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Abstract

In this paper we discuss a model describing the global behavior of the two-phase in-
compressible flow in fractured porous media. The fractured medium is regarded as a porous
medium consisting of two superimposed continua, a connected fracture system, which is as-
sumed to be thin of order εδ, where δ being the relative fracture thickness, and an ε–periodic
system of disjoint matrix blocks. We derive the global behavior of the fractured medium
by passing to the limit as ε → 0, taking into account that the permeability of the blocks is
proportional to (εδ)2, while the permeability of the fractures is of order one and obtain the
corresponding global δ–model, i.e., the homogenized model with the coefficients depending
on the small parameter δ. In the δ–model we linearize the cell problem in the matrix block
and then by letting δ → 0 we obtain the macroscopic model which does not depend on ε
and δ and is fully homogenized in the sense that all the coefficients are calculated in terms
of given data and do not depend on the additional coupling or cell problems.

Keywords: homogenization; incompressible; two-phase flow; double porosity media; thin frac-
tures
AMS Subject Classifications: 35B27; 35K65; 35Q35; 74Q15; 76M50; 76S05

1 Introduction
A naturally fractured reservoir is a reservoir that contains fracture planes distributed as a con-
nected network throughout the reservoir. This type of porous medium is frequently encountered
in hydrology and petroleum applications, for instance the sedimentary rock that composes a
hydrocarbon reservoir. The fluid flow mechanism in such reservoirs has been known to be sig-
nificantly different from that of an ordinary, unfractured reservoir. Specifically, the flow occurs
as if the reservoir possessed two porous structures, one associated to the porous rock, and the

∗ Corresponding author. E-mail: avrbaski@math.hr.

1



1 INTRODUCTION 2

other one to the system of fractures. Accordingly, a naturally fractured reservoir is considered as
a porous medium consisting of two superimposed continua, a discontinuous system of periodi-
cally distributed matrix blocks surrounded by a connected system of thin fissures. Characteristic
features of fractured rocks are that the volume occupied by the fractures is much smaller than
the volume of the pores; the matrix keeps most of the fluid while the fractures are notably more
permeable (see [1]). The fluid exchange between matrix blocks and fractures is a microscale
process whose strong influence on the flow must be embedded in a large scale flow description.
The macroscopic behavior of fluid flow in such porous media is described by the so-called dou-
ble porosity model which was first derived experimentally as a physical notion and described by
several authors in the engineering literature ( [1, 2]). In the standard double porosity model one
assumes that the width of the fractures is of the same order as the block size. However, the model
of [1] assumes that the measure of the fracture set is small with respect to the measure of the pore
blocks. One of the approaches in modeling such problems is therefore to consider the thickness
of the fractures as an additional small parameter. In this work we consider a double porosity type
model for incompressible two-phase fluid flow in a porous medium with thin fractures.

The first contribution on the derivation of the double porosity model for two-phase flow
in a fractured medium is [3], where the effective equations of the double porosity model are
established by formal technique of asymptotic expansion for the cases of completely miscible
incompressible flow, and immiscible incompressible two-phase flow. The double porosity model
for immiscible incompressible two-phase flow in a reduced pressure formulation is rigorously
justified by periodic homogenization in [4]. Another result on the two-phase incompressible im-
miscible flow in fractured porous media is established in [5]. For the displacement of one com-
pressible miscible fluid by another in a naturally fractured reservoir, the double porosity model
was rigorously derived in [6]. Furthermore, [7] and [8] study the existence of weak solutions for
the two models of the immiscible two-phase flow in fractured porous media.

The method involving only one small parameter ε in modeling of the thin structures, now
known as method of mesoscopic energy characteristics, was proposed by E. Khruslov (see,
e.g., [9]). The method of two small parameters in modeling of periodic thin structures has been
widely used in the mathematical literature (see, e.g., [10,11]) and applied to various linear ellip-
tic problems. However, all these works study problems with the coefficients which are uniformly
bounded and elliptic with respect to the small parameters. The first result on homogenization of
a linear double porosity problem in the case of thin fissures was obtained in [12] where the thick-
ness of the fissures as well as the order of the permeability in the matrix blocks were modeled by
one small parameter ε. That result was recently generalized in [13] where several applications
were studied. The method of two small parameters ε and δ for the linear double porosity model
was proposed in [14] and then used in [15] for the homogenization of a degenerate triple poros-
ity model with thin fissures and in [16] for the homogenization of a single phase flow through
a porous medium in a thin layer. Most of these results were presented in the review paper [17].
The nonlinear elliptic double porosity type problem in domains with thin fissures was studied
in [18]. The main feature of the double porosity models with thin fissures, compared to the stan-
dard double porosity models, is that such models do not contain any coupling between the meso-
and macro-scale through the coefficients that depend on additional cell problems.

This paper contains a new homogenization result for the system modeling immiscible incom-
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pressible two-phase flow in a periodic fractured porous medium with thin fractures, modeled by
two small parameters. The first one, ε, stands for the periodicity of the structure, and the second
one, δ, describes the relative thickness of the fissure system. The scheme of the derivation of the
resulting macroscopic model is as follows. In the first step we pass to the limit as ε → 0 and
obtain the homogenized system (9). This passage is a well known result which was rigorously
justified in [4, 5]. Notice that the homogenization process is finished at this step. We obtain the
global model but with the coefficients depending on a small parameter δ. In order to simplify
the asymptotic analysis with respect to δ we introduce a second, "heuristic" step, concerning a
linearization of the cell problem (17) in the global δ–model. The idea of this linearization comes
from the paper [19] by T. Arbogast. However, the obtained simplified system is not equivalent
to the δ–model (9). We underline that our goal is to study the linearized system and not the
nonlinear one. Finally, in the third step we pass to the limit as δ → 0 in the simplified δ–model
in order to obtain the desired global model with the coefficients that do not depend on ε and δ. In
this study we make use of the known result from [17] (see Lemma 2 below). However, the pas-
sage to the limit in our case is much more difficult than in [17], where it was done for the linear
elliptic equation. The main difficulty concerns the fact that we pass to the limit in a nonlinear
degenerating integro-differential equation. This result is new in the homogenization theory.

The paper is organized in the following way. In Section 2 we set up the problem which
describes the model on the mesoscale (the Darcy scale) with the coefficients depending on ε and
δ. Then in Section 3 we present the global double porosity δ-model which has been derived
earlier in [4], [5] from the mesoscopic problem and we present a derivation of the imbibition
equation. Section 4 is devoted to decoupling the global δ-model from the system defined on
a matrix cell: following [19], we linearize the imbibition equation and estimate its asymptotic
behavior by using the Laplace transform. The passage to the limit as δ → 0 in the global
double porosity δ-model is performed in Section 5. Namely, in Subsection 5.1 we obtain the
a priori estimates for the weak solutions of the problem with respect to the space and time
variables and establish a necessary compactness result. The main difficulty in derivation of
uniform a priori estimates is in treatment of the convolution term. In this paper this term is
estimated without an additional step of discretization of the time derivative. Finally, Subsection
5.2 exhibits the global fully homogenized model for immiscible incompressible two-phase flow
in double porosity media with thin fractures. Namely, in the limit as δ → 0 we obtain the
integro-differential system with constant effective coefficients which are defined in terms of the
mesoscale parameters, and with an additional non-local in time source term of the convolution
type describing the impact of the mesoscale matrix-fracture fluid exchange on the global flow
behavior.

Up to our knowledge this is the first rigorous justification of fully homogenized double poros-
ity model in the framework of the two-phase flow in a reservoir with thin fissures system.

2 Mesoscale model
We consider a bounded Lipschitz domain Ω ⊂ Rd (d = 2, 3) with a periodic structure which
is a union of disjoint cubes congruent to a reference cell Y = (0, 1)d. The reference cell Y
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consists of two subdomains, corresponding to the two types of rock - the matrix, and the fractures.
Moreover, we suppose the relative fracture thickness to be of order δ, where δ > 0 is a small
parameter. In particular, we use the standard Warren-Root model which assumes that Y consists
of an open cube Y δ

m with edge length 1 − δ, centered at the center of Y , completely surrounded
by a connected fracture subdomain Y δ

f , with a piecewise smooth internal boundary Γδ between
the two media in Y . Therefore it is Y = Y δ

m ∪ Γδ ∪ Y δ
f , where |Y δ

f | = O(δ) so that |Y δ
f | → 0 as

δ → 0. The outward unit normal vector to Y δ
m is denoted by νδ.

The periodic structure of a reservoir is depicted by a small parameter ε > 0 representing the
characteristic size of the heterogeneities with respect to the size of Ω. Accordingly, for ε > 0 the
domain Ω is assumed to be covered by a pavement of cells εY . For δ > 0 let 1δm(y) and 1δf (y) be
the characteristic functions of Y δ

m and Y δ
f , respectively, extended Y –periodically to the whole Rd.

The system of the matrix blocks in Ω, the fractured part of Ω and the matrix-fracture interface
are denoted by Ωε,δ

m , Ωε,δ
f and Γε,δ, respectively. For simplicity, we assume that Ωε,δ

m ∩ ∂Ω = ∅.

Ωε,δ
m

Ωε,δ
f

Γε,δ

ε

ε

εδ

εδ

(a)
y1

yd

1

1

Y δ
m
Y δ
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δ/2
δ/2
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Figure 1: (a) The domain Ω with the mesostructure. (b) The reference cell Y .

We should point out here that in our starting mesoscopic model the fractures are represented
as a porous medium with rock properties radically different from those of the matrix blocks. In
particular, they are not represented as an empty space filled with the fluids. For an example of a
numerical simulation over 3D matrix-fracture structure described here see e.g. [20].

The domain boundary ∂Ω consists of two parts, Γinj and Γimp, such that Γinj ∩ Γimp = ∅,
∂Ω = Γinj ∪ Γimp. We will use the following notation: ` = f,m and ΩT = Ω × (0, T ),
Ωε,δ
`,T = Ωε,δ

` × (0, T ), Γε,δT = Γε,δ × (0, T ), where T > 0 is fixed.
In this work we study the incompressible two-phase flow in the porous medium Ω over the

time interval (0, T ). Let Sε,δ`
def
= Sε,δw,`, S

ε,δ
n,` = 1 − Sε,δw,` be the saturations of the wetting and

the non-wetting phase in Ωε,δ
`,T , respectively; λw,` = λw,`(S

ε,δ
` ), λn,` = λn,`(S

ε,δ
` ) be the relative

mobilities of the wetting and the non-wetting phase in Ωε,δ
`,T , respectively; let P ε,δ

w,`, P
ε,δ
n,` be the

pressures of the wetting and the non-wetting phase in Ωε,δ
`,T , respectively. Finally, let Φε,δ(x) and
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Kε,δ(x) be the porosity and the absolute permeability tensor of the porous medium Ω set by

Φε,δ(x)
def
=

{
Φf in Ωε,δ

f,T

Φm in Ωε,δ
m,T

and Kε,δ(x)
def
=

{
kf I in Ωε,δ

f,T

(εδ)2 km I in Ωε,δ
m,T

, (1)

where I is the unit tensor.
The mass conservation equations for the individual fluid phases in the subdomain Ωε,δ

`,T , ` =
f,m, are given by:

Φε,δ∂tS
ε,δ
` + div qε,δw,` = 0, −Φε,δ∂tS

ε,δ
` + div qε,δn,` = 0, (2)

with the velocities of the wetting and the non-wetting phases qε,δw,`, q
ε,δ
n,` defined by the Darcy-

Muskat’s law (see, e.g., [21–23]):

qε,δw,`
def
= −Kε,δ(x)λw,`(S

ε,δ
` )∇P ε,δ

w,`, qε,δn,`
def
= −Kε,δ(x)λn,`(S

ε,δ
` )∇P ε,δ

n,` , (3)

where, for simplicity, the gravity effects are neglected.
The system (2)-(3) is closed by the capillary pressure law in each of the medium subdomains,

Pc,`(S
ε,δ
` ) = P ε,δ

n,` − P
ε,δ
w,`, ` = f,m, (4)

where Pc,` is a given capillary pressure-saturation function.
Due to (1), (3), (4), the system (2) is now written in the subdomain Ωε,δ

f,T as

Φf∂tS
ε,δ
f − kf div

(
λw,f (S

ε,δ
f )∇P ε,δ

w,f

)
= 0,

−Φf∂tS
ε,δ
f − kf div

(
λn,f (S

ε,δ
f )∇P ε,δ

n,f

)
= 0,

(5)

with the capillary pressure law: Pc,f (S
ε,δ
f ) = P ε,δ

n,f − P
ε,δ
w,f , and in the subdomain Ωε,δ

m,T as

Φm∂tS
ε,δ
m − (εδ)2 km div

(
λw,m(Sε,δm )∇P ε,δ

w,m

)
= 0,

−Φm∂tS
ε,δ
m − (εδ)2 km div

(
λn,m(Sε,δm )∇P ε,δ

n,m

)
= 0,

(6)

with the capillary pressure law: Pc,m(Sε,δm ) = P ε,δ
n,m − P ε,δ

w,m.
On the matrix-fracture interface Γε,δ the phase fluxes and pressures are required to be contin-

uous. The boundary conditions for the system (5) are given by:

P ε,δ
w,f = Pw,Γ and P ε,δ

n,f = Pn,Γ on Γinj × (0, T ), qε,δw,f · ν = qε,δn,f · ν = 0 on Γimp × (0, T ), (7)

where ν is the unit outward normal vector to ∂Ω, and Pα,Γ, α = w, n, are given phase pressures.
The initial conditions read:

Sε,δf (x, 0) = S0
f (x) in Ωε,δ

f and Sε,δm (x, 0) = S0
m(x) in Ωε,δ

m . (8)

Let us now state the following assumptions on data.



3 GLOBAL DOUBLE POROSITY δ-MODEL 6

(A.1) The porosity coefficients 0 < Φf , Φm < 1 are constants independent of ε and δ.

(A.2) The absolute permeability coefficients 0 < kf , km are constants independent of ε and δ.

(A.3) The capillary pressure functions satisfy for ` = f,m: Pc,` ∈ C1((0, 1];R+), P ′c,`(s) < 0
in (0, 1], Pc,m(0+) = Pc,f (0

+) ∈ (0,∞], Pc,`(1) = 0. Furthermore, the initial data (8) are
consistent in the sense that Pc,m(S0

m) = Pc,f (S
0
f ) in Ω.

(A.4) The relative phase mobility functions satisfy λw,`, λn,` ∈ C([0, 1];R+), λw,`(0) = λn,`(1) =
0; 0 6 λw,`, λn,` 6 1 in [0, 1]; λw,` is an increasing function in [0, 1] and λn,` is a de-
creasing function in [0, 1]. Moreover, there is a constant L0 such that for all s ∈ [0, 1],
λ`(s)

def
= λw,`(s) + λn,`(s) > L0 > 0.

The known theory (see, e.g., [24–26]) gives the existence of at least one weak solution to the
problem (5)-(8) for fixed ε > 0, δ > 0 under the conditions (A.1)–(A.4) and some supplementary
regularity of saturation functions (see [25]). Notice that in [24] the existence of the solution is
shown under the assumption that the total velocity field is given. In [25] the existence of fully
coupled system is proved with homogeneous Neumman boundary conditions and the hypothesis
on the capillary pressures that are more relaxed than (A.3), see [25], Assumption 2. Finally, the
existence theorem in the case of compressible fluids is proven in [26] under additional assumption
on Hölder continuity of the inverse of the function β` defined in (23).

3 Global double porosity δ-model
In the case when the typical size of the fractures is of the same order as the matrix block size,
i.e. when δ = O(1), the homogenization process as ε → 0 for the mesoscopic model (5)-(8)
has been studied by formal homogenization techniques in [27–29], and rigorously in [4] and [5].
More precisely, in [5] the homogenization procedure for problem (5)-(8) with a fixed δ > 0
as ε → 0 was rigorously justified by using the notion of the two-scale convergence [30]. In
this work various, rather strong assumptions were posed on the data which exclude appearance
of one-phase zones and thus degeneracy of the system. On the other hand, the same type of
result for the problem (5)-(8) in the global pressure formulation was established in [4] under
an assumption of continuity of the saturations and the global pressure at the matrix-fracture
boundary, but including possible one-phase zones.

We present now the global double porosity δ-model which was derived in [27], [4], [5] by
keeping δ > 0 fixed while passing to the limit as ε → 0 in the mesoscopic problem (5)-(8).
Namely, the global double porosity δ-model reads:

Φδ∂tS
δ
f − div

(
K?,δλw,f (S

δ
f )∇P δ

w,f

)
= Qδw in ΩT ,

−Φδ∂tS
δ
f − div

(
K?,δλn,f (S

δ
f )∇P δ

n,f

)
= Qδn in ΩT ,

(9)

with the capillary pressure law: Pc,f (Sδf ) = P δ
n,f − P δ

w,f in ΩT . The boundary conditions for
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system (9) are given by:

P δ
w,f = Pw,Γ and P δ

n,f = Pn,Γ on Γinj × (0, T ),

q δ
w,f · ν = q δ

n,f · ν = 0 on Γimp × (0, T ),
(10)

where
q δ
w,f = −K?,δλw,f (S

δ
f )∇P δ

w,f and q δ
n,f = −K?,δλn,f (S

δ
f )∇P δ

n,f , (11)

and the initial condition reads:
Sδf (x, 0) = S0

f (x) in Ω. (12)

The effective porosity Φδ is given as:

Φδ def
= Φf

|Y δ
f |
|Y δ
m|

= δ dΦf +O(δ2), (13)

where |Y δ
m| and |Y δ

f | denote the measure of the set Y δ
m and Y δ

f , respectively. K?,δ = (K?,δ
ij ) is the

effective permeability tensor given for i, j = 1, . . . , d by:

K?,δ
ij

def
=

kf
|Y δ
m|

∫
Y δf

[
∇yξ

δ
i + ei

] [
∇yξ

δ
j + ej

]
dy, (14)

with ej being the j–th coordinate vector. The function ξδj , j = 1, . . . , d, is a Y-periodic solution
of the cell problem:

−∆yξ
δ
j = 0 in Y δ

f , (∇yξ
δ
j + ej) · νδ = 0 on Γδ. (15)

The matrix-fracture source terms Qδw and Qδn are given by:

Qδw(x, t)
def
= − Φm

|Y δ
m|

∫
Y δm

∂tS
δ
m(x, y, t) dy = −Qδn(x, t), (16)

where the function Sδm is the matrix block saturation defined below.
To each point x ∈ Ω there is an associated matrix block congruent to Y δ

m. For any x ∈ Ω the
flow equations in a matrix block Y δ

m × (0, T ) are:

Φm∂tS
δ
m − δ2km divy

(
λw,m(Sδm)∇yP

δ
w,m

)
= 0,

−Φm∂tS
δ
m − δ2km divy

(
λn,m(Sδm)∇yP

δ
n,m

)
= 0,

(17)

completed by the capillary pressure law Pc,m(Sδm) = P δ
n,m − P δ

w,m. On the interface Γδ in Y we
have the continuity conditions for the phase pressures and fluxes. The boundary conditions are

P δ
w,m(x, y, t) = P δ

w,f (x, t) and P δ
n,m(x, y, t) = P δ

n,f (x, t) on Ω× Γδ × (0, T ). (18)

Finally, the initial condition is

Sδm(x, y, 0) = S0
m(x) in Ω× Y δ

m. (19)
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The existence of weak solutions of the global δ-problem (9)-(19) is a consequence of the
homogenization result in [4, 5] and it has also been studied in [8].

It can be seen, as in [11], that there exist positive constants k̂1
m, k̂2

m such that the effective
permeability tensor K?,δ satisfies for any ξ ∈ Rd :

k̂1
m |ξ|2 ≤ δ−1 K?,δξ · ξ ≤ k̂2

m |ξ|2. (20)

Following [11], Chapter 2, the asymptotic behavior of the homogenized permeability tensor K?,δ

with respect to δ is given by
K?,δ
ij

|Y δ
f |

= K?
ij + K̄δ

ij, (21)

where K̄δ
ij → 0 and |Y δ

f | = d δ +O(δ2). The tensor K? is calculated as (see [11])

K? = k∗ I with k∗ =
d− 1

d
kf , d = 2, 3. (22)

The problem (17)-(19) can be simplified due to the constant in y boundary conditions by
eliminating the matrix phase pressures as follows. Let us introduce the functions

β`(s)
def
=

∫ s

0

α`(ξ) dξ, where α`(s)
def
=
λw,`(s)λn,`(s)

λ`(s)
|P ′c,`(s)|, for ` = f,m. (23)

Lemma 1. Let Sδm(x, y, t) be the solution of the cell problem (17)-(19). It holds:

Φm∂tS
δ
m − δ2 km ∆yβm(Sδm) = 0 in ΩT × Y δ

m,

Sδm(x, y, t) = P(Sδf (x, t)) on ΩT × Γδ, Sδm(x, y, 0) = S0
m(x) in Ω× Y δ

m,
(24)

where the function P(s)
def
= (P−1

c,m ◦ Pc,f )(s).

Equation (24)1 is known as the imbibition equation.

Proof. Let us first introduce the global pressure Pδm in the matrix block (see [22, 31]) by

P δ
w,m = Pδm −

∫ 1

Sδm

λn,m(ξ)

λm(ξ)
P ′c,m(ξ) dξ, P δ

n,m = Pδm +

∫ 1

Sδm

λw,m(ξ)

λm(ξ)
P ′c,m(ξ) dξ, (25)

where the total mobility function λm is defined in (A.4). From the boundary conditions (18)
at the interface Γδ we immediately get (24)2. Since the function Sδm does not depend on y on
ΩT × Γδ, it follows that the global pressure Pδm does not depend on y on ΩT × Γδ. Therefore,

Pδm(x, y, t) = P δ
m,Γ(x, t) on ΩT × Γδ. (26)

By summing the two equations in (17) and by applying the definition of Pδm we get ( [22, 31])

−δ2 km div
(
λm(Sδm)∇Pδm

)
= 0 in ΩT × Y δ

m, (27)
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and by multiplying the equation (27) by Pδm − P δ
m,Γ and integrating over ΩT × Y δ

m, using (26)
and (A.4) we obtain:

0 = δ2 km

∫
ΩT×Y δm

λm(Sδm)|∇yP
δ
m|2 dx dy dt > δ2 km L0

∫
ΩT×Y δm

|∇yP
δ
m|2 dx dy dt,

which gives
∇yP

δ
m = 0 a.e. in ΩT × Y δ

m. (28)

This result allows us to reduce the two equations in the problem (17) to only one, as an-
nounced. Namely, by taking into account (28) and the identity

λw,m(Sδm)∇yP
δ
w,m = λw,m(Sδm)∇yP

δ
m −∇yβm(Sδm),

from (17)1 we establish (24)1. This completes the proof of Lemma 1.

Let us point out that the matrix-fracture source terms Qδw,Q
δ
n of the system (9), given in

an implicit form by (16), involve the function Sδm which is a solution of the local boundary
value problem (24), which is coupled with the global problem (9)-(12) through its boundary
condition. This feature of the system (9)-(16), (24) is captured by the concept introduced in [28]:
the homogenized system of equations is said to be fully homogenized if it does not involve
the unknown functions which are defined as the solutions of the coupled local problems. The
global δ-problem (9)-(16), (24) is not fully homogenized in the said sense. The purpose of the
succeeding sections is to express the source terms Qδw,Q

δ
n in an explicit form by decoupling the

global system (9)-(16) from the local problem (24). This will be done by passing to the limit
as δ → 0 in the system (9)-(16), (24) and thereby establishing the fully homogenized model.
Following the idea of [19] we will first linearize the imbibition equation (24) and perform the
asymptotic analysis of the linearized imbibition equation.

4 Linearized imbibition equation
Our next step is to simplify the matrix cell problem (24) by introducing a linearized version
of that problem. This is a "heuristic" step, as explained in the Introduction. As suggested by
Arbogast in [19], we consider a function ψm(x) such that

ψm ≈ αm(Sδm). (29)

Moreover, we assume that there are constants ψminm , ψmaxm such that for any x ∈ Ω it holds

0 < ψminm ≤ ψm(x) ≤ ψmaxm . (30)

Thus we replace the imbibition equation (24) by its linearized version

Φm∂tS
δ
m − δ2km ψm(x)∆yS

δ
m = 0 in ΩT × Y δ

m,

Sδm(x, y, t) = P(Sδf (x, t)) on ΩT × Γδ, Sδm(x, y, 0) = S0
m(x) in Ω× Y δ

m.
(31)
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The particular choice of function ψm was proposed and validated in [19]. The numerical
simulations were performed for exact and linearized models and the computational results show
that the linearized model is computationally less complex while essentially without significant
loss in accuracy compared to the exact model. We point out that in some settings, as in water-oil
systems relevant for the petroleum industry, where the matrix is not fully saturated by water,
hypothesis (4.1) is a reasonable approximation in the case of a special relation between the
capillary pressure function and the phase mobilities. For instance, by using the well-known
Brooks-Corey capillary pressure model Pc,m(S) = Pd S

−1/λ and Corey-type phase mobilities
models λw,m(S) = Sα, λn,m(S) = (1 − S)β , where Pd is the entry pressure, λ is the pore size
distribution index and α, β > 1, with α = −1/λ − 1 and for λ small enough, one obtains the
function αm which has values near to a constant for all values of S of interest. Small values of
λ correspond to the heterogeneous soils with a wide range of pore sizes. An existence result for
the model (9)-(16), (31) is proved in [7].

In order to analyze the behavior of Sδm as δ → 0 we replace the parabolic problem (31) by
an elliptic problem by use of the Laplace transform L. Let Sδm(x, y, t) be the solution of the
linearized problem (31). We denote for λ > 0: sδm

def
= L(Sδm).

By using the basic properties of the Laplace transformation, it follows easily that the function
sδm(x, y, λ) satisfies the following problem:

λΦm s
δ
m(x, y, λ)− δ2kmψm(x)∆ys

δ
m(x, y, λ) = ΦmS

0
m(x) in Ω× Y δ

m,

sδm(x, y, λ) = L
(
P(Sδf )

)
(x, λ) on Ω× Γδ.

(32)

Introducing the associated auxiliary problem with constant boundary data:

λΦm uδ(x, y, λ)− δ2kmψm(x)∆yu
δ(x, y, λ) = 0 in Ω× Y δ

m,

uδ(x, y, λ) = 1 on Ω× Γδ,
(33)

it is easy to see that the solution sδm of (32) is given by

sδm(x, y, λ) =
1

λ
S0
m(x) + uδ(x, y, λ) L

(
P(Sδf (x, t))− S0

m(x)
)
. (34)

The matrix-fracture source terms Qδw,Q
δ
n are given by (16) in which Sδm is the solution of

nonlinear imbibition equation (24). We define simplified matrix-fracture source terms Q̂δw, Q̂
δ
n by

introducing solution Sδm of linearized imbibition equation (31) into (16).
From (16), using (34) we obtain

Q̂δw(x, t) = − Φm

|Y δ
m|
L−1

(
λL
(
P(Sδf (x, t))− S0

m(x)
) ∫

Y δm

uδ(x, y, λ)dy

)
. (35)

In order to estimate the asymptotic behavior of Q̂δw as δ tends to 0, we need to estimate

asymptotically in δ the integral term
∫
Y δm

uδ(x, y, λ)dy in (35). Slightly modifying the proof of

Lemma 7.2 from [12], we have:
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Lemma 2. For any x ∈ Ω, let uδ(x, y, λ) be the solution of the problem (33) with parameter x.
Then it holds as δ → 0, uniformly in x,∫

Y δm

uδ(x, y, λ)dy =
2d
√
kmψm(x)
√

Φm

√
λ

δ (1 + o(1)). (36)

Finally, from (35) and (36), by applying the basic properties of the Laplace transformation,
we obtain the following result.

Corollary 1. The simplified matrix-fracture source terms Q̂δw, Q̂
δ
n satisfy

Q̂δw(x, t) = −∂t
[ (
P(Sδf )− P(S0

f )
)
∗ ωδ

]
(x, t) = −Q̂δn(x, t), (37)

where we denote

ωδ(x, t)
def
= Dδ(x)t−

1
2 , Dδ(x)

def
= δ

[
Cm(x)/|Y δ

m|+ o(1)
]
, Cm(x)

def
= 2d

√
Φmkmψm(x)/

√
π,
(38)

and ∗ denotes convolution with respect to time.

Note that for all x ∈ Ω and sufficiently small δ it holds

Dδ(x) ≤ 2 δ Cmax
m , Cmax

m = 2d
√

Φmkmψmaxm /
√
π. (39)

5 Passage to the limit as δ → 0

In order to derive the fully homogenized model we need to pass to the limit as δ → 0 in the
problem (9) with corresponding boundary and initial conditions. However, we will not make the
asymptotic analysis of the full system (9), but only of the system in which the nonlinear matrix-
fracture source terms Qδw,Q

δ
n are replaced by simplified matrix-fracture source terms Q̂δw, Q̂

δ
n, for

which the asymptotic behavior is given by Corollary 1. This passage is performed rigorously
by establishing uniform in δ estimates and the compactness criterion for the sequence {Sδf}(δ>0).
We start by transforming the system (9) by employing new variables: the global pressure Pδf
and a "complementary pressure" θδf . First the global pressure Pδf in the fractures is inducted
analogously to (25) by

P δ
w,f = Pδf −

∫ 1

Sδf

λn,f (ξ)

λf (ξ)
P ′c,f (ξ) dξ, P δ

n,f = Pδf +

∫ 1

Sδf

λw,f (ξ)

λf (ξ)
P ′c,f (ξ) dξ. (40)

A "complementary pressure" θδf is defined (see [7]) by

θδf
def
= βf (S

δ
f ), (41)

where βf is defined in (23). We denote θ?f = βf (1) and the inverse function

Sδf = Bf (θδf )
def
= β−1

f (θδf ) for 0 ≤ θδf ≤ θ?f . (42)
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Note that Bf : [0, θ∗f ]→ [0, 1] is a continuous and monotone increasing function.
Finally, the system (9), with simplified matrix-fracture source terms, in terms of the global

pressure and the complementary pressure reads:

div
(
λf (S

δ
f )K?,δ∇Pδf

)
= 0 in ΩT ,

Φδ∂tS
δ
f − div

(
K?,δ

(
λf (S

δ
f )∇θδf + λw,f (S

δ
f )∇Pδf

) )
= Q̂δw in ΩT ,

Sδf = Bf (θδf ) in ΩT .

(43)

The boundary conditions for the system (43) are given by:

Pδf = PΓ and θδf = θΓ on Γinj × (0, T ),

K?,δλf (S
δ
f )∇Pδf · ν = 0 on Γimp × (0, T ),

K?,δ
(
λf (S

δ
f )∇θδf + λw,f (S

δ
f )∇Pδf

)
· ν = 0 on Γimp × (0, T ).

(44)

The initial condition reads:
θδf (x, 0) = θ0

f (x) in Ω. (45)

The boundary and initial data PΓ, θΓ and θ0
f in (44) and (45) are given by the corresponding

transformations of the functions Pw,Γ, Pn,Γ, Sf,Γ
def
= P−1

c,f (Pn,Γ − Pw,Γ) and S0
f .

Now we state the rest of the assumptions on the data which will assure the existence for weak
solutions of the problem (43)-(45).

(A.5) The boundary and initial data satisfy: PΓ ∈ L2(0, T ;H1(Ω)), θΓ ∈ L2(0, T ;H1(Ω)),
∂tθΓ ∈ L1(ΩT ), θ0

f ∈ L2(Ω), 0 ≤ θ0
f , θΓ ≤ θ∗f a.e. in Ω.

A weak solution of this problem is defined as follows. Let V def
= {u ∈ H1(Ω), u|Γinj = 0}.

Definition 1. A weak solution to the system (43)-(45) is a pair (Pδf , θ
δ
f ) such that

Pδf − PΓ ∈ L2(0, T ;V ), θδf − θΓ ∈ L2(0, T ;V ), 0 ≤ θδf ≤ θ∗f a.e. in ΩT , S
δ
f = Bf (θδf ),

∂t
(
ΦδSδf +

(
P(Sδf )− P(S0

f )
)
∗ ωδ

)
∈ L2(0, T ;V ′),

for any ζ, ϕ ∈ L2(0, T ;V ) ∫
ΩT

λf (S
δ
f )K?,δ∇Pδf · ∇ζ dx dt = 0, (46)∫ T

0

〈∂t
(
ΦδSδf +

(
P(Sδf )− P(S0

f )
)
∗ ωδ

)
, ϕ〉dt

+

∫
ΩT

K?,δ
(
λf (S

δ
f )∇θδf + λw,f (S

δ
f )∇Pδf

)
· ∇ϕdx dt = 0.

(47)

Furthermore, the initial condition is satisfied in the following sense:
for any ϕ ∈ L2(0, T ;V ) ∩W 1,1(0, T ;L1(Ω)) such that ϕ(·, T ) = 0 in Ω,∫ T

0

〈∂t
(
ΦδSδf +

(
P(Sδf )− P(S0

f )
)
∗ ωδ

)
, ϕ〉dt

+

∫
ΩT

(
Φδ(Sδf − S0

f ) +
(
P(Sδf )− P(S0

f )
)
∗ ωδ

)
∂tϕdx dt = 0.

(48)
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The existence of a weak solution from Definition 1 under conditions (A.1)–(A.5) follows
from the result of [7], Theorem 1. Our goal is to pass to the limit as δ → 0 in the system
(43)-(45).

5.1 Uniform a priori estimates
First we establish the following uniform estimates.

Proposition 1. Let δ > 0. Let (Pδf , θ
δ
f ) be a weak solution of the problem (43)-(45). The following

estimates, uniform with respect to δ, hold:

‖Pδf‖L2(0,T ;H1(Ω)) + ‖θδf‖L2(0,T ;H1(Ω)) ≤ C, (49)

‖1

δ
∂t
(
ΦδSδf +

(
P(Sδf )− P(S0

f )
)
∗ ωδ

)
‖L2(0,T ;V ′) ≤ C. (50)

Proof. We first insert ζ = Pδf − PΓ into the equation (46). This yields∫
ΩT

λf (S
δ
f )K?,δ|∇Pδf |2 dx dt =

∫
ΩT

λf (S
δ
f )K?,δ∇Pδf · ∇PΓ dx dt. (51)

Taking into account the representation (21) of the tensor K?,δ, we get∫
ΩT

λf (S
δ
f )K?|∇Pδf |2 dx dt =

1

|Y δ
f |

∫
ΩT

λf (S
δ
f )K?,δ∇Pδf · ∇PΓ dx dt−

∫
ΩT

λf (S
δ
f )K̄δ|∇Pδf |2dxdt,

and by applying (22) and (A.4), we finally obtain ‖∇Pδf‖L2(ΩT ) ≤ C, with a constant C which is
independent of δ.

Now we choose ϕ = θδf − θΓ in (47). This yields∫ T

0

〈∂t(ΦδSδf + [(P(Sδf )− P(S0
f )) ∗ ωδ]), θδf − θΓ〉dt

+

∫
ΩT

K?,δλf (S
δ
f )∇θδf · ∇θδf dxdt+

∫
ΩT

K?,δλw,f (S
δ
f )∇Pδf · ∇θδf dxdt

=

∫
ΩT

K?,δλf (S
δ
f )∇θδf · ∇θΓ dxdt+

∫
ΩT

K?,δλw,f (S
δ
f )∇Pδf · ∇θΓ dxdt.

(52)

The integral terms in the equality (52) are denoted by X1, X2, . . . , X5, respectively. Assume for
the moment that the function Sδf is sufficiently regular in time. Then we can write X1 = Y1 +Y2.
For Y1, by (A.5), we have:

Y1
def
=

∫
Ω

Φδ(H(θδf (T ))− Sδf (T )θΓ(T )) dx−
∫

Ω

Φδ(H(θδf (0))− Sδf (0)θΓ(0)) dx

+

∫ T

0

∫
Ω

ΦδSδf∂tθΓ dxdt ≥ −Φδ
[
4 θ∗f |Ω|+ ‖∂tθΓ‖L1(ΩT )

]
,

(53)
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where the function H is defined by H(θ)
def
=
∫ θ

0
B′f (r)r dr. Moreover, it is easy to see,

|H(θδf )| = |Bf (θδf )θδf −
∫ θδf

0

Bf (r) dr| ≤ 2 θ∗f .

For Y2 part of the X1 we obtain, using integration by parts,

Y2
def
=

∫ T

0

∫
Ω

∂t
(
(P(Sδf )− P(S0

f )) ∗ ωδ
)

(θδf − θΓ) dxdt = Y 1
2 + Y 2

2 + Y 3
2 ,

with
|Y 1

2 | ≤ 2 δ Cmax
m , |Y 3

2 | ≤ 4 δ
√
T Cmax

m ‖∂tθΓ‖L1(ΩT )

and

Y 2
2

def
= −

∫ T

0

∫
Ω

∫ t

0

(
P(Sδf (t− τ))− P(S0

f )
)
ωδ(τ) dτ ∂tθ

δ
f (t) dt dx.

By changing the order of the time integration and integrating by parts in the term Y 2
2 , we can

write Y 2
2 = Y 2,1

2 + Y 2,2
2 , where

|Y 2,1
2 | ≤ 8 δ Cmax

m θ∗f |Ω|
√
T and Y 2,2

2
def
=

∫ T

0

∫
Ω

∫ T

τ

∂tP(Sδf (t− τ)) θδf (t) dt ω
δ(τ) dx dτ.

Finally, the term Y 2,2
2 can be written as Y 2,2

2 = A+B, where

|A| ≤ 4 δ Cmax
m θ∗f |Ω|

√
T and B

def
= −

∫ T

0

∫
Ω

∂τ

(∫ T

τ

P(Sδf (t− τ)) θδf (t) dt

)
ωδ(τ) dx dτ.

It can be proved, as in [7], that for any τ ∈ [0, T ] it holds

hδ(τ)
def
=

∫ T

τ

P(Sδf (t− τ)) θδf (t) dt ≤ h(0) (54)

and from (54) it follows that ∂τh(τ) ≤ 0 in [0, T ]. Then B ≥ 0 which gives Y 2,2
2 ≥ A ≥

−4 δ Cmax
m θ∗f |Ω|

√
T . Summing all the obtained inequalities, we have for the first term in (52) the

estimate: X1 ≥ −C
(
Φδ + δ

)
, where the constant C depends on Cmax

m , |Ω|, T , θ∗f , ‖∂tθΓ‖L1(ΩT ).
These calculations are applicable for regularized in time Sδf but they remain true for the desired
Sδf by a passage to the limit as the regularization parameter tends to 0.

We treat the terms X2,. . . ,X5 in a standard way using the Cauchy-Schwartz inequality and
the already obtained estimate for the global pressure in (49). Finally, we have

L0 δ k̂
1
m ‖∇θδf‖2

L2(ΩT ) ≤ C δ + C δ k̂2
m (1 + ‖∇θδf‖L2(ΩT )) (55)

and, therefore, ‖∇θδf‖L2(ΩT ) ≤ C, with a constant C which is independent of δ. The estimate
(50) follows in the standard way from (49). This completes the proof of Proposition 1.
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Lemma 3. There exists a constant C which is independent of δ and h such that, as h→ 0,∫ T

h

∫
Ω

(
Sδf (x, t)− Sδf (x, t− h)

)(
θδf (x, t)− θδf (x, t− h)

)
dx dt ≤ C

√
h.

Proof. Let us first note that for integrable functions G1, G2 and for 0 < h < T/2 it holds∫ T

0

G1(t)

∫ min(t+h,T )

max(t,h)

G2(τ)dτdt =

∫ T

h

G2(t)

∫ t

t−h
G1(τ)dτdt. (56)

We define the test function in (47) by

ϕ = ϕδ,h(x, t) =

∫ min(t+h,T )

max(t,h)

(
(θδf (x, τ)− θΓ(x, τ))− (θδf (x, τ − h)− θΓ(x, τ − h))

)
dτ.

Then ϕ ∈ L2(0, T ;V ). Plugging it in (47) we have:∫ T

0

〈∂t(ΦδSδf + [P(Sδf )−P(S0
f )] ∗ ωδ), ϕδ,h〉dt =

−
∫

ΩT

K∗,δ(λf (Sδf )∇θδf + λw,f (S
δ
f )∇Pδf ) · ∇ϕδ,h dxdt.

(57)

By using (56) the left-hand side term can be written as∫ T

0

〈∂t(ΦδSδf + [P(Sδf )− P(S0
f )] ∗ ωδ), ϕδ,h〉dt

=

∫ T

h

∫
Ω

Φδ(Sδf (x, t)− Sδf (x, t− h))(θδf (x, t)− θδf (x, t− h)) dxdt

−
∫ T

h

∫
Ω

Φδ(Sδf (x, t)− Sδf (x, t− h))(θΓ(x, t)− θΓ(x, t− h)) dxdt

+

∫ T

h

∫
Ω

[(θδf (x, t)− θδf (x, t− h))− (θΓ(x, t)− θΓ(x, t− h))]Xδ
h(x, t) dxdt,

(58)

where

Xδ
h(x, t) =

∫ t

h

[P(Sδf (x, t− τ)− P(S0
f (x))][ωδ(τ)− ωδ(τ − h)] dτ

+

∫ h

0

[P(Sδf (x, t− τ)− P(S0
f (x))]ωδ(τ) dτ.

(59)

Let us denote the integral terms at the right-hand side of the equality (58) by Z1, Z2, Z3, respec-
tively. For Z2 we have by using (A.5):

|Z2| ≤Φδ

∫ T

h

∫
Ω

|θΓ(x, t)− θΓ(x, t− h)| dxdt ≤ C h δ ‖∂tθΓ‖L1(ΩT ), (60)



5 PASSAGE TO THE LIMIT AS δ → 0 16

since Φδ/δ ≤ C, uniformly with respect to δ. Next, due to 0 ≤ P ≤ 1 and ωδ > 0 we have

|Xδ
h(x, t)| ≤ 2

∫ h

0

ωδ(τ) dτ = 4 δ Cmax
m

√
h

and therefore
|Z3| ≤ 8|ΩT | θ∗f Cmax

m δ
√
h. (61)

Finally, we apply (56) with

G1(t) ≡ 1, G2(τ) = |(∇θδf (x, τ)−∇θΓ(x, τ))− (∇θδf (x, τ − h)−∇θΓ(x, τ − h))|2

to establish
‖∇ϕδ,h‖L2(ΩT ) ≤ 2h‖∇(θδf − θΓ)‖L2(ΩT ) ≤ C h, (62)

where we have used the uniform a priori estimate (49). From the estimate (62) and the uniform
bounds (49) we hence obtain∣∣∣∣∫

ΩT

K∗,δ(λf (Sδf )∇θδf + λw,f (S
δ
f )∇Pδf ) · ∇ϕδ,h dxdt

∣∣∣∣ ≤ C h δ k̂2
m. (63)

Collecting the estimates (60), (61), (63), from (57) we get∫ T

h

∫
Ω

Φδ(Sδf (x, t)− Sδf (x, t− h))(θδf (x, t)− θδf (x, t− h)) dxdt ≤ C δ
√
h.

Now, the desired estimate follows from Φδ ≥ cδ, for some c independent of δ, and the mono-
tonicity of S 7→ βf (S).

5.2 The fully homogenized model
In this subsection we present the fully homogenized model for immiscible incompressible two-
phase flow in double porosity media with thin fractures. First we state the convergence results
holding as δ → 0.

Theorem 1. Let assumptions (A.1)–(A.5) be fulfilled. Let (Pδf , θ
δ
f ) be a weak solution of the

problem (43)-(45) and let Sδf = Bf (θδf ). Then there exist functions Pf ∈ L2(0, T ;V ) + PΓ and
θf ∈ L2(0, T ;V ) + θΓ such that, up to a subsequence, it holds

Pδf (x, t) ⇀ Pf (x, t) weakly in L2(0, T ;H1(Ω)), (64)

θδf (x, t) ⇀ θf (x, t) weakly in L2(0, T ;H1(Ω)) (65)

as δ → 0. Moreover, 0 ≤ θf (x, t) ≤ θ?f a.e. in ΩT . Furthermore,

Sδf (x, t)→ Sf (x, t) strongly in L2(ΩT ) and a.e. in ΩT , (66)
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where Sf = Bf (θf ). Here (Pf , θf ) is a weak solution in ΩT of problem:

div (λf (Sf )k
?∇Pf ) = 0,

Φf∂tSf − div
(
k? (λf (Sf )∇θf + λw,f (Sf )∇Pf )

)
= −Cm(x)

d
∂t
[ (
P(Sf )− P(S0

f )
)
∗ 1√

t

]
,

Sf = Bf (θf ).
(67)

The boundary conditions for the system (67) are given by:

Pf = PΓ and θf = θΓ on Γinj × (0, T ),

k?λf (Sf )∇Pf · ν = 0 on Γimp × (0, T ),

k? (λf (Sf )∇θf + λw,f (Sf )∇Pf ) · ν = 0 on Γimp × (0, T ),

(68)

and the initial condition is
θf (x, 0) = θ0

f (x) in Ω. (69)

The effective permeability tensor k? and the function Cm are given by (22) and (38).

Proof. Weak convergences in (64) and (65) follow from (49). The boundedness of θδf and Sf =
Bf (θf ) follows directly from the strong convergence (66). In order to prove (66) we use Lemma 3
and Lemma 1.9 from [32], which we repeat for reader’s convenience:

Lemma 4. Suppose that the sequence (uδ)δ converges weakly to u in L2(0, T ;H1(Ω)). Let F be
a continuous, monotone and bounded function in R. Assume that∫ T

h

∫
Ω

(
F (uδ(x, t))− F (uδ(x, t− h)

)(
uδ(x, t)− uδ(x, t− h)

)
dx dt ≤ C $(h), (70)

for some continuous function $ such that $(0) = 0, and with a constant C independent of h
and δ. Then F (uδ) converges to F (u) strongly in L2(ΩT ).

Now we apply Lemma 4 to the sequence (θδf )δ in the role of (uδ)δ. The conditions on the
function F (z) = Bf (z) in Lemma 4 hold from the definition of Bf .

Due to (50), up to a subsequence we have

1

δ
∂t
(
ΦδSδf +

(
P(Sδf )− P(S0

f )
)
∗ ωδ

)
⇀ Ψ weakly in L2(0, T ;V ′) (71)

for some Ψ ∈ L2(0, T ;V ′). The strong convergence of Sδf in (66) allows to identify the limit as

Ψ = ∂t

(
dΦfSf + Cm(x) [P(Sf )− P(S0

f )] ∗
1√
t

)
∈ L2(0, T ;V ′).

We can now pass to the limit as δ → 0 in the equations (46), (47) and (48), after division by d δ,
and obtain for any ζ, ϕ ∈ L2(0, T ;V ):∫

ΩT

λf (Sf )k
?∇Pf · ∇ζ dx dt = 0, (72)
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∫ T

0

〈∂t
(

ΦfSf +
Cm(x)

d
[P(Sf )− P(S0

f )] ∗
1√
t

)
, ϕ〉dt

+

∫
ΩT

k? (λf (Sf )∇θf + λw,f (Sf )∇Pf ) · ∇ϕdx dt = 0.

(73)

In the initial condition we take the test function ϕ ∈ L2(0, T ;V ) ∩W 1,1(0, T ;L1(Ω)) such that
ϕ(·, T ) = 0 in Ω, and obtain∫ T

0

〈∂t
(

ΦfSf+
Cm(x)

d
[P(Sf )− P(S0

f )] ∗
1√
t

)
, ϕ〉dt

+

∫
ΩT

(
Φf (Sf − S0

f ) +
Cm(x)

d

(
P(Sf )− P(S0

f )
)
∗ 1√

t

)
∂tϕdx dt = 0.

(74)

We observe that the obtained equations (72), (73) and (74) represent a weak formulation of
the problem (67)-(69). This completes the proof of Theorem 1.

The system (67)-(69) can be transformed into the phase formulation by reintroducing the
phase pressures and thus we finally obtain the global fully homogenized model for immiscible
incompressible two-phase flow in double porosity media with thin fractures. Namely,

Φf∂tSf − div

(
d− 1

d
kf λw,f (Sf )∇Pw,f

)
= −Cm(x)

d

∂

∂t

[ (
P(Sf )− P(S0

f )
)
∗ 1√

t

]
, (75)

−Φf∂tSf − div

(
d− 1

d
kf λn,f (Sf )∇Pn,f

)
=
Cm(x)

d

∂

∂t

[ (
P(Sf )− P(S0

f )
)
∗ 1√

t

]
(76)

with the boundary conditions given by

Pw,f = Pw,Γ and Pn,f = Pn,Γ on Γinj × (0, T ),

k?λw,f (Sf )∇Pw,f · ν = k?λn,f (Sf )∇Pn,f · ν = 0 on Γimp × (0, T ),
(77)

and the initial condition is
Sf (x, 0) = S0

f (x) in Ω. (78)

Here in (75)-(77),

k? = (d− 1)kf/d and Cm(x) = 2d
√

Φmkmψm(x)/
√
π.

6 Concluding remarks
The formal linearization of the imbibition equation presented in Section 4 is borowed from Arbo-
gast [7], and it is not rigourously justified. However, due to the presence of the small parameter
δ in the nonlinear problem (31) and in the linear one (24) we expect that the solutions of the two
matrix block problems are close to each other as they share the same boundary layer structure.
This analysis is subject of our further research. Moreover, we point out that in this paper we
focus our attention only on the limiting behaviour of the formally linearized problem.
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