
we shall write |F},(z)|? in the form

Fa(a)? = Fu@ Fula) = - Fw — 1 )g(e —na— ) Fale).

lEZ

S S I M Tl E ST / o)|2da

meZnel nEZ
= Z/ fo—f x—na—é)F(w)de‘
nGZ IEZ
= b%/ f(@)g(z — na)F,(x)dx
= bZ/ (o) a:—na)Zf:L‘—— (;U—na—g)dl‘
nez keZ
- b%/ T - 3Gl

O

We are now ready to state and prove three theorems that provide us with sufficient condi-
tions on g, a, and b for (MpThag)mnez to be a frame for L*(R).

Theorem 5.3.9. ([55]) Let g € L*(R) and a,b > 0 be such that there exist constants A’ and
B’ with the properties

A" < Go(z) < B’ fora.e. x (46)
and
D IGk]lse < A (47)
k40

Then (MypThag)mnez is a frame for L?(R).
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Theorem 5.3.10. (/52]) Let g € L*(R) and a > 0 be such that there exist constants A’ and
B’ for which condition (46) is satisfied. Suppose aditionally that

li = 0.
lim 3Gl = 0 (48)
k0

Then there exists by > 0 such that (MypThag)mnez s a frame for L3(R) for all 0 < b < by.

Theorem 5.3.11. ([51], Theorem 8.4.4.) Let g € L*>(R) and a,b > 0 be such that

B := — sup Z\Gk )| < 0. (49)

xE[O a ke
Then (MypThag)mnez is a Bessel sequence with Bessel bound B. If, moreover,

1
A:= = inf )= > [Gr(z)] | >0 (50)
b z€[0,q] 0

then (MypTha9)mnez is a frame for L2(R) with frame bounds A and B.

To prove these three theorems we need yet another lemma.

Lemma 5.3.12. Let f € L*(R) be a bounded measurable function with compact support.
Suppose that for g € L*>(R) and a > 0 the function Gy is essentially bounded. Then

Z/ Fa) (e~ 5)Grlada g/ D2 S |Gu(@)\de. (51)

k£0 - k£0

Proof. First we have

kZﬂ‘T_;;Gk(ZL')’ = kz#o T knEGIZTnag na+kg( )
= Z ZT _&g na.g( )
k#0 IneZ

Replacing k£ with —k from this we obtain

Z)T_%Gk(x)‘ = > T4 £9(0) Trag (x)

k0 k0 Inez

= Z szH_kg nag( )

k#0 In€Z

= > IGk(@)l. (52)
k0
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We now compute:

> [ F@se-peads < Y [ @I f@Guw)ds

k£0 s
= > [ @G @) G
k0

(since f is compactly supported, we can now apply the Cauchy-Schwartz inequality in L?(R))

<> ([ |f<z>|2rak<x>rdw); ([ msercwis)

k0

(now we apply the Cauchy-Schwartz inequality in £2(Z))

(Z JOREE da:) (Z | ms@Pic >dx)%

k0 k70
(we now replace x — Wlth a2’ which we again denote by x)

< (2 [T @i z/ 0)PIT_ Gu(w)lda

k#0 k#0

: :
52
(52 / D) |Gr(@)|dx / 2)P ) |Gy(@)|dx
- k40 - k40

= [ 1H@P Y (Gi@)ds.

e k0

O

Proof of Theorem 5.3.9. It is enough to obtain the conclusion for all f from a dense subspace
of L?(R). Thus, we may assume that f is bounded, measurable, and compactly supported. By
Lemma 5.3.8 we have

1
SN Mo Trag) P < b/ F@)2Go(a)dz + - 2/ F@) (e )Cx(a)da
meZneZ - k40
(51) 1 1
< PG+ [ @RS (Gulaide
- k0
(46),(47) 1 1
< CBfIP+ ANS)
b b
1
- @B
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Similarly,

(51),(46),(47)
S S ML) > AP [ A = S Gk

meEZ neZ k#0

Proof of Theorem 5.3.10. Exactly as in the preceding proof we take arbitrary bounded,
measurable, and compactly supported f and obtain

(46) 1
2D M MuTaag)? < 5 | B+ 3 [Gilloo | £

meEZ neZ k#0

Analogously, using (46) and (51) we get

1
S S M Tra)? 2+ A= 3 Gl | 11
meZ nel k#0
By (48) we can now find by such that b < by implies >, o [[Gilloc < A”. O

Proof of Theorem 5.3.11. Again, consider any bounded, measurable, and compactly sup-
ported f. Then, using (43) and (51), we obtain

S S MuTug)? < 5 [ I@F (Golw)+ X [Geta)] | da

MEZLNEL % k#0
1
= b/ z)[? Z]Gk )|dx smceZ]Gk | is a — periodic)
- keZ keZ
< 1 ( sup 3Gl )If\|2
z€(0,a] kEZ
(49) 5
< BIfI*

Analogously we also obtain

S Mgl 2 5 [ @ | Golo) - 3 [6ula) dx'> AlfIP.

meZLneL k#0

Remark 5.3.13. It should be noted that the advantage of Theorem 5.3.11 is that we compare
the functions Go(z) and } ;o |Gk(z)| pointwise rather than requiring that the supremum of
> k0 |Gi(2)] is smaller than the infimum of Go(z) as is the case in Theorem 5.3.9. There are
situations where we cannot apply Theorem 5.3.9, but Theorem 5.3.11 applies.
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Example 5.3.14. Let
x+1, x€]|0,1]

g(x) = %I, x € [1,2]
0, otherwise
and a = b = 1. One finds that
Hz+1)2? k=-1
5 2
oo nigta—n k= { {00 =0

nez .
0, otherwise

From this we conclude that

Golz) = Z(x 12, 2 (0,1] and 3 |Ghl@)] = (z+1)%, = € [0,1].
k40
Clearly, condition (46) is satisfied with A’ = 2 and B’ = 5; that is 2 < Go(z) < 5. Since
> k20 |GE(T)|oo = 2, (47) is not fulfilled and we cannot apply Theorem 5.3.9. However, the
conditions from Theorem 5.3.11 are satisfied and we conclude that (M;,T,,9)m nez is a frame
(actually, a Riesz basis) with frame bounds § and 9.

Concluding remarks. The material in this section is a combination of the expositions in Section
8.4 from [51] and 11.3 from [81]. The interested reader should also consult [32] as well as
the related references quoted in the aforementioned sources. For the analogous results in d
dimensions we refer the reader to [73].

Exercise 5.3.15. Prove inequality (45) and justify the subsequent steps in the proof of Lemma
5.3.8.
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5.4 The Walnut representation and dual frames

Consider the function x[g 1) and compare it with the function g constructed in the following

way. Devide the interval [0,1) into infinitely many pieces [0,3), [4,2),[2,1)... and send those

pieces to ”infinity”. Let
g = X[O,%) + X[1+%,1+%) + X[2+%72+§) +... (53)

Clearly, g does not decay at infinity. However, G(g,1,1) is also an ONB for L?(R). On the
other hand, we cannot distinguish between g and x[g 1) by considering their LP-norms.

The amalgam spaces W (LP, ¢?) which are first considered by Wiener are determined by a
norm which mixes a local criterion with a global behavior. Here we restrict ourselves only to
W (L™, 01).

Definition 5.4.1. The Wiener amalgam space W (L™, (') consists of those functions f €
L>(R) for which the norm

1 lwzoeety = D 1 Xnmlloo < 00 (54)

neL

Thus, a function in W (L>,¢!) is locally an L® function and globally decays as an L'
function.

Theorem 5.4.2. (a) W(L>®, (') is contained in LP(R) for 1 < p < oo and is dense in LP(R)
for1 <p < 0.

(b) W(L>®,¢Y) is invariant for all translations Ty, b € R, and
ITof lw(zoeery < 20 Fllw(zoe,oy, VF € W(L®, LY. (55)

(¢c) W(L>®,0Y) is an ideal in L™ with respect to pointwise products and

I fallwz.ey < I flloollgllwzoe, ey, Vf € LP(R), Vg € W(L™,£1). (56)
(d) Given a >0,
HfHW(LOO,Kl),a = Z HfX[an,a(nJrl)]HOO (57)
nez

is an equivalent norm for W(L*, (1) with

1 o
a”fHW(LOO,Kl),a < |fllwre oy < Callfllwre oy Y € W(L®, LY (58)

where Cq = max{1 + a,2}.
Proof. We will prove only the second inequality in (58); the rest is left as na exercise. Let
In={neZ:[kk+1)Nan,a(n+1)] # 0}, ke€Z,

Jon={k€Z:[k,k+1)N[an,a(n+1)] # 0}, neZ.
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If a > 1 then |J,| <1+ a, while if 0 < a < 1 then |J,| < 2. Hence |J,| < C, for all n € Z.
Therefore

I fllw(pemy = Z X ekt 1) oo

keZ
< Z Z ||fX[an,a(n+1)]||OO
kEZ nel),
= Z Z ”fX[an,a(n—&-l)}”OO
neZ ke,
< C, Z HfX[an,a(n+1)} HOO
nel
O
Corollary 5.4.3. If f € W(L*>®, (') and a > 0, then
D Tk fXo,a)lloe < Col[ fllw(zoe,er): (59)
kEZ
Proof. Observe that D) 7 | TarfX(0,a]llcc = 2 rez I X(ak,atk+1)) 00 O

An important property of functions in W (L, ¢') is that a periodization of a function
g € W(L*>, ) is bounded. Observe that a periodization of a general function from L'(R) is
only integrable over the period.

Corollary 5.4.4. Let a > 0 and g € W (L™, ¢'). Then the a-periodization of g
o)=Y glz—an) = Tng(x) (60)
neZ neZ

is a-periodic, bounded, and satisfies

o(a)] < lg(x — na)| < Cillgllw (L) ae. (61)
ne’l

Proof. Fix x and observe that for any given n € Z there exists exactly one value of k € Z
such that
x —na € [ka, (k+ 1)al.

Moreover, different values of n lead to different values of k. Therefore

> gl —na)| <Y lgxX ke gt yalloo = Ngllwzoo)a < CrliglwLes,eny-
nez keZ
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Corollary 5.4.5. If g,h € W(L*>® ('), a >0, and 0 < b < é, then

D

keZ
Proof. First observe that

Z Zg(m_na)h(ﬂf—na—%

k€EZ In€Z

Zg(m —na)h(zx —na — %)

neZ

< CéHQHW(LOO,Zl)Hh”W(LOO,él) a.e.

< 3 ot —na)| 3 Ihe —na — 1)

neZ keZ

We now apply inequality (61) from Corollary 5.4.4 twice; first to g and a and then to h and
%. In this way we obtain

D

< Cillgliwwee,enCollallw (Lo o1y

Z g(x — na)h(x — na — %

keZ Inez
Finally, observe that b < é implies Cy = max{1 +b,2} < max{1+ é, 2} = C1 which yields the
desired conclusion. O

The following two propositions show that functions from W (L>,¢!) serve as natural can-
didates for generating Gabor frames.

Proposition 5.4.6. For each g € W(L>®,¢') and all a,b > 0 the sequence (MypTha9)mnez s
Bessel. If ab < 1 then C3 HgH%,V(LOO oy s its Bessel bound.

Proof. We will apply Theorem 5.3.11; thus, we need to show that condition (49) is satisfied.
If ab < 1 we have b < % Now Corollary 5.4.5 gives us

Bi=1 s IG@)] =3 swp (3 gw—na)gle —na— 0| < 102 gz
z€[0,a] oz z€(0,a] ez ez ¢

Consider now the case ab > 1. We can find N € N large enough to have {0 < 1. By the

first part of the proof we know that the sequence (Mman% 9)m.nez is Bessel. In particular, its

subsequence that is obtained by taking only those n € Z that are of the form n = pN, p € Z,

is also Bessel. g

Proposition 5.4.7. Let g € W(L>®,¢') and a > 0 be given. Suppose that there exists a
constant C' > 0 such that C < Go(x) a.e. Then (MuypThag)mnez is a frame for L2(R) for any
b > 0 sufficiently small.

Proof. By the preceding proposition the sequence (M;,pT049)mnecz is a Bessel sequence
for all b > 0. Fix € > 0 and choose N € N such that >, >y [|9X[na,(nt1)a]lloc < €. Let
90 = gX|-aN,an] and g1 = g — go. We first observe that

H91”W(L°°,Zl),a = Z ”(.g - gX[—aN,aN}g)X[an,a(n-i—l)]||OO
neZ
< Z HgX[na,(nJrl)a} HOO <e. (62)
[n|>N
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We now have

SIS o —nayge—na— ) = S (00 + 02)(x — na)(go + 1) —ma )
k#0 In€Z k#0 In€Z
< 3|3 wole — na)gole —na— )
k#0 In€Z
+ Z Zgo(x—na)gl(x—na—g)
k#0 In€Z
+ Z Zgl(x—na)go(x—na—%)
k#0 In€Z
+ ) Zgl(w—na)gl(w—na—%)
k0 Inez

The function gg has support in an interval of length 2a/N, so if choose b < ﬁ we will have
% > 2aN and the first of the above four terms is equal to 0. To estimate the remaining three
terms we use Corollary 5.4.5:

k
Z Zg(iﬂ —na)g(z —na — ) < 202 HQOHW(LOO,Zl)HQIHW(LOO,Zl) + Cé Hglu%/V(LOO,Zl)

k0 [nez b

(58),(62)
2C7 || gollw (o0 ,01)Ca€ + C1 Cae®.

We now choose ¢ > 0 such that the last term in the above computation is smaller than C.
This gives us condition 50 from Theorem 5.3.11. U

We now proceed towards the Walnut representation which is a particularly useful form of
the frame operator U*U of Bessel sequences of the form (MyTa9)mnez. Here again it turns
out that a natural class of functions in our considerations is the Wiener space W (L, (1).

Recall the functions Gy, k € Z, defined by (39) for each g € L?(R) and a,b > 0. Observe

that -
Gi(x) = Z g(x —na)g(x — na — %) = Z Tnanga+%§ = Z Tna(Qng)' (63)

nez nel nel
The last expression tells us that Gy, is the a-periodization of g7’ g.
b

Suppose now that g € W(L*>, ¢'). This implies that g is bounded; thus, Theorem 5.4.2
(c) implies that g7%g belongs to W (L>,¢'). This enables us to show that the corresponding
b

functions Gy are not only integrable, but also bounded.

Lemma 5.4.8. If g € W(L>®,¢') then, for all a,b > 0, G}, € L>®(R) for all k € Z and

Y 1Gkllso < 201 Cyllgliy (1o g1y-
kEZ
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Proof. By formula (61) in Corollary 5.4.4 we have

[Grlloo = | ZTM(QT%@HOO < C%Hngg”W(LOO,@l)-
nez

This implies

IN

Z |Gl C1 Z HQT%§HW(L°°,£1)

keZ keZ

= C1) > 19Xy TegXinmelloo
kEZ n€EZ

CEVEE:HgXﬁLn+thw (j{:trgthun+HHoo>

nel keZ

IN

= Cillgllw(zem (Z T§9X[n,n+1ﬂ|oo> - (64)
keZ
Observe that the series in the parenthesis in the last line is not the W (L, ¢')-norm of Tk g
b

since we have the summation over k instead of over n. Hence some additional work is needed
similar to the proof of Theorem 5.4.2 (d).

kez keZ
< 20, loxprenle
leZ
= 2,y (65)

The main point in the above computation is the observation that an interval of the form [l, 41|
intersects at most 2C}, intervals of the form [—% +n, —% +n+1].
Putting together (64) and (65) we obtain the desired conclusion. O

Theorem 5.4.9. (Walnut representation.) Let g € W (L™, ¢%) and a,b > 0. Denote by U the
analysis operator of the Bessel sequence (MypThag)mmnez. Then

U f = %ZT%ka, Vf € I2(R). (66)
kEZ

Proof. We already know from Proposition 5.4.6 that (MypTha9)mnez is a Bessel sequence.
Lemma 5.4.8 tells us that the series

Lf =3 Y TL G

keZ

converges absolutely for each f in L?(R). Moreover,

1
LAz =< 5 > Tk fl2IGrllso < Bl 2,

kEZ
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where 2
B = 3C1Gllglfy (o 1)

This shows us that L is a bounded operator on L?(R). It remains to show that U*U = L and
to do that it suffices to see that U*U and L coincide on a dense subspace of L2(R). Take any
continuous compactly supported function f. Then, using Lemma 5.3.8, we have

U UL 1) = D3 N M Toag)

MmEZneEL

- 33 [ T@e - s

kezZ " —

- <iZT§ka,f>

keZ

= (LS, )

We emphasize the contrast between the original form of U*U, i.e.

U~ Uf = Z Z<f’ Mmanag> Mmanag (67)
MEZnEL

and the Walnut representation (66). The Walnut representation contains a single summation
and, what is more important, it contains no complex exponentials. If f is real, all terms on
the right hand side of (66) are real valued, while the terms on the right hand side of (67) need
not be.

In [39] it is proved that each g € W (L, (1) satisfies condition (50) from Theorem 5.3.11.
There it is also proved that the Walnut representation is valid for all functions satisfying (50).
Since there are functions (see Exercise 5.4.14) which satisfy (50) and are not in g € W (L>, 1),
this result is more general. However, there are examples which show that (50) is not necessary
for (MypThag)mnez to be a frame (see [39]).

We end this section by three results which we include without proof. The first one is known
as the Wexler-Raz theorem; it characterizes functions which generate a dual Gabor frame of
a frame (MpThag)mnez. It is followed by another result of this type proved by Ron and
Shen ([105]) which we include in the form presented by Janssen in [38]. The last one describes
Parseval Gabor frames.

Theorem 5.4.10. Let g,h € L?(R) and a,b > 0 be such (MypThag)mnez and (MppTrah)m nez
are Bessel sequences. Then they are dual frames L*(R) if and only if

(b, M Tz g) =0, ¥(m,n) #0, and (h,g) = ab.
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Theorem 5.4.11. Let g,h € L?(R) and a,b > 0 be such (MypTha9)mnez and (MppThah)mnez
are Bessel sequences. Then they are dual frames for L>(R) if and only if the equations

> gl — na)h(x —na) =b

ne”L

and
k
Zg(w—na)h(w—na—g) =0, ke Z\ {0}
nez
hold a.e.

Theorem 5.4.12. Let g € L*(R) and a,b > 0 be given. The following conditions are equiva-
lent:

(a) (MypTrag)mnez is a Parseval frame.
(b) Go(x) =b a.e. and Gi(x) =0 a.e. for all k # 0.

(¢) g L MmTng for all (m,n) # 0 and lg||> = ab.

(d) (M2Tng)mmnez is an orthogonal sequence and lgll? = ab.

Concluding remarks. This section is again a combination of the material from [51] and [31].
We refer the reader to [51] for the proofs of Theorem 5.4.10 and 5.4.12.

As Theorem 5.4.10 suggests, there is a closed relationship between frame properties for a
function g with respect to the lattice {(m,n) : m,n € Z} and with respect to the dual lattice
{(,%) :m,n € Z}. Ron and Shen were the first to obtain some important results along this
line. We refer the reader to [105] for the Ron-Shen duality principle and related results. The

interested reader should consult [60].

Exercise 5.4.13. Prove Theorem 5.4.2.
Exercise 5.4.14. Show that the function g defined by (53) satisfies condition (50).

Exercise 5.4.15. (73], Theorem 6.3.2, Walnut representation of the mixed frame operator.)
Let g,h € W(L>®,¢') and a,b > 0. Denote by U and V the analysis operators of the Bessel
sequences G(g,a,b) and G(h,a,b), respectively. Show that

VUf = %ZT%f <Z h(z — na)g(x — na — ﬁ)) , Vf e L*(R).

keZ neL
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5.5 The Zak transform and the Balian-Low theorem
Consider the Gabor system G(x[1],1,1) which is an ONB for L*(R). Let @ denote the unit
square [0,1]? in R2. It is easy to see that the sequence
(Emn)mnez, Epn(z,€) = e2mmee2mint
is an ONB for the Hilbert space L?(Q).
Definition 5.5.1. The Zak transform is the unitary operator Z : L*(R) — L?(Q) defined by
Z(ManX[o,l}) =Enn, m,n € Z.
Theorem 5.5.2. Given f € L*(R), we have
Zf(.€) =) flaz =)™, (2.6) €Q. (68)
JEZ
where this series converges unconditionally in L*(Q).

Proof. First we observe that for each f € L?(R) and all j # [ the functions f(x — j)e*¢
and f(z —1)e* ¥ are orthogonal vectors in L?(Q). Let us now take any finite set F' C Z. Then
2

St = 3 |- e

JEF JEF

_ ;/01 /Ollf(q:—j)e%ijgrdmdf
1
-y /0 fx— §)de. (69)

JEF

Since f belongs to L?(R), the series djez fol |f(x — j)|?dx converges unconditionally to || f||%.
Thus, the series on the right hand side of (68) converges unconditionally and defines a linear
operator T : L2(R) — L?(Q), Tf = > jen flz — §)€2™3¢ which is by (69) an isometry. To
prove that T' = Z we only need to show that T'(M;, Ty x[0,1) = Emn for all m,n € Z. Take any
m and n. Then

T(MnTuxo,1)(®,€) = Y MuTuxoy(z — j)e>™*
JEZ

_ Z e27rim(a:—j)X[0’” (l‘ —j— n)62m'j§
JEZL

62mm95672mn§
= Emn

Observe that the penultimate equality follows from the fact that z € [0, 1], so X[ 1(* —j —n)
vanishes for all j # —n.
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In general, one can consider the Zak transform on domains other than L?(R). Again, it
turns out that natural domains are precisely the Wiener amalgam spaces W (LP, ¢!). Here we
restrict ourselves to the case p = oco.

Theorem 5.5.3. For each f € W(L>®, (') the series Z f(z,£) = > jen flx— §)e? s (x,€) €
Q, converges absolutely in L>°(Q) and Z : W (L>®, %) — L>=(Q) is a bounded linear operator.

Proof. -
> [ #@ = e | =3 Ixganlleo = Il
JEZL JEZ

g

We will use the Zak transform to analyze Gabor systems at the critical density ab = 1.
Using Lemma 5.2.3, by delating g, if necessary, we can assume that « = b = 1, i.e. we can
restrict ourselves to Gabor systems of the form G(g,1,1).

We begin with a simple but useful lemma.

Lemma 5.5.4. If g € L*(R) then
Z(MpTh9) = EnnZg, a.e. for allm,n € Z. (70)

—27il

Proof. We compute (using the fact that e =1 for all integers 1):

Z(MpTog)(2,8) = Y (MpTog)(x — j)e*™9

JEZ
_ Z 2mim(z—j) s 2mij€ : . -/
= e glx —j—n)e (changing j +n — j')
JEZ
_ Z e27rim(a:7j’+n)g(x _ j/)e%'ri(j’fn)f
Jj'EL
_ e27rim:):6727rin£ Z g(a? . j/)e27m'j’£
J'EL
= E.nZg.

0

The following corollary should be compared to Proposition 4.2.6 (a). It shows that L?(R)
cannot be generated, as a shift-invariant space, by a single function.

Corollary 5.5.5. If g € L*(R) and a > 0, then (g(x — na))nez is not fundamental in L?*(R).

Proof. By dilating ¢ it suffices to consider the case a = 1. So, our sequence is (T,,g)necz-
Taking m = 0 in the preceding lemma we see that

{Z(Tng) :n €2y ={EpZg:ncZ}={e " Zg:ncZ}.

Taking finite linear combinations and limits with respect to || - ||-norm, we conclude that each
function in span {e 2" Zg : n € Z} has the form f(£)Zg(x, ). Clearly, there are elements in
L?(Q) which are not of that form. O
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Theorem 5.5.6. Let g € L*(R).
(a) G(g,1,1) is fundamental in L*(R) if and only if Zg # 0 a.e.
(b) G(g,1,1) is a Bessel sequence in L*(R) if and only if Zg € L*>(Q).

(c) G(g,1,1) is a frame for L*(R) if and only if there exist constants A, B > 0 such that
A < |Zg(z,6)|*> < B a.e. In this case G(g,1,1) is in fact a Riesz basis, A, B are its
frame bounds, and, if g denotes the function which generates the canonical dual, we have

627rimxe—27rin§
2 Tg) = (1)
Zg(x, )

Proof. (a). Suppose that Zg # 0 a.e. Since Z is a unitary operator, it suffices, by Lemma
5.5.4, to show that (EynZg)m nez is fundamental in L?(Q). Suppose that (F, E,,, Zg) = 0, for
all m,n € Z. Take H = FZg. Then we see that H € L'(Q) and that the Fourier coefficients
of H with respect to the ONB (E;,n)mnez of L*(Q) are

1 1
(H, Emn) = /0 /O F(z,8)Zg(x, &) Emn(z, §)dzds = (F, EmnZg) = 0.

By the uniqueness theorem, from this we conclude that H = 0. As H = FZg and Zg # 0 a.e.,
it follows that F' = 0 a.e. The converse is proved similarly.
(b), (c). Consider any f € L?(R). Then we have

ZZ‘(f,MangHQ = ZZ‘<vaszTng>‘2

MEZNEL MEZLNEL

© Yy

MEZNEL
= |1ZfZg|?

1 1
- /0 /0 127 (2, )| Zg (. &) Pdrde. (72)

1 1 ' S 2
/ / 21 (2, €)e2Fime 2T 70 (0 ) dude
0 0

The penultimate equality in the above computation is obtained in the following way. If we
assume that G(g,1,1) is a Bessel sequence, the double series > > . [(f, MpTng)|? is

I , 2
convergent. Hence, the double series Y., ., > ‘fol fol Zf(x,6)Zg(x,&)e 2mimze2ming dad¢

is convergent. This tells us that the function Z fZg belongs in fact to L?(Q), so we could apply
the Parseval equality with respect to the basis (Eppn)m nez-

If we assume that G(g,1,1) is a frame for L?(R) with frame bounds A and B, we conclude
from (72) that for each f € L?(R) we have

1 1
AZf.Z2f) = A|fI? < /0 /O |Zf(@,&)P|Zg(w, €)Pdads < B f|* = B(Zf. Zf).  (73)
As f ranges throughout L?(R), |Zf(z,&)| ranges throughout all positive functions in L?(Q).
Thus,
0<A<|Zg(x, &) < B<oo ae.
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The converse is proved in a similar way.
Denoting the analysis operator by U and writing ¢ = |Zg|?, we rewrite (72) in the form

1 1
\UFI? = (U, Uf) = / / o2, 6) 2 (2. 2 (@ O)dnde = (M, Zf,2f)  (T4)
0 0

where M, : L*(Q) — L*(Q) is the multiplication operator defined by M,Zf = ¢Zf on
elements of the form Zf, f € L?(R) (and hence on all elements from L?(Q)).

We now observe that, since Z is unitary, we have (U*Uf, f) = (Z(U*U f), Z f). Thus, (74)
can be rewritten as

(Z(UUf), 2f) = (MuZf,Zf), Vf € L*(R).
By polarization we obtain
(Z(U*Uf), Zh) = (M,Zf, Zh), Vf,h € L*(R).

This gives us
Z(U*Uf) = M,Zf, ¥f € L*(R). (75)

Writing U*U f = h, i.e. f = (U*U)"'h we obtain
Zh = oZ((U*U)"'h), Vh € L*(R)

and consequently
1
—Zh = Z((U*U)"'h), Yh € L*(R).

¥
In particular, this gives us
1
—Zg=2q
¥
and this finally implies
1
Z~ - = 76
1= 7 (76)
Applying Lemma 5.5.4 we now have
( ) eZm’mme—Zm'n£
Zg(x,¢)
O

Remark 5.5.7. If for some g € L%(R) the sequence G(g,1,1,) is a frame for L?(R), we know
from Corollary 5.3.2 that this is in fact a Riesz basis and that (g, ) = ab = 1. This last fact
we see also from the following computation:

1

md[[’di = m705n70.

(77)

~ ~ 71 ! ! —2mimax _2min.
(9, MuT3) = (29, Z(MTyi)) 2 /O /0 Zg(z, €)e~2imre2ning

191



Consider now the operators X and P defined by

1
(X)) = wf(a), (Pf)a) = 5 '(x). (78)
Clearly, the Schwartz class S(R) is a common domain for X, P, XP, and PX. The largest
common domain for these operators is the subspace
{f € L*(R) - af(x), f'(2), f'(x) € L*(R)}.
It can be shown that X and P are self-adjoint. Recall that f’(w) = 2miw f(w) and observe that
| 1o @Pds = [~ agta) s (19)
and

| e@par — pg?

—00

= ||Pg|?

[ee] 1 R
— / 201 2| f () o

o |2mi]?

2

i_f’(w) dw

21

-/ " f(w) P, (80)

—0o0

Lemma 5.5.8. For any h € L*>(R), if Xh € L*(R) and Ph € L?(R) we have

1 9
and L 8
Z(Ph)(@,8) = 55— Zh(z,£). (82)
Proof. Using formula (68) from Theorem 5.5.2 for f = Xh we obtain
Z(Qh)(x,&) = Y (x—j)hlx — j)e*™*
JEZ
g 1 g
— oA\ L2migl ;L o\ p2migé
= mZh(m je - ZQTI"L]h(l’ je
JEZ JEZ
1 0

= zZh(z,§) - i O€

Zh(z,€).
Similarly, if f = Ph we obtain

Z(Ph)(x,6) =)

JEZ.

L, N oomije 1 0
— fz— -9 .
oy (B e o 9 2 M €)
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Corollary 5.5.9. Suppose that g € L*(R) is such that the sequence G(g,1,1) is a frame for
L3(R) and denote by § the generator of its canonical dual. If Xg, Pg € L*(R) then X§, P§ €
L?(R).
Proof. If Xg € L?(R), (81) shows that (%Zg € L%*(Q). Since by Theorem 5.5.6 (c) we have
~ 1
Zg= 7 it follows that ; ,
1 .
¢ (Zg)? 98 79
The inequalities in Theorem 5.5.6 (c) show that |Zg| is bounded away from zero, so that
%25 € L*(Q).
Applying the preceding lemma to h = § we deduce that Xg € L?(R).
A similar argument, using Lemma 5.5.8, shows that Pg € L?(R). O

Suppose again, as in the preceding corollary that G(g,1,1) is a frame for L?(R) with g
denoting the generator of the canonical dual. Then we also have, for all m,n € Z,

~ 7 ~ ~
(Xg. MnTod) = (Xg, MuTog) — nlg, M To3)
o) S —
= / (z —n)g(x)e ™™ 5(x — n)dr (changing z —n = y)
o o
= [ s+ mugle
—00
= (M_,,T_,9,X3). (83)
Similarly, we have
1 [ o
(Po.MuTog) = 5 [ g @) G = mda. (54)
— o
Using integration by parts we obtain
* —2mimx =/ O\ 1 > —2mimx =
= m g(z)e g(x —n)dx — 9 g(x)e g (x —n)dx
= m{MnThg) — 5 / gly +n)e” "G (y)dy
—0oQ

< 1 \—

: —2mimy R V-7 d

ety (o )7y
= (M_,,T_,g,P3). (85)

Putting together (84) and (85) we obtain for all m,n € Z, analogously to (83),

We are now ready to state and prove the Balian-Low theorem for frames. Roughly speaking,

the Balian-Low theorem tells us that the generator g € L?(R) of a Gabor frame G(g, 1, 1) cannot
bi "nice”, i.e. localized both in time and frequency.
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Theorem 5.5.10. Let g € L*(R). If G(g,1,1) is a frame for L*(R) (in which case it is
necessarily a Riesz basis), then either

/00 22 g(z)Pdr =00 or /00 £21§(¢)|?dx = .

Proof. By (79) and (80) we must show that Xg and Pg cannot belong to L?(R). Suppose
the opposite: let Xg, Pg € L%(R). Then Corollary 5.5.9 implies Xg, P§ € L*(R). Now we
have

(Xg,Pg) = > > (Xg, MyTng) (M Tng, P) (87)
meZne’l
and
(Pg, Xg) =Y _ > (Pg, MyuT0g){MuTng, X3). (88)
MEZnEZ

We now observe that (83), (86), (87), and (88) imply
(Xg,Pg) = (Pg, Xg) (89)

Using the formula for the integration by parts

/ flgdx = —/ fg'dx

org) = [ " rg(e) L F @)

oo 27
1 oo

= + (9(z) + g (2))g(x)dx

21 J_

1
= —(g9,9 Pg, Xg).

we obtain

But now (89) implies (g, g) = 0 which is impossible because we know that (g, g) = 1. O

The Balian-Low theorem should be compared with the classical uncertainty principle which
is refered to as the Heisenberg-Pauli-Weyl inequality.

Theorem 5.5.11. If f € L?(R) and a,b € R are arbitrary, then

( JICE a)2|f(:c)|2das>% ( [ - a)2|f(w)|2dw>§ > Ly (90)

—00

_ 71'(1*(1)2

Equality holds if and only if f is multiple of T,Myp.(z) = e2mib(z—a)e e for some c > 0.
In particular, we have

(/" ar2rf<9c>|2doc)é (/" w2|f<w>|2dw>é > Ligp vrer®. o
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Observe that for general f € L?(R) the left hand side of (90) may be infinite, but then
there is nothing to prove.
To prove Theorem 5.5.11 we need the following lemma.

Lemma 5.5.12. Let A and B be (possibly unbounded) self-adjoint operators on a Hilbert space
H Then
2[|(A = al)z|| - (B = bD)z| = [{[A, Blz, z)], (92)

for all a,b € R and all x in the domain of AB and BA, where [A,B] = AB — BA s the
commutator of A and B.
Equality holds if and only if (A — al)x = ic(B — bl)x for some c € R.

We first have, using the self-adjointness of A and B,
([A,B]z,xz) = ((A—al)(B—bl)—(B—-bl)(A—al)x,x)

= (B-=bz,(A—al)x) — ((A—al)x,(B —0bl)x)
= 2iIm((B —bl)x,(A — al)z).

By applying the Cauchy-Schwarz inequality we obtain
[([A, Bz, z)| < 2|((B — bl)x, (A — al)z)| < 2|(B —bl)z| - (A — al)z]|. (93)

Equality holds in the first inequality in (93) if and only if (B — bl)z, (A — al)z) is purely
imaginary and in the second inequality of (93) equality holds if and only if (B — bl)z =
AA — al)x for some A € C. This two facts together imply A = ic for some ¢ € R.

Proof of Theorem 5.5.11. Consider again the operators X and P defined by (78). Then
we have

X, PLI (@) = 5 (af'(2) = (@) () = 5= f'(2) — () = f(2)) = 5= (@),
Thus, Lemma 5.5.12 implies
1717 = 2l([X, PIf, £)] < 4|(X ~ aL) |- (P ~ bI)S]. (94)

Notice that (cf. (79), (80))

jec—ansl = (- a>2|f<x>|2dx)5

and

[P —bD)f| = (P bD)f] = ( JCE b>21f<w>|2dw)

— 00

Finally, equality in (94) holds if and only if (P — bI)f = ic(X — al)f for some ¢ € R. This
condition is in fact the differential equation

' —=2mibf = —27wc(x — a)f.
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It turns out that its solutions are precisely all scalar multiples of T,Mpp1, ¢ € R, where
2 c

br(x) = €™ 7.
Since we require that the solution f = AT, My¢1 belongs to L?(R), we must have ¢ > 0. [J

In the light of the Heisenberg-Pauli-Weyl uncertainty principle the Balian-Low theorem
tells us that, if ¢ € L?(R) is such that the sequence G(g,1,1) is a frame (a Riesz basis,
actually), then not only do we have the bound given in inequality (91) (which we have for all
L2-functions), but the left hand side of that inequality must actually be infinite. Thus, the
generator g of a Gabor Riesz basis must in a sense maximize uncertainty.

Observe also that the property of the Fourier transform is that it interchanges the roles of
smoothness and decay. As a rule of thumb smoothness of f implies a decay of f and vise versa

(cf. Lemma 1.2.3 in [73]). If g decays fast at infinity then we should have [*_|zg(x)[*dz < co.
1
[=[P

[ lzg(2)|*dz will be finite. If such a function g is a generator of a Gabor Riesz basis, then

For example, if g is bounded and satisfies |g(z)| < C-% with p > % for z large enough, then

the Balian-Low theorem forces [ [£5(€)[*d¢ = oo which shows that § does not decay well
and hence g cannot be very smooth. (Think about x/o -)

At the end we observe that an immediate consequence of the Balian-Low theorem is that
o(x) = e~ cannot be a Gabor generator for a Riesz basis. This is simply because é = ¢ ad
25 |z(x)Pde < oo.

Concluding remarks. For more properties of the Zak transform we refer the reader to Section
11.6. in [31]. We should also mention the amalgam version of the Balian-Low theorem (Theo-
rem 11.33 in [31]). The first publication of the Balian-Low theorem in the form presented here
contained a technical gap that was closed by Daubechies in [58]. Our proof is adopted from
[341]. The short discussion on the Heisenberg-Pauli-Weyl theorem is borrowed from [73].

Exercise 5.5.13. Show that there are elements of L?(Q) that are not of the form f(¢)Zg(z, ),
where f is from L%([0,1]) and g is some fixed function from L2(R).
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