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1. Introduction.

The double porosity model of single phase flow through a naturally frac-
tured reservoir was first described by Barenblatt, Zheltov, and Kochina [1], and
Warren and Root [11], each of whom assumed a quasi-steady state flow in the
matrix. Kazemi [S] and de Swaan O. [10] considered the fully unsteady state
model. We shall derive and analyze a somewhat more general form of this
double porosity model.

A fractured reservoir may be idealized as a porous medium, or mairix,
having some reqular system of fractures. We consider a fractured reservoir
QcRY, d=2 or 3, in which the fracture system decomposes the reservoir into a

disjoint union of matrix blocks Q;CQ; that is, §=Ui§i and Qian=z, i=j. For a

naturally fractured reservoir, we may assume that the diameter of each block is
small compared to the dimensions of the reservoir itself.

Because the reservoir is so large, both the matrix and the fracture system
have a macroscopically fine structure, each of which may be viewed as a
distinct porous medium. The matrix blocks are ordinary porous media (with
impermeable rock grains) for which the physics is well known (see [8] and [9]).
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The fracture system is a porous medium whose "grains” (the matrix blocks) are

permeable. We consider the matrix blocks as sources (and sinks) within the
fracture medium and apply the known physics to it. The macroscopic quantities
parosity, (tensor) permeability, pressure, and density can be defined in the usual
way with respect to the matrix as ¢m, Km, Ppy @nd ppy,. respectively. The

corresponding quantities for the fracture medium, ¢, k, p, and p, can be defined
similarly by considering the matrix blocks to be impermeable (cf. [1]and [11]).
Several physical assumptions need to be made:
1. The fluid is of constant compressibility; that is, it satis-
fies the equation of state

(1.1) p~ldp = cdp,

where ¢>0 is a constant.
2. When gravity is present, the linearization approximation

(1.2) p(x,t)% = [pg(x) + (p(x,t) - po(2 = po(x)2p(x,t) - po(x)]

is valid, where pg(x) is some standard fluid density distribu-
tion.

3. Each matrix block interacts only with the fracture system;
matrix blocks do not directly interact with each other, nor do
they interact with any external source (or sink).

4. The fluid is assumed to be uniform at the surface of each
matrix block.

S. The matrix porosity and permeability are constant over
each block. For each i, ¢,; and kp,; shall denote ¢, and kp,

restricted to Q;, respectively.

Assumptions 1 and 2 are customarily made in reservoir simulation.
Assumptions 3 through S reflect the usual physical situation where the matrix
blocks are relatively small and the matrix has a much higher storage capacity
and a much lower flow capacity than the fracture system. Assumption S is not
necessary for the analysis below. With the obvious modifications, all the
results remain true if ¢’m and k., are allowed to be smooth functions of x

(except, of course, the special case considered in Theorem 2). However, we
shall retain this assumption to prevent the notation from becoming cumbersome.

In the fracture system, Darcy’'s law, conservation of mass, (1.1), and
assumption 3 give us
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k(x)
(1.3) dpt(x.t) - V- [—[c‘ 'Vp(x.t) - p(ﬁ,t)zgzzwl] = f(x,t) + fpx.t)
i
for (x,t)eQxJ,
where the t subscript denotes partial differentiation in time, y is the viscosity

of the fluid, g is the gravitational constant, z is the vertical coordinate, f and
fm are the external and matrix source terms, respectively, and J=(0,T] is the

time interval of interest. By assumption 2, we linearize (1.3) as

k(x) k(x)
(1.4a) d(pt(xt) - V- [FZp(Lt) - 290(5)9722(1)[p(ﬁ,t) -1/, Po(&)]}
= (%) + fp(x.t) for (x,t)eQxJ.

Since the boundary of a reservoir is generally ill-defined and of little con-
sequence, we shall simply take the no flow Neumann condition there:

k(x) k(x)
(1.4b) [—CZp(x__,t) - 2po(¥)g—Vz(x)[p(x,t) - ‘/zpo(ﬁ)l] p(x) =0
H g for (x,t)ea3QxJ,

where v is the outer normal to 8Q. Finally, the initial fluid density

(1.4¢) p(x,0) = pO(x) for xeQ

must be given. .
The i ¢/ matrix block transmits through its surface an average flow of fluid

| Kmi
(1.5a) fi(t) = - —J —VPmr ds for ted,
|Qi] 200 pe

where we use the notation |Q;|=fq. dx for the volume of Q;. This flow should

enter the fracture system near the block. In the continuous medium hypothesis,
we locally average fine structure effects. This is implicitly done in defining
the various macroscopic quantities above. To model the interchange between the
two fine structures, we must explicitly describe the local averaging of the finer
matrix structure with respect to the coarser fracture structure. Choose some
partition of unity {X;(x)} over Q such that each X; is approximately the charac-

teristic function of Q; (i.e. each X; is supported near Q;, 0X;, fX;jdx=|Q;|, and



Z;XF])- Now we can define the matrix source term as
(1.5b) () = 2 (X for (x,t)eQxJ.
[

The particular partition of unity used determines the exact manner in which the
literal fracture flow around 9Q; is marcoscopically spread out over the domain

Q2. The effect of this choice is to smooth out sharp variations in the solution p
that would otherwise arise near the boundary of each Q; (see Theorem 4 below).

In practice, one never looks at the solution in such detail, so this choice is not
actually very important.

Analogous to (1.3), we have in the i ¢ matrix block
Km
(1.6a) Omifm.t&t) - ¥ [——lpm(x,t)] =0 for (x,t)eQ;xJ.
ite

Here we have omitted the gravitational term, since the effects of assumption 4
completely dominate it. Continuity of pressure requires that the block and
fracture densities be equal at the surface of the block, while initial equilibrium
requires the same equality at time zero. By assumption 4, at each time t, we
can simply take a constant, ﬁi(t), to represent the density of the fluid in the

fractures surrounding the i 7 block. That is, we can write

(1.6b) P = Pi on 3Q;xJ
(where the trace is taken from inside Qi) and
(1.6¢) pr(2.0) = pO; for xeQ;.

Finally, we should define these constants according to
(1.7) U = | Q] "fq ux; dx for ueL'(Q).

This definition gives us consistency between the local (i##7 block) behavior of
the fracture flow in (1.5b) and in (1.6b,c).

Equations (1.4) through (1.7) constitute our model. In the next section, we
shall specify the mathematical assumptions as well as define some general
notation. In section 3 we analyze the matrix source term. In particular, we
show that it is positive-semidefinite in some sense. In section 4 we show that



S
the model 1s mathematically well posed. A finite element method of approx:-

mating the solution p (and p,,) is presented and analyzed in sections 5 and 6.

2. General assumptions and notations.
In the rest of the paper we shall use the following assumptions and
notations concerning the ceefficients. Assume that f, pg, p% and the X; are

smoothly distributed over the reservoir and sufficiently regular. The (un-
physical) assumption on f will ensure that the solution p has the necessary
smoothness and L2-norm properties for the analysis below. Let ¢(x) and ¢, be

bounded above and below by positive constants over Q and Q, (where Qq,=y;Qy),
respectively, and suppose that ¢ is smooth. Let x(x)=k(x)/pc and X, =K/ HC be
symmetric and uniformly positive-definite matrices over Q and Q. respec-

tively, such that x is smooth and sufficiently regular. Finally, let ¥(x)=
2po(x)gk (DY Z(x)/ j.

We will assume that Q is a bounded domain with smooth boundary. Obvi-
ously we may not make the same assumption on Q;; instead, we will assume that

Q; is a convex domain, for each i. Hence, aQi is plecewise smooth.

wP.' 0¢p and 1srseo, will denote the usual Sobolev space of p times
differentiable functions in L. Let HP=wP2. HP will denote the dual of HP.
HY(J:HP), q a nonnegative integer, will denote the Banach space of HP-valued
functions (of x) that are in H9 (as functions of t). The norm of u(x,t)eHI(J:HP) is
given by

q | .
lullyaune) = 1 2 18u/8tM e 2.
j=0

Similarly we have the space L®(J:HP). We will also need the spaces H'g(Q)=
{ve HI(Q) = v=0 on 3Q; ).

we will denote by (-, -) the inner product on L2(Q) or (L2Q))9, whichever is
appropriate. We will similarly denote by (-,-); the inner product on L%(Q;) or

(LZ(Qi))d, and by (-, )y the inner product on L2(Q,) or (L2(Qm))d. Define the
symmetric bilinear forms
B(uy, up) = (x¥uy, Yuy) for any uy, up € HI(Q),

Bi(v, v2) = (X ¥V, Zv2), for any vy, vz € HI(Qy), for each i,



and

B (V1. v2) = (X ¥y, Yvo)y for any vy, v, € HI(Qp).

Finally, C and € will denote generic positive constants.

Let us write the differential equations of the model in weak form with the
above notation. First, note that by applying the divergence theorem to (1.6a), we
can rewrite (1.5a) as

(2.1 frnit) = _‘#miﬁ-m,t,i'

with the notation

v, = ]Qil"jQi v dx
for the average of veL'(Q;) over Q;. Now we can write (1.4ab) and (1.5) as

($pr. 9+ Z OpqiPm,t, i1 Qi1 + Blp. 9) - (Zp. TY)
(2.2) !
= (f, 9) - V/,(Zpg, ¥9) for ¢ e HY(Q),

and, for each i, (1.6a) as
(23) ‘#’mi(nom,t' ‘P)] + Bi(Pm’ ‘P) =0 for § ¢ H10(Qi).
Of course, the boundary condition (1.6b) must be imposed on pp,.

3. Description of the matrix source term.
For a given p in H'(J;LZ(Q)), the solution py, of (1.6) (or (2.3), (1.6b,c))

exists and is unique as a function in HI(LLAQNNLALHAQ)), since Q; is

convex for each i. As a consequence, we can define the matrix source term
operator FoiL2(JL2A(Q))—LAULHQ)) as

(3.1) Fry(Us) = 2 $piVi i X
i

where, on Q;, v satisfies



(3.23) ¢mi(vt, \P)l + Bi(\/, ‘P) =0 for ¥ € H10(Qi)
(3.2b) v = [t Ux (%) dv on 9Q;xJ
(3.2¢) v(x,0) = 0 for xeQ;.

Note that ux=p; implies that vy=py, {: hence, F(py)=-fp, represents flow from
the fracture system to the matrix. We should expect that p; and F. (p;) behave
similarly, at least in some average sense. This is expressed as

Theorem 1:
Foy is a bounded linear positive-semidefinite operator from LA(JLA(Q)) to

L2(J:L%(Q)) for any subinterval J=(0,7]CJ. That is,

(3.3) IFmCual 2T 2eq)) ¢ Cluxll 23 2(q))
and
(3.4) 0 ¢ foF (Frp(Us). ux) dt

for any ux€eL2(J;L2(Q)). Moreover,

(35) ‘C“U(,O)“2L2(Q) < jot (Fm(Ut), U) dt
for any ueH'(J;LA(Q)).

Proof:
Take =vy-Ux ; in (3.22) and integrate over J to see

¢mi“"t"2L2(J;L2(Qi)) + 1/3Bi(v, v)()
(3.6) = dmifo% vijlx j dt] Q]

$ 1/2‘#’mi“thl?LQ(j;L"’(§2i)) * I/24’mi“U*Xi'/2||2|_2’(:I;|_2(Q))-

Canceling terms above, we obtain boundedness:



IFn(udll2(3:2(0))
= | Z Pmivt.iXi Iz Tz
(3.7) |
¢ 2 dmilviliagie)))
i
¢ Cluxll 2. 2(Q))

Using only the equality in (3.8), we get positive-semidefiniteness:

Iot (Fm(Ux), Ux) dt

(3.8) =3 i fo Vi juxj at |
i

© 2 0.

To obtain (3.5), take y=v- o'ty ;dT=(v+(;(0))-u; in (3.2a) and integrate
over J to see that

(3.9) VZ‘#’mi""”ji(o)"sz(Q;)(t) - 1/2¢m'(ﬁl(0))2|Q‘| + J’ot Bi(V, V) dt
= dmifo” vi,ivi dat| 2],
and then estimate

JoF (Fry(ug), u) dt

(3.10) =3 dmi foT vy Ui dt | Q]
i

2 =Cllu(- 012 2(q)- O

A more complete understanding of the matrix source term operator may be
obtained by expressing it explicitly in terms of the auxiliary function & which,
on Q;, is the solution to

(3.11a) didt - (xp¥6) = 0 on Q;xJ,

(3.11b) 6=1 on 3Q;xJ,



(3.11¢) 8(x,0) = 0 for xeQ;.

The solution of (1.6) is the convolution in time

(3.12) Pmx.t) = fot 6(xt-T)py () dT + Pl for (x,)6Q%J,
and so
(3.13) Frn(pp.t) = 2 dpq fo gtj(t‘t)ﬁt,i(t) aT X(®).

i
nis, in fact, allows us to decouple the system (1.4) through (1.7). Since 'e_t 1S

positive, decreasing, and convex, the Fourier transform of its even extension to
R is positive. An application of Fourier analysis to (3.13) gives an alternate
proof of (3.4). This approach enables us to see that, in fact, { [ (Fy(-).-)dt}1”2

is a seminorm on L2(J;L2(Q)) equivalent to the sum on i of the H™!'/%-norms in

time of the local space averages, at least in the following special (but very
reasonable) case:

Theorem 2:
Suppose that each Q; is a rectangular parallelepiped whose edges are

parallel to the coordinate axes, and that each X,,; is diagonal. Then there exist
positive constants Cy and C; (independent of p;) such that

G2 8y il%h-17400) 1241
i
(3.14) < [of (Frp(py).py) dt
< Cyd “ﬁt,i“zH'V"‘(J) | Qi
i
Proof:
For each i, an appropriate scaling allows us to assume that Qi=(0,ﬁ)d+gi.
Write

| ky 0
N
mi 0 "Kg

Separation of variables applied to (3.11) gives us
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5 Z?\jQKj
— d ]
(3.15) ot = [——] N 20 ———— exp —zj Aj2kjt),

where ZO denotes the sum over positive odd indices.

Let m(t)=§t i(It]), teR, and let ¥ denote the Fourier transform operator. It
is trivial to calculate

. (zj A2k P

RAEES)
nZ] M,..?,xd (MRS A2k 2+ s2]
j j

(3.16) Fu(s) = 2[

We will now show that there exist positive constants €, and C, such that
(3.17) Ci(1+82)" V¢ puwy(s) s T (1 + s2)-174,

Since Fw is continuous (Riemann-Lebesgue lemma) and even, it suffices to show
the result for s large. In that case,

(M2+d-1)2
Fuw(s) 2 c2o !
)\] )\12[()\.12"‘(1" ])2"’52]
A 2
(3.18) »  C 20 -
A Ayt o+ g2
1/,8¢X,2¢3/55
2 Cs‘l/z'

as A,=0(s'/?) and there are 0(s'/2) terms in the last sum, and

d
A2+ 3 A2
2

Fw(s) ¢ C 2.0 2.0

Agiedg A d d
: x,zqnaxdz ..... Ag) 7\,2('1'2)\}-2) [(ng2+ .227‘1'2)2 + 52]
= =

1 2.2
(3.19) s C[xz?ﬁxa ,ﬁz sz] [)Z\]o 24]—52]
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¢S Z uli

< 0 —_—

m=-x Ay 7\14 + 52
2Mgen,2¢2M* g

M

® “ /'-)-1 1.2
A e
m=-c0 (2¢M + 1)

¢ Cs 172

This establishes (3.17).
Our estimate (3.14) now follows directly from (3.13), some Fourier analy-
sis, and (3.17)

[0 Frplpp) Pt)

=2 Jo' Jot w(t-T)py {(D)py (1) dT dt | Q]
|

Z [ To(t-2)X(g oo)t-D) 1Py ()X ()] =
(3.20) [y (DX W] dv dt | Q|

= 2 J FWX(0,00)M8) [FPy X )6) |2 ds [
|
=122 | Fwls) [Flpy X )Ne)|? ds | Q)
|
which is then equivalent to
Z [ (1 +g2) 174 |f‘(,6t'|-xJ)(s)|2 ds lQi’-
|

Since the integral above is equivalent to the square of the H™'/4-norm, the proof
is complete. O

As a final remark in this section, we will compare the so called warren and
Root model ([1] and [11]) with the present model. The quasi-steady state
assumption, that py, +=-olpy,-p), simply says that

(3.21) (k) = [t (1 - e = TN p(x2) dr + pOx)  for (xt)eQxJ.

A glance at (3.12) shows that this assumption essentially amounts to a one
parameter approximation of & (or 6;) by a single time exponential.
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4. Demonstration that the model is well posed.
we will now show the existence, uniqueness, and continuous dependence on
the data (1. pg, p%) of the solution (p, py). This will be accomplished by apply-

ing the method of continuity to the problem (1.4) decoupled from (1.6) via
(3.13). The linearization assumption (1.2) creates some difficulties when
gravity is present. The equations are not strictly linear, and a given solution u
can arise from many different sets of data, as the reference density function pg
is allowed to be arbitrary. To resolve these difficulties, we shall analyze the
equation over a smaller data space. We must be careful to determine the
dependence on ¥, since ¥ is proportional to pg.
For each Ae[0,1], consider the problem

(4.12) Oy (x1) + AF(up(xt) - ZIx(®Tu(xt) - F(ux.)] = F(x,t)

for (x,t)eQxd,
(4.1b) [Xx(®Tux.t) - IXux. 12 = ugx) for (x,1)edQxJ,
(4.1¢) u(x,0) = ul(x) for xeQ.

When A=0, we have a standard well posed problem (see [6], Theorem 5.3, p. 32);
when A=1, we have our problem (1.4), where F(x,t)=f(x,t)+ 1/, ¥ [pa(x)3 ()],
ug(x)=-1/2pp(x)¥(x)-¥(x), and u¥(x)=p%(x).

Let

V= {ueH(JL2AQ)) NLALHAQ)) :
(xYu - Zu)-» on 0QxJ is independent of t }

and

W = { (F,ug, u%) e L2(J:L2AQ)) x H!2(3Q) x HI(Q) :
(xYu0 - Zu0)-»=uy onaQ }.

We can define for each A the linear operator
representing (4.1) as

O (U) = (fuy + AF(uy) - (X W - Ju), (kLU - Fu)p, u(-.0)),
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where the two trace operators are known to be bounded ([6], Theorem 2.1, p. 9).

Lemma:
The @, are bounded above and below with bounds that are independent of

Ael0,1]. These bounds depend on Z only through its H'(Q)-norm.

The following technical lemma will enable us to verify the Z dependence.
[t will be used with Y= several times in the proof of the lemma.

Technical lemma:
If the dimension d¢3, then, for any €>0,

(4.2) W91, 99 < ¥l 191120 200) * 19112110 * 19212 20
and

(4.3) 12 Dl 2(q) < V121 190H1(Q) * ElPlz()-

Proof:

By Holder's inequality and the Sobolev imbedding theorem, we have:

¥91. 92) < Wle@) 191130192l 2(q)
(4.4) <¥ls 191072 20 191112 sy 1920l L2
< ¥l 194172 2y 1911 21 192Dl L2
$ C"‘V"‘*HI(Q) “301“2(_2(9) * E{"‘px“zHl(Q) * llsf’zllsz(Q)}-

Similarly,
12 P 2g) ¢ 1E9] 2q) * 1¥(EZD 2(q)
< I2¥l 20 1912 (@)
(4.5) 19l s 129172 20 Y1202 6
< ClY I 191 21 191 24z
< Y121 1911(q) + €192y .

Proof of the lemma:
That the ¢, are bounded above follows directly from Theorem 1 and the

boundedness of the trace operators. The second part of the technical lemma
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shows that the bound is proportional to 1+ X+ |32y 1qy<2+ 1313 1(q).

Multiplying (4.1a) by u and integrating over Q=J, J=(0,zlcJ, yieids

Vo(du, u)() + AfgT (Fuy), u) dt + [o¥ Blu,u) dt
= [ (F, w)dt + [o% 3 ugu ds dt + % (Bu, Yu) at
(4.8) + 1/5(4u0, ul)
¢ Cf “FHQ{_?(IB(Q)) ¥ ”UOHEHV?(SQ) * “UDH?LQ(Q)
¢ [T (du, u)dt )+ 1/, [o¥ Blu,u) at,

since the H'72(3Q)-norm of the trace of u is bounded by the HY(Q)-norm of u.
The first part of the technical lemma shows that C depends on the H'(Q)-norm
of ¥. By (3.5), we may simply omit the matrix source term on the far left side
of (4.6) with respect to the inequality. Then, Gronwall's inequality gives us

(4.7) lul2Leo g2y * 120012205 2(q)
¢ C{ "F||2|_2(_1;1_2(Q)) + ||U0||2H1/2(aQ) + "UOHZLI?(Q) .

Next, multiplying (4.1a) by uy and integrating over QxJ yields

jot (¢>Ut, Ut) dt + XJO-E (Fm(Ut), Ut) dt + 1/28(U,U)(’C’)
(4.8) = [0 (F.up) dt + fo¥ faq Uauy ds dt + [o¥ (Bu, Yuy) at
+ 1/,B(u0,u0).

Integrating in time straightforwardly and by parts gives

Jo® faq uguy ds dt + [ (Bu, Vuy) at
= faq Uplu(x,T) - u¥l ds
(4.9) + (Bu, Yu)(z) - (B0, ZuO) - [o¥ (Buy, Yu) dt
< C{ JuolBy12(3q) * 191241
PG * 19el2 G 2() )
+ 1/4BUu)(T) + afo® (uy, up) at + €l Ul 2T Q)

where ¢ is as small as we like and, again, C depends on “5—"H‘(Q) by the
technical lemma. Combining (4.8) with (3.4), (4.9), and (4.7), we see
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1/2‘[‘01’ (‘#’Ut Ut) dt + ’/4B(U,U)('C')
(4.10) ¢ CUIFI 200, 2(q)) * luollPur2ag) *+ 1W01%h1q) }
+ elul® Lz gme(q)

Next, from (4.1a) itself, Theorem 1, and the technical lemma.

1% 9uf 25, 2())
(4.3 }) < C{ (1 + k)![UtHLz(J;LQ(Q)) + "U"LQ(J:HI(Q)) + "F“LQ(JZLQ(Q_))}
*elul 2gmaq))

So, for € having been chosen small enough above, (4.11) combines with elliptic
regularity, (4.10), and (4.7) to show that

lull 2(usm2eq) ¢ CUIE XUl 205 2(q)) * Mol 2mi(q))?

(4]2) < C{ "FI'ZLZ(J,L2(Q)) + "U0"2H1/2(aQ) + uU0“2HI(Q) }

Finally, (4.12) can be used to complete the estimate (4.10) and finish the
proof. O

Since 04 = AQ +(1-N\)dg, we can now use the method of continuity to deform
the solution U of ®q(U)=(F,ug.ud) continuously to a solution u of &,(u)=(F,ug,ud).
That is, from the lemma, if Q?\o is an isomorphism, then Y(u:iAAg) =
O)\D"((F,uo,u%(o)\o— ®,)(u)) is a contraction mapping on ¥ for IA-Agl small

enough independently of A and Ag. The fixed point of V¥ is the solution to (4.1),
so ¢, is also an isomorphism. After a finite number of steps from Ag=0, we

have:

Corollary:
®, is an isomorphism.

Theorem 3:

If feL2(J;L2(Q)) and (pg)?, pPeH'(Q) are such that [xVp? - F(p®-1/,pg)1-2=0
on 3Q, then the double porosity model (1.4) through (1.7) has a unique solution
(p. pr) V<V, Vo =H I (LLAQpINLA(JHAQ,)), which varies continuously with
the data:
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Ielncuey * Telizumz)) + lemlniuiaa,))

(4.13) *lemlL2uinz,))
<CUTIL2eg2eq)) * 10y * 1951 .

where C depends on UPOHHI(Q) and, for solutions (pj-, P i) arising from data
(rj, Po.i. poj), j=1 and 2,

Ip1-pallyrcuz) * e - pali2(meca))

“om, 1 Pm 2l * 1Pm.1 = Pm 2lL2mzq )
< CUITy = Tall 2 2eq)) * 1Cpo, 12 = (po,2l? g1 ()
* Ipo.1 = po.2lig) * 19% - pP2lyiq) &

where C depends on ||pg 2l1(q) and il 2¢J:n2(q))-
Note that Holder's inequality and the Sobolev imbedding theorem imply that
(4.15) Iy ‘P“HI(Q) ¢ C |N’"w"‘2/5(Q) 1@l 1275()-

Hence, we can replace the norm of (pg)? in (4.13) by || pol2y1.12/5(qy). and we can
replace the norms involving pgy and pgo in (4.14) by (I+!lp0,1llwx,12/5(Q)

*1p0.2lwt1275¢q)lpo.1-po.2lwini2/5(q)-

Proof:

The claims for p and py-p, follow directly from the remarks following
(4.1) and the lemma with its corollary. Now, since p exists and is unique, pp,

exists and is unique. If we finish the energy estimates (3.6) and (3.9) (with
ux=p; and u=p so that pm=v+;3°i), and if we use (1.6a) itself and elliptic

reqularity, we can bound py in HI(LELAQ)) and in LAUHAQyR)) by
“P"H‘(J;LZ(Q))"“PO"LQ(Q)' Since (1.8) is a linear equation, the bounds for p
finish the proof. g

Later we will want to take higher Sobolev norms of p and py,, so it is
appropriate at least to say something about their smoothness here. From (1.6a)
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we see that p,, is infinitely differentiable on Q. xJ. Then (2.1) and (1.5b) tell

us that f, is infinitely differentiable in time and as smooth in space as the X;
are. Finally, then, (1.4a) tells us (see [4], Chapter 3, Theorem 11, p. 74)

Theorem 4: 4 ’
If each of 3%,/0x>, 3 I[f+1/,¥ (ped)1/3x>Bt], 8% /8x™, 3% /ax*,

(¥ -7-x)/9x*, and 3(V-¥)/3x* are Hdlder continuous of order 8e(0,1) on Q
or QxJ, as appropriate, for O¢lxl+2j<4 and O<jsm (where « is a multi-index), then
3 1p/9x>0t) is Hblder continuous of order B on QxJ for O<led+2j¢2+2 and
O¢jgm+1.

S. Formulation of the finite element method.
For each h and hy, in (0,11, let MCH(Q) and, for each i, N;CH'o(Q;) be

standard Galerkin finite dimensional H'-approximation spaces of order r in h and
s in Ny, respectively. That is, let

(5.1) inf lu-@ll4iq) ¢ Cllulal(Q)hp'j, lsper, j=-1,0, 1;
PeM.

for any ueH (Q) and, for each i,

(5.2) inf |v-¥lhiq,) ¢ CIIVIIHQ(Qi)hmq‘j, 1¢qes, j=-1,0, 1
YeN;

for any veHS(Qi)nH1D(Qi) (where the constants C are independent of u, v, h, and
hp)- To avoid trivialities below, we will assume that M contains the constant
functions. We will also let Ny*={v*=v+c : veN; and céR}. In both (S.1) and

(5.2), the result for j=1 implies the result for j=-1 and j=0 (see (6.6) and (6.7)
below).
For ueH(Q), let u'eM denote the elliptic projection defined by

(5.3a) Blu-u,¢9)=0 forall9eM
and

(5.3b) Jou-u)dx=0.
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For each positive integer N, let At=T/N. We will use the following notation

(where u is any function of time):

tn = nAt
and
™ = u(ty)
for n=0, 1, ..., N, and
N, n-1
Uﬂ" l /2 = U___.U—
2
and
Un - Un_l
oun =
At

for n=1, 2, .... \.

We shall now describe our finite element procedure. We seek a map U:{tg,
ty, ..., ty)—M and, on each Q;, a map W:{t;, tp ..., ty}—=Nj* and a function

ZeN;* that satisfy the following equations:

($3U", 9) + T 4 BV, | @]+ BUNTZ, 9) - (U2, 19)

(5.4a) '
= ((N71/2 9) - 1/,(¥pq, V9) for ¢ € M,

(5.4b) e = po,

(5.52) %i[ynTvn-', y ] -8 {E—ZVH—I ¢ } = 0
(5.5b) wh = (g;n-1 on 98Q;,
(5.6a) ‘#mi[z—i-t'q/]; Bi[;v]w for ¥ € N,

(S.6b) 2= At on 3Q;,
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(5.7a) Vi = wh+ 30" z on Q,,
and
(5.7b) VO = (9.

First, we solve (5.4b) for U® and (5.6) for 2. Then, successively for n=1, 2, ...
N, we solve (3.5) for W', (S.7a) for V" (with its explicit dependence on U™,
(S.4a) for U", and, finally, we return to (5.7a) to remove the U" dependence from
VP, Since uniqueness implies existence, it is not terribly hard to see that the
equations can indeed be solved, provided that, if gravity is present, At is not too
large. This, in fact, follows from the analysis beiow.

[t will be shown in the next section that U and V approximate p and pp,

respectively.

Because of the enormous number of matrix blocks, the approximation pro-
cedure appears at first glance to require a massive amount of calculation.
However, in actual reservoir simulation, h is of necessity taken to be much
larger than the diameters of the matrix blocks: consequently, the triangulation
over each matrix block should be rather coarse (see Theorem S below), and thus
the linear systems arising from (S.5) and (5.6) should be small. Since one is
generally only interested in effects that are on the scale of the discretization of
the fracture system, it is sufficient to solve (5.5) and (5.6) only on the blocks
that sit over the quadrature points of (S.4a). If Q; is symmetric about its

center, the solution V is also symmetric over Q;, so, with some care, one can

further reduce the size of the linear systems in (5.5) and (5.8). Finally, the
block problems are independent of each other by assumption 3, so naturally frac-
tured reservoir simulation (and, in particular, our finite element procedure) is
well suited to parallel type computing machines.

6. Analysis of the approximation error.
Let us define the error functions

(6.1) L=p-U
and

(6.2) &=pm- V.
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Subtract (3.4a) from the average of (2.2) at times t, and th-1 to obtain the

error equation

(93", 9) + ¥ 69T N9y Q] + BEN 2 9y - (™12 vy)
(6.32) !
= (9(p" - ptn-l/Z)’ 9) +Z¢’mi(85m,in ) am,tjn-”z)‘ﬁl 1?'!
! for 9 ¢ M,

(6.3b) 0 =pb- ol

Now subtract the sum of (S5.5a) and 8U;" times (5.6a) from the average of (2.3)
at times t, and th-1 to obtain the other error equation

bri(BE, )i + B.EM1/2 )

(6.4a) = & i(Bpy" - pm,t”'vz, ¥)i for ¥ e N;,
(6.4b) £n=gn on 3Q;,
(6.4¢) £0 = 0.

Note [12] that {=p-p'+p'-U=(p-p)+{’. Similarly, we can write £=(p,
-py )+E", where we extend the following definition to all of Q: for any
veH!(Q;) that is constant on 3Q;, v'eN;* is the elliptic projection given by

(6.53a) Bilv-v, y)=0 for all ¥ € N;.
and
(6.5b) VY on aoi.

Elliptic theory tells us that

6.62) 18%(p - p)/3tK | icqy « CI3Kp/3tK ypeyP ),
(
1¢pers j=-1,0: k=0,1;

(6.6b) Vlll(p - Pl q) ¢ CIIpIIHp(Q)hp", 1¢per:
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(6.72) 18(pm = prm /8t i) € 1% /0t g )i 37,
1¢qs¢s; j=-1,0; k=0.1;

and

(6.7b) “Z(Pm - pm‘)"LZ(Qm) < C“pm“Hq(Qm)hmq—]- 14Qs¢s.

In deriving (6.6a), the standard Nitsche duality arqument [7] applies, as the
smoothness of 9Q ensures the reqularity of the dual problem. In deriving (6.7a),
since Q; is convex, the dual problem is regular enough when j=0, but not neces-

sarily so when j=-1. However, in this case, the duality argument can stili be
performed by posing the dual problem on a larger domain Q;* with smooth

boundary via the (bounded) Calderdn extension operator E:H'(Q;)—H!(Q*) [2] as
(6.8a) -V I(Exp)VP] = BY, on Q;%,

(6.8b) ¢=0, on 9Q;*,

to obtain the needed regularity:

(6.9) 191130, ¢ 1913 ) ¢ CIEYIL Q=) « Cl¥IRIQ,)-

The boundary term from the integration by parts, which is normally zero by the

dual problem, is now zero simply because py,-pm" =0 on 9Q;.

It remains to estimate the errors ' and &". Rewrite the error equations
(6.3) and (6.4) in terms of these elliptic projections:

(430", 9) + T i 8T N9y ] + BN 1/2 9y - (3712 g9)
]
(6.10a) = (@Bp™ - p™ ), 9) + T 1 Bpr " - ot A9 1
]

_(D:(p»n-l/Z 'pn—]/z).l‘P) for 9 eM,
(6.10b) =0,

and
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Dri(BE D, 9); + Bi(E N 1/2 )

(B.11a) = bmi@pm" - pm,tn—]/z’ )i for ¥ €Ny,

(6.11b) i»ﬂ = (:'in - (;S'in - }Sin) on aQi,
(6.11¢) £0=-(p%, - p%)).

It is well known how to analyze every term above ([3] and [12]) except those
that represent the matrix source. We will combine these known ideas with
generalizations of the ideas presented in sections 3 and 4 to accomplish our
error analysis.

Let

E1(p.a.) = Ll oo e i)™ + Ioeliaqmpa) 0P
+ "Pm,t“L2(J;Hq(Qm))th+I

* {18%p/80%0 2 gip-1(q) * 18%pm B L2 -1 1 (AL

where, always, 1¢psr-j, 1¢qss, and j=0 or 1. Note that

N
Z {Hapjn h ptn_]/zqu‘l(Q) * “apm"n - Pm,tn_l/zqu-\(Qm)
n=1
(6.12) + T LR M- 9™ + Bpri" - o A21 ) 0t

1

+ max o™ - "2 2
0<n¢N

« CE44(p,a,j)-
In obtaining the optimal bound on the third term on the left side above, we have
used that X;eH'(Q), for all i.
First, take y=gN~V/2-(@.n1/2 (5 n"1/2_501/2)] in (5.112). After

manipulating, summing on n from 1 to m, M<N, and summing on i, we see
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Tl _— ~ -
Vgt B -3 S el NE2 Q)] ot
n=1 i
M -
. z Bm(a-.n-l/Z' 8-“'1 {.) At
n=1

= V20, 0,

2 = nan-1/2 _ 2n-1/2
-3 2 BN - g ) [ At

n=1 i

Tl -1/2 -1/2
« 2 { ($r(Bpy " - Pm,tn ), & I
n=1

- Z ¢mi(85m"in _ Em,t,in_]/z)[‘:’in_”z
]

- (ﬁ'in-l/Z_ﬁin-l/Z)”Qil}At

(6.13) ==1/2% dmilp® - 92 | Q]
i
-2 4l - T |9
|

il
©T T omT 205" - 35 9] at
n=11i

i
¢ 3 { (¢ (Bpy" - Pm,tn—]/z)' gn-1/2 )
n=1

- Z ¢mi(a_§m"in - Em,t,in_‘/z)[‘?in_”z
i _({S»in-l/Z_ﬁin-l/2)”Qi|}At

m
< CE2p,q,j) + e{ T (0™ /2, 80 1/2) At
n=1

n
- (¢C'n_l/2. C,n-l/z) At}
n=1

m
+ \/4(¢manﬂl au’l’l)m VA Bm(ann-l/Z’ Eun-l/Z) At
n=1
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where we have used summation by parts in the second equality above.
Next, estimate the sum on n of (6.10a) with <,0=C'““’/2 to see

m
AU UMD I Yt Sl S T RPN
n=1 i

B(C,n—l/z, cvﬂ‘I/Z) At
1

+

T 3

(m'n-1/2’ vcrn‘1/2) At
& s .

n
(6.14) £ S {(4»(89'” _ ptn-l/Z), C»n—l/Z)
n=1

=

* 2 $mi@m" " - P D2 0y
|

- (ﬁ(p'n'l/z _ pn-l/Z), Zﬁ,n-I/Z) } At
m
< CLE2(p.q.)) + 'z]@t'"'”?.c'“"/?) At)
n:
Ul
+ I/ZZIB(C'H‘]/Z, c'n"]/Z) At.
n:

We remove the coupling term between (6.13) and (6.14) by adding the two
equations together. With the obvious cancellations, we obtain

N
1,00, TN+ 1/, 3 BRI /2, 12 at
=1

n
+ 1/ (b 8N 8 ) + /53 Bm(i"”"/z, pn=1/2y At
n=1

Ll
(6.15) <C{E2pgi)+ s (M,n—l/z, c,n-l/Z) At )
n=1

i -1/ -1/
veS (¢ma»n 1z g»n ! Z)m At
n=1

If At is not too large, the discrete form of Gronwall's inequality can be
applied to (6.15) to yield, after some manipulation, the error estimates
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N
(6.16) max ||E"”||2L2(Qm) + > HY.&"”IIQLz(Qm) At ¢ CE42(p.q,))
0<nsN n=1
and
N
(6.17) max ”C'nHZLQ(Q) £y ll_V_C’”IIZLz(Q) At s CE,2(p.q,]).

0<nsN n=1
For the next set of error estimates, let

E2(p.0) = Ul oo (b)) * IpeliLaumpc@)) 1P
* o, tlL2(uHQ ) P
+ I]83p/8t3llL2(J;L2(Q)) + "a3pm/at3“L2(J;L2(Qm)) HAt)?

where 1¢psr and 1¢q¢s. Note that

N
5 {189 - o V212 50y + 189 - 8072 2y
n=1
(6.18) + [18py," - Pm,tn_l/zusz(Qm) bat
+ max |p" - Pn||2L2(Q) + £4%(p,q,0)
O<nsN
s CEp2(p.q).

This time, take y=38""-13L","-(3p'"-3p;M1 in (6.11a). Again, manipula-
tion and summation on nand i yields

l gl
> (¢ 38, M At -3 T ¢pyi08 AL Q] At
n=1 n=1 i

+ 17,8, (&M, £ M)
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n — A A
=-3 T 4,08 "0 " - 8™ Q)| At

n=1 i

(6.19) no /2
* 2 Z (¢mi@prm ™ - pmt™ 7).
n=li A - el - (3p -3 M)y At

- gl
¢ CE2(p,q) + /o2 (4,08, 38"M) At
n=1

gl
+ 1745 (430N, 3™ At.
n=1

Also, take 9=3C'" in (8.10a) and sum on n to see

n m
T (ot ot at+ Y ¥ by 08"l N Q| At
n=1 n=1i

« 17,8, M)

n
=S (a2 gar™ At
n=1

m
+ S {(b@p™ - o2y Brn)

n=1

¥ Z 4’mi(aﬁm“in B am,t,in_”z)ad'in lQil
[

- (ﬁ(p'n-i/Z _ Pn-l/Z)‘ 7arm } At

n
(6.20) =M,y -3 @, w12y at
n=1

n
« 3 {($(p™ - p" 12 BrM)
n=1

* 2 C1’mi(aam"in - am,t,in_]/z)at:’in 19
i
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- (BRpN - 3pN), w12y} At

- (¥pM - pM), wtM)

N
¢« C{ Ex2%(p,q) + max IIC‘DIIQLZ(Q) > HZC'DHQLZ(Q) At
0<¢neN n=1

n
¢ /43 (93U, 3L At + /8L, LT,
n=1

where we use summation by parts twice in the second equality above.

Now, by adding (6.19) and (6.20) together, making the obvious cancellations,
and using the previous estimate (6.17) (with j=0), we get the other set of error
estimates:

N

(6.21) 2 1802 2¢q) At + max |82 2q) ¢ CE(p.0)
n=1 0<n¢N

and
N

(6.22) 2 Haa"nHQB(Qm) At + max "25"”|l2|_2(9m) ¢ CE%(p.q).
n=1 O<neN

Finally, if we combine (6.16), (6.17), (6.21), and (6.22) with the elliptic
estimates (6.6) and (6.7), we obtain the approximation error estimates:

Theorem 5:
For At sufficiently small, the solution (U, V) of the finite element method
(5.4) through (S.7) approximates the solution (p, py,) of the double porosity

mode! (1.4) through (1.7) as follows:
max | p" - U 2
0<n¢N
(6.232) < c{ Lol ooqumpce) + loelizqu.m-1eq)) InP
+ Pm,tl|L2(J;Hq(Q"Q)hmq+‘
+ (1837883 2 sy 1(q)) * 183Pm /B3N 2 JH(Q)) KA? }



(6.23b)

(6.23¢)

(6.24a)

(6.24b)

(6.24c)
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max |¥(p - U)”lle(Q)
0¢n<N

e c{ Lpl oo mpe)) * Iotlizcump-1(q)) 1P~
“ Iom el 20, im’
< 1132978830 2( gy 2(q) * 18%pm/B N2y 2y ) KAD? }

N
2 1866 - UNPL(

< CLLIpN o umpe@)) * TeelLzqumma)) InP
*Jom.tlL2(uH%Q,)) im
< [18%p/383] 2y 2()) * 18%pm /B Laui 2 NALR )

max [pm" - VL2(q )
0<nsN

< c{ [lpl o) * Teeliaqap-(@)) InP
*Upmlieumaa) * 1Pm iz @m) Inm
+[133p/8t3) 2 yy- 1) * | 83Pm/8t3“]_2(J;H'1(Qm))](At)2 }

max | ¥(py - V)n||L2(Qm)
0<n<N

¢ LUl oo(uimpa)) * Ioelizqumpea) In°
* pmlieeuma) * 19m tlzsfe'@y) In 37!
+ ["83p/at3"|_2(J,LZ(Q)) * “a3pm/at3|||_2(J,LZ(Qm)) ](At)2 }

N
3pm - VIN|2 A
2 1806m - VMg, Ot

< c{ploogmp@)) * Ipthizempe)) 1P
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* “Pm,t"L2(J;Hq(Qm))hmq

+ (1837383 2 sy 2(q)) * 18%Pm/B8 25y 2, A2 }

where 1¢per, 1eqes, and i =pmax(1,]))

Note that the error estimates are optimal with respect to both the discret-
ization parameters and the reqularity required of the solution.

The restriction on At arises from the use of Gronwall’s inequality, which
was, in fact, only used to bound the main gravitational term in (6.10a). The size
of this restriction is independent of h and Ny, and it is proportional to the

reciprocal of the magnitude of the gravity coefficient ¥. Since the effect of
gravity is small (assumption 2), the restriction on the size of At should not be
very important in practice. Further, if gravity is neglected, a careful analysis
of the above proof shows that no restriction on At arises at all.
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