// // Model for E_u with torsion C2 x C14, mentioned at the beginning of Chapter 3, along with // factorizations of the j-invariant, c_4-invariant and discriminant of E_u // and factorization of f in F_2 used in Lemma 3.3 // K:=FunctionField(Rationals()); _:=PolynomialRing(K); F:=ext; // this part is from https://math.mit.edu/~drew/X1/X1_2_14.txt q := (u+v)/(v-u); t := (u-v)*(u+v)*(u+v+2)/(u^3+u^2*v+2*u^2+u*v^2+2*u*v+v^3+2*v^2); E := EllipticCurve([0,t^2-2*q*t-2,0,-(t^2-1)*(q*t+1)^2,0]); E; // this is the elliptic curve E=E_u mentioned in chapter 3 // factorization of the j-invariant of the elliptic curve E from above den_j:=Denominator(jInvariant(E)); num_j:=Denominator(1/jInvariant(E)); Factorization(den_j); Factorization(num_j); // factorization of the c_4-invariant of the elliptic curve E from above den_c4:=Denominator(cInvariants(E)[1]); num_c4:=Denominator(1/cInvariants(E)[1]); Factorization(den_c4); Factorization(num_c4); // factorization of the discriminant of the elliptic curve E from above den_D:=Denominator(Discriminant(E)); num_D:=Denominator(1/Discriminant(E)); Factorization(den_D); Factorization(num_D); // factorization of f in F_2 used in Lemma 3.3 K:=PolynomialRing(FiniteField(2),2); f:=(u^3 + u^2 - 2*u - 1)*v*(v + 1)+(v^3 + v^2 - 2*v - 1)*u*(u + 1); Factorization(f);